APCTP Workshop on Nuclear Physics 2022 Physics of Excited Hadrons in the Present and Future Facilities

Closing the Workshop

2022 also marks the 70th anniversary of discovery of the $\Delta^{++}(1232)$ in π^+ p scattering, E. Fermi et al., Phys. Rev. 85 (1952) 936.

General comments

- The first all in-person international workshop on hadron physics many of us attended after the covid-19 pandemic.
- Great venue, superior organization, excellent talks and discussions, delicious meals, and much fun at the excursion on the yacht.

Thank you to Jiyoung for all the great work!

Balanced distribution of talks – thank you to the organizing committee

- Experimental talks: 16
- Theory talks: 18
- A good percentage of young people good for the field
- Gender breakdown: male 33, female 1 let us make an effort to change that **
- Facility talks: J-PARC, JLAB, MAMI-MESA, HADES, ELSA/BGOOD, ...
- Many talks showing strong involvement of theorists/phenomenologists in interpretation of data heeding Harry Lee's message from the first day.

Jiyoung Ha

J-PARC Hadron Experimental Facility

Hiroyuki Sako Baryon Spectroscopy – search for new N* and Δ * states,

Hiroyuki Noumi Extension plan to study excited baryons with heavy flavor

Physics Highlights and Perspectives with Electron Beams at Mainz Physics with energy-tagged photon beam and crystal detectors

P. Achenbach

Precision electron scattering with **high resolution** focusing spectrometers. Many exciting high impact results at energy < 1.6 GeV in various stages of microtron

New project: **MESA** – Ultra-high current e-beam 15mA luminosity, energy below pion threshold < 155 MeV

JLab Hall A & C spectrometers + large acceptance

A. Cansomme

- Hall A and C high luminosity halls luminosity ranging from 10³⁶ up to 5.10³⁸ cm-2s-1
- Few simple measurements using small acceptance spectrometers
- Larger acceptance detectors available such as Super Big Bite
- Large acceptance detector like SoLID striving to keep running at highest luminosity
 - Approved experiments SIDIS and J/Psi
 - Future possible experiment DDVCS
- Focus on deep inelastic but could have dedicated experiment in resonance region

ELSA – BGOOD Experiment

BGOOD tuned for threshold physics in uds sector

Current focus on missing strange baryons

JLab CLAS12 spectrometer

Timothy Hayward, Valerii Klimenko

The first absolute inclusive cross section to reconstruction efficiencies.

Experiment – phenomenology- and theory - together

The history of the universe tells us how mass was generated in the transition from quark-gluon plasma of non-interaction quarks and gluons to confinement of hadrons. It involves all excited baryon resonances.

We are trying to reconstruct from todays data what happened in the process that took place 14×10^9 years ago at temperatures above 10^{12} K (100 MeV). Experiments at GeV levels are perfectly matched to probing resonances generated in during this transition in "isolation". T.S. Harry Lee

Study of $N \rightarrow N^*$ over a broad range of Q^2 will reveal how the **nucleon mass is dynamically generated from massless quarks of PQCD** and provide information on the effects of the meson-baryon cloud.

1. Need extensive data of meson production reactions

- 2. Need theoretical models to extract the N* from the data
- 3. Need to understand the structure of N*

The ultimate case for the missing excited baryons Understanding the history of our universe

Electroexcitation of N* key to learn about EHM?

Importance of the pion cloud at small Q, not included in computation.

Continuous QCD calculation

Defining the "complete experiment" problem

Finale: the 'coupled-channels complete experiment'

Consider *channel-space* $\{|\pi N\rangle, |\gamma N\rangle, |\pi \pi N\rangle\}$, i.e.:

	$\int \mathcal{T}_{\pi N,\pi N}$	$\mathcal{T}_{\pi N,\gamma N}$	$\mathcal{T}_{\pi N,\pi\pi N}$	٦
$(\mathcal{T}_{\mathit{fi}}) =$	$\mathcal{T}_{\gamma N,\pi N}$	$\mathcal{T}_{\gamma \textit{N}, \gamma \textit{N}} \simeq 0$	$\mathcal{T}_{\gamma N,\pi\pi N}$	
	$\mathcal{T}_{\pi\pi N,\pi N}$	$\mathcal{T}_{\pi\pi N,\gamma N}$	$\mathcal{T}_{\pi\pi N,\pi\pi N}$	

 → Measure individual complete experiments with perfect *phase-space coverage and overlap* among individual reactions (complete exp.'s determinable using *graphs*):

Reaction	Example complete experiment (yields $ b_i \& \phi_{ij}$)
$\pi N ightarrow \pi N \; (N_{\mathcal{A}}=2)$	$\sigma_0, \hat{P}, \hat{R}, \hat{A}$
π N $ ightarrow \pi\pi$ N (N _A = 4)	$\sigma_0, \check{P}_y, \check{P}_z, \check{P}_{x'}, \check{P}_{y'}, \check{\mathcal{O}}_{yy'}, \check{\mathcal{O}}_{zy'}, \check{\mathcal{O}}_{yz'}$
γ N $ ightarrow \pi$ N (N $_{\mathcal{A}}=$ 4)	$\sigma_0, \check{\Sigma}, \check{T}, \check{P}, \check{E}, \check{H}, \check{L}_{x'}, \check{T}_{x'}$
$\gamma N ightarrow \pi \pi N \ (N_{\mathcal{A}} = 8)$	$\sigma_{0}, \check{P}_{y}, \check{P}_{y'}, \check{\mathcal{O}}_{yy'}^{\odot}, \check{\mathcal{O}}_{yy'}, \check{P}_{y'}^{\odot}, \check{P}_{y}^{\odot}, I^{\odot}, \check{P}_{x}, \check{P}_{z}, \check{P}_{x'}, \check{P}_{x}^{s}, \check{P}_{x}^{\odot}, \check{P}_{z}^{c}, \check{P}_{z}^{\odot}, \check{P}_{x'}^{\odot}$

 \Rightarrow For these 4 reactions, we have $\mathcal{T}_{fi} = e^{i\phi_{fi}} \tilde{\mathcal{T}}_{fi}$, with $\tilde{\mathcal{T}}_{fi}$ fixed.

- \hookrightarrow Fit at least two (or more) complementary ED models (BnGa, JüBo, ...), which have to have as good unitarity-constraints as possible, to this database
 - \Rightarrow Missing phase-information $e^{i\phi_{fi}}$ fixed and resonance-spectrum (hopefully) unique!
- <u>Issues:</u> Can we assume perfect time-reversal inv., to relate $3 \rightarrow 2$ to $2 \rightarrow 3$ processes?
 - 3 \rightarrow 3-process $\pi\pi N \rightarrow \pi\pi N$ unmeasurable. Does this hurt the proposal?

Y. Wunderlich

News from the Quark Model – it is still needed!

Detailed update on **covariant spectator quark model** (CSQM) calculations of the nucleon resonance transition form factors of the lower mass states.

Calculations of N^* transition form factors at large $Q^2 \Delta(1232)\frac{3}{2}^+$, $N(1440)\frac{1}{2}^+$, $N(1535)\frac{1}{2}^-$, $N(1520)\frac{3}{2}^-$, $\Delta(1600)\frac{3}{2}^+$, $N(1650)\frac{1}{2}^-$, $N(1700)\frac{3}{2}^-$, $\Delta(1620)\frac{1}{2}^-$, $\Delta(1700)\frac{3}{2}^-$ [SQTM] ... some results at low- Q^2

Covariant Spectator Theory: wf Ψ_B defined in terms of a 3-quark verte system with 2 on-shell quarks and an off-shell quark

 \Rightarrow qq pair replaced by an *effective* diquark with mass m_D

G. Ramalho

Why the mass of the Roper N(1440) mass sits below the N(1535) mass

N. Suzuki, B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, Phys.Rev.Lett.104:042302,2010

Does it apply to other "Roper-like" state that were discussed at the workshop?

Resonance transition GPD (CFF)

 The GPD program on the proton now well established and gravitational form factor was found to d^q₁(t) make large contribution to the GPD (CFF) H(ξ,t) determined from DVCS data and confirmed by TCS data.

d₁(0) = -2.04 +/- 0.35 (DVCS data) **d**₁(0) = -2.16 (χQSM), *H.Y. Won, et al.* (Friday cont. talk)

• Today we saw first preliminary data related to resonance transition GPD in $ep \rightarrow e\Delta^{++}\pi^{-}$

For a very exciting workshop

Yongseok Oh and Kyungseon Joo

THANK YOU!

감사합니다