Electromagnetic interaction of baryon resonances in the timelike region studied via the reaction

$$\pi N o N e^+ e^-$$

Miklós Zétényi Wigner RCP

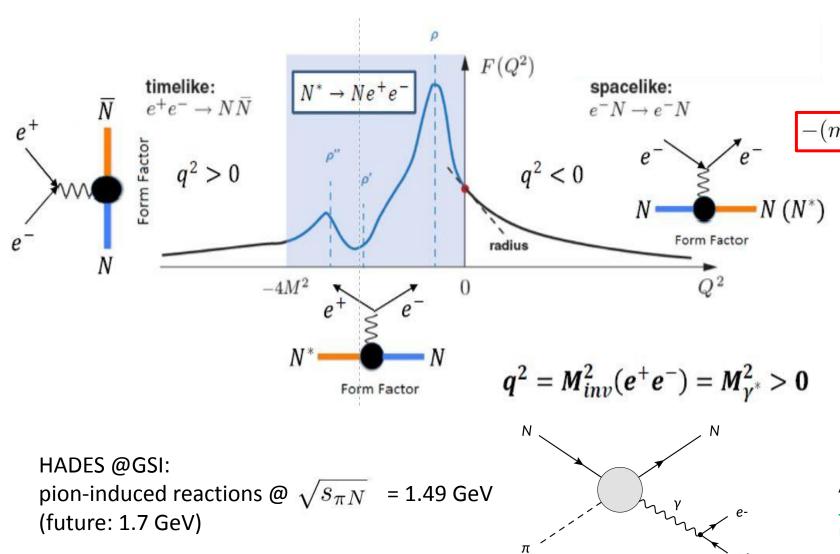
APCTP Workshop on Nuclear Physics 11-16 July 2022

Outline

- Introduction
- $\pi N o N e^+ e^-$ in helicity formalism
 - Polarization & anisotropy from symmerties
- Effective Lagrangian model
- Comparison to new results from HADES

Introduction

EM transition form factors of baryon resonances



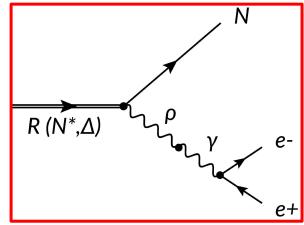
Domains of $Q^2 = -q^2$

 $Q^2 < -(m_R + m_N)^2$: e+e- annihilation

 $-(m_R-m_N)^2 < Q^2 < 0$: N* Dalitz-decay

 $Q^2=0$: photoproduction

 $0 < Q^2$: electroproduction



 Δ (1232) Dalitz-decay measured by HADES in p+p J. Adamczewski-Musch et al. (HADES Collaboration) Phys. Rev. C **95**, 065205 (2017)

Resonance polarization - density matrices

Creation and decay of a resonance:

$$\mathcal{M}_{fi} = \sum_{\lambda} \left\langle f \left| T_{R
ightarrow f} \middle| R(\lambda)
ight
angle \left\langle R(\lambda) \left| T_{i
ightarrow R} \middle| i
ight
angle egin{array}{c} R(\lambda) \ \end{array} igg| T_{i
ightarrow R} \left| i
ight
angle igg| T_{i
ight
angle} \left| i
ight
angle \left| i
ight
angle T_{i
ight
angle} \left| i
ight
angle T_{i
ight
an$$

Squared amplitude (weighted average over initial polarization):

$$\sum_{i} P_{i} |\mathcal{M}_{fi}|^{2} = \sum_{\lambda \lambda'}
ho_{\lambda \lambda'}^{
m cre}
ho_{\lambda' \lambda}^{
m dec}$$
 c.f. $\langle \mathcal{O}
angle = {
m Tr} \left(
ho \, \mathcal{O}
ight)$ $ho \sim
ho_{\lambda \lambda'}^{
m cre}$ of the resonance

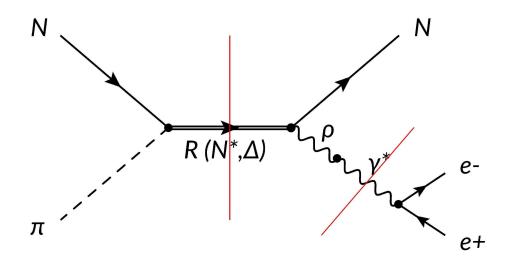
Polarization density matrices:

$$egin{aligned}
ho_{\lambda\lambda'}^{ ext{cre}} &= \sum_{i} P_{i} \left\langle R(\lambda) \left| T_{i
ightarrow R}
ight| i
ight
angle \left\langle i \left| T_{i
ightarrow R}^{\dagger}
ight| R(\lambda')
ight
angle \
ho_{\lambda'\lambda}^{ ext{dec}} &= \left\langle R(\lambda') \left| T_{R
ightarrow f}^{\dagger}
ight| f
ight
angle \left\langle f \left| T_{R
ightarrow f}
ight| R(\lambda)
ight
angle \end{aligned}$$

measured quantity

$$\mathcal{O} \sim
ho_{\lambda'\lambda}^{
m dec} \stackrel{
m measured quantity}{
ightarrow} {
ightarrow} {
m angular distribution}$$
 of decay products

The process $\pi N o N e^+ e^-$



Important contribution: baryon resonance in the *s*-channel

3 steps - 2 intermediate resonances

- baryon resonance R (N^* or Δ)
- vector particle (ϱ or γ^*)

each of the 3 steps is a $1\rightarrow 2$ or $2\rightarrow 1$ process

$$\pi+N o R$$
 preparation of resonance state $R o N+\gamma^*$ E.M. transition of resonance $\gamma^* o e^+e^-$ "analyser"

1→2 processes

Wigner-Eckart theorem for transition amplitude $R \rightarrow 1+2$:

Wigner matrix: angular distribution - from symmetry

Helicity amplitude:

from dynamics

$$\left\langle \mathbf{p} s_1 \lambda_1; -\mathbf{p} s_2 \lambda_2 \left| T_{R o 1+2} \left| \mathbf{p}_R = 0, \ JM
ight
angle = \sqrt{rac{2J+1}{4\pi}} F_{\lambda_1 \lambda_2}^J oldsymbol{D}_{M,\lambda_1-\lambda_2}^J (\Omega)^*
ight.$$

Restrictions on helicity amplitudes:

from Wigner matrix $m{D}_{M,\lambda_1-\lambda_2}^J(\Omega):\ -J \leq \lambda_1-\lambda_2 \leq J$

from parity conservation: $F^J_{\lambda_1\lambda_2}=\eta_R\eta_1\eta_2(-1)^{J-s_1-s_2}F^J_{-\lambda_1,-\lambda_2}$

1→2 processes

Wigner-Eckart theorem for transition amplitude $R \rightarrow 1+2$:

Wigner matrix: angular distribution - from symmetry

Helicity amplitude:

from dynamics

$$\left\langle \mathbf{p} s_1 \lambda_1; -\mathbf{p} s_2 \lambda_2 \left| T_{R o 1+2} \left| \mathbf{p}_R = 0, JM
ight
angle = \sqrt{rac{2J+1}{4\pi}} F^J_{\lambda_1 \lambda_2} D^J_{M,\lambda_1-\lambda_2}(\Omega)^*
ight.$$

Restrictions on helicity amplitudes:

from Wigner matrix $m{D}_{M,\lambda_1-\lambda_2}^J(\Omega):\ -J \leq \lambda_1-\lambda_2 \leq J$

from parity conservation: $F^J_{\lambda_1\lambda_2}=\eta_R\eta_1\eta_2(-1)^{J-s_1-s_2}F^J_{-\lambda_1,-\lambda_2}$

$$\pi+N o R$$
 :

Quantization axis = beam axis: $D^J_{\lambda_R,\lambda_N}(heta=0,\phi=0)=\delta_{\lambda_R,\lambda_N}$ \longrightarrow $\lambda_R=\lambda_N$

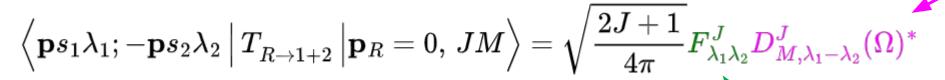
The nucleon state is a mixture of $+\frac{1}{2}$ and $-\frac{1}{2}$ helicities \rightarrow so is the resonance R

 \rightarrow for $J \geq 3/2$ resonances the $\lambda_R \geq 3/2$ states are missing \rightarrow R has nontrivial polarization

1→2 processes

Wigner-Eckart theorem for transition amplitude $R \rightarrow 1+2$:

Wigner matrix: angular distribution - from symmetry



Restrictions on helicity amplitudes:

from Wigner matrix
$$D^J_{M,\lambda_1-\lambda_2}(\Omega):\ -J\leq \lambda_1-\lambda_2\leq J$$

from parity conservation: $F^J_{\lambda_1\lambda_2}=\eta_R\eta_1\eta_2(-1)^{J-s_1-s_2}F^J_{-\lambda_1,-\lambda_2}$

$$\gamma^*
ightarrow e^+ e^-$$
 :

Two independent helicity amplitudes:

$$egin{align} A_0 &\equiv F^1_{rac{1}{2},rac{1}{2}} = F^1_{-rac{1}{2},-rac{1}{2}} \ A_1 &\equiv F^1_{rac{1}{2},-rac{1}{2}} = F^1_{-rac{1}{2},rac{1}{2}} \end{aligned}$$

They satisfy the QED relation:

Helicity amplitude:

from dynamics

$$rac{A_0}{A_1} = -\sqrt{2}rac{m_e}{m_{\gamma^*}}$$

$$\gamma^*
ightarrow e^+ e^-$$
 - decay density matrix:

$$ho_{\lambda',\lambda}^{
m dec} \propto egin{pmatrix} 1+\cos^2 heta_e + lpha & -\sqrt{2}\cos heta_e\sin heta_e e^{-i\phi_e} & \sin^2 heta_e e^{-2i\phi_e} \ -\sqrt{2}\cos heta_e\sin heta_e e^{i\phi_e} & 2(1-\cos^2 heta_e) + lpha & \sqrt{2}\cos heta_e\sin heta_e e^{-i\phi_e} \ \sin^2 heta_e e^{2i\phi_e} & \sqrt{2}\cos heta_e\sin heta_e e^{i\phi_e} & 1+\cos^2 heta_e + lpha \end{pmatrix} \qquad lpha = rac{2m_e^2}{|\mathbf{k}_e|^2}$$

Angular distribution of the lepton pair:

$$\begin{split} \sum_{\lambda,\lambda'} \rho_{\lambda\lambda'}^{\text{cre}} \rho_{\lambda'\lambda}^{\text{dec}} &\propto (1 + \cos^2 \theta_e) \left(\rho_{1,1}^{\text{cre}} + \rho_{-1,-1}^{\text{cre}} \right) + 2 \sin^2 \theta_e \, \rho_{0,0}^{\text{cre}} \\ &+ \sqrt{2} \sin 2\theta_e \left[\cos \phi_e (\text{Re} \rho_{1,0}^{\text{cre}} - \text{Re} \rho_{-1,0}^{\text{cre}}) \right. \\ &+ \sin \phi_e (\text{Im} \rho_{1,0}^{\text{cre}} + \text{Im} \rho_{-1,0}^{\text{cre}}) \right] \\ &+ 2 \sin^2 \theta_e \left(\cos 2\phi_e \text{Re} \rho_{1,-1}^{\text{cre}} + \sin 2\phi_e \text{Im} \rho_{1,-1}^{\text{cre}} \right) \end{split}$$

depends on γ^* polarization ($ho_{\lambda\lambda'}^{
m cre}$)

we can obtain $ho_{\lambda\lambda'}^{\rm cre}$ via fitting the experimental angular distribution

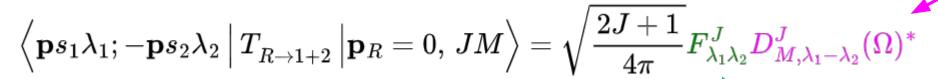
1→2 processes

Wigner-Eckart theorem for transition amplitude $R \rightarrow 1+2$:

Wigner matrix: angular distribution - from symmetry

Helicity amplitude:

from dynamics



Restrictions on helicity amplitudes:

from Wigner matrix
$$D^J_{M,\lambda_1-\lambda_2}(\Omega)$$
 : $-J \leq \lambda_1-\lambda_2 \leq J$

from parity conservation: $F^J_{\lambda_1\lambda_2}=\eta_R\eta_1\eta_2(-1)^{J-s_1-s_2}F^J_{-\lambda_1,-\lambda_2}$

$$R o N+\gamma^*$$

3 independent helicity amplitudes for $J \ge 3/2$ resonances:

$$egin{align} A_{1/2} &\equiv F_{1,rac{1}{2}}^J = \pm F_{-1,-rac{1}{2}}^J \ S_{1/2} &\equiv F_{0,rac{1}{2}}^J = \pm F_{0,-rac{1}{2}}^J \ A_{3/2} &\equiv F_{-1,rac{1}{2}}^J = \pm F_{1,-rac{1}{2}}^J \ \end{align}$$

 $S_{1/2}
ightarrow 0 \;\; ext{when} \;\; m_{\gamma^*}
ightarrow 0$ (real photons are transverse)

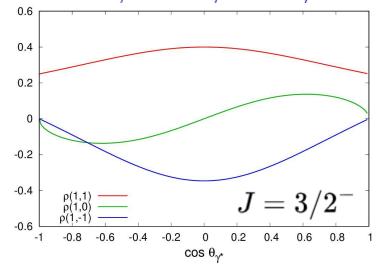
$R o N + \gamma^*$ - creation density matrix:

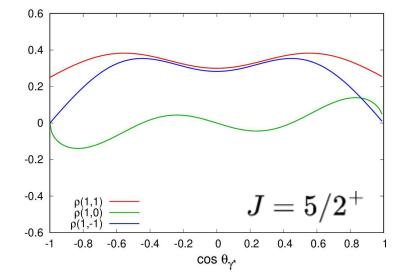
$$ho_{\lambda\lambda'}^{
m cre} \propto \sum_{\lambda_R,\lambda_N} F_{\lambda\lambda_N}^J F_{\lambda'\lambda_N}^{J*} P_{\lambda_R} {\color{red}D_{\lambda_R,\lambda-\lambda_N}^J(\Omega)^*} {\color{red}D_{\lambda_R,\lambda'-\lambda_N}^J(\Omega)}$$

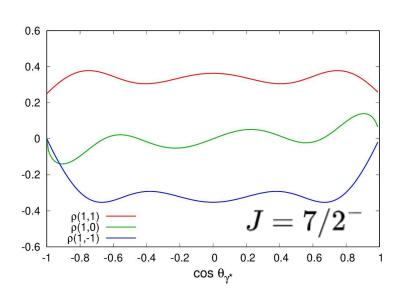
Unpolarized $J = 3/2^-$ baryon resonance [e.g. N(1520)]:

$$\rho_{\lambda,\lambda'}^{\text{cre},3/2} = \mathcal{N} \begin{pmatrix} A_{1/2}^2 + 3 \left(A_{1/2}^2 \cos^2\theta + A_{3/2}^2 \sin^2\theta \right) & -\sqrt{3} A_{3/2} S_{1/2} \sin 2\theta & 2\sqrt{3} A_{1/2} A_{3/2} \sin^2\theta \\ & -\sqrt{3} A_{3/2} S_{1/2} \sin 2\theta & S_{1/2}^2 (5 + 3 \cos 2\theta) & \sqrt{3} A_{3/2} S_{1/2} \sin 2\theta \\ & 2\sqrt{3} A_{1/2} A_{3/2} \sin^2\theta & \sqrt{3} A_{3/2} S_{1/2} \sin 2\theta & A_{1/2}^2 + 3 \left(A_{1/2}^2 \cos^2\theta + A_{3/2}^2 \sin^2\theta \right) \end{pmatrix}$$

E.g. if $A_{3/2} = A_{1/2} = S_{1/2}$:



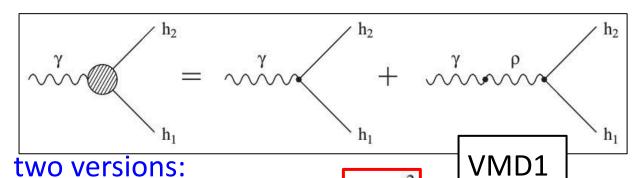




All contributions to the process $\pi N o N e^+ e^-$:

Born terms $e^{-}(\kappa_1)$ $N(p_f)$ $e^{+}(k_{2})$ N π (a) (b) (c) (d) contributions of baryon resonances $N(p_i)$ $\pi(q)$ ρ, a_1 N(1520), N(1535), R N(1440) u-channel unimportant at $\sqrt{s_{\pi N}}$ = 1.5 GeV (e)

Vector Meson Dominance



Electromagnetic interaction of hadrons -

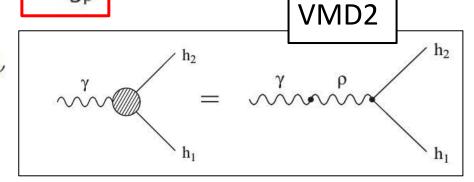
direct photon-hadron coupling

$$\mathcal{L}_{\text{VMD1}} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} \rho_{\mu\nu} \rho^{\mu\nu} + \frac{1}{2} m_{\rho}^2 \rho_{\mu} \rho^{\mu} - g_{\rho\pi\pi} \rho_{\mu} J^{\mu} - e A_{\mu} J^{\mu} - \frac{e}{2g_{\rho}} F_{\mu\nu} \rho^{\mu\nu}.$$

$$\mathcal{L}_{\text{VMD2}} = -\frac{1}{4} (F'_{\mu\nu})^2 - \frac{1}{4} (\rho'_{\mu\nu})^2 + \frac{1}{2} m_{\rho}^2 (\rho'_{\mu})^2 - g_{\rho\pi\pi} \rho'_{\mu} J^{\mu} \left(-\frac{e' m_{\rho}^2}{g_{\rho}} \rho'_{\mu} A'^{\mu} \right) + \frac{1}{2} \left(\frac{e'}{g_{\rho}} \right)^2 m_{\rho}^2 (A'_{\mu})^2.$$

hadron current: J_{μ}

rho field-strength tensor: $\vec{\rho}_{\mu\nu} = \partial_{\mu}\vec{\rho}_{\nu} - \partial_{\nu}\vec{\rho}_{\mu} - g\vec{\rho}_{\mu} \times \vec{\rho}_{\nu}$



 γ and ϱ couplings

independently

can be determined

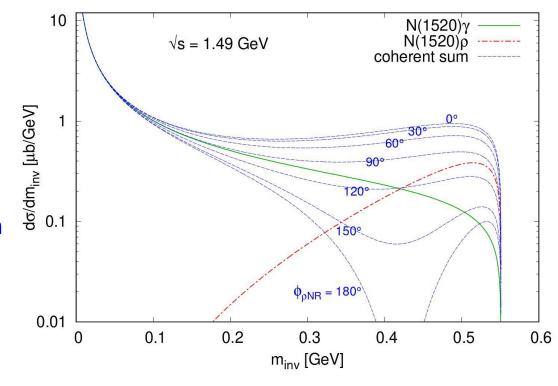
Consistent interaction scheme for $J \ge 3/2$ resonances:

$$egin{aligned} \mathcal{L}_{R_{3/2}N
ho}^{(1)} &= rac{ig_1}{4m_N^2} ar{\Psi}_R^{\mu} ec{ au} \, \Gamma \gamma^{
u} \psi_N \cdot ec{
ho}_{
u\mu} + ext{h.c.} \ \mathcal{L}_{R_{3/2}N
ho}^{(2)} &= -rac{g_2}{8m_N^3} ar{\Psi}_R^{\mu} ec{ au} \, \Gamma \partial^{
u} \psi_N \cdot ec{
ho}_{
u\mu} + ext{h.c.} \ \mathcal{L}_{R_{3/2}N
ho}^{(3)} &= -rac{g_3}{8m_N^3} ar{\Psi}_R^{\mu} ec{ au} \, \Gamma \psi_N \partial^{
u} \cdot ec{
ho}_{
u\mu} + ext{h.c.}, \end{aligned}$$

$$\Psi^{\mu}_R = i \gamma_{
u} (\partial^{\mu} \psi^{
u}_R - \partial^{
u} \psi^{\mu}_R)$$

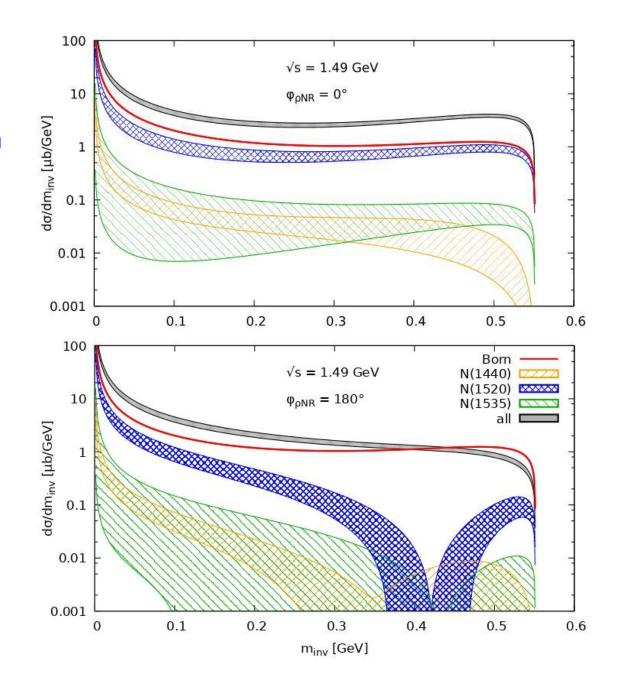
[V. Pascalutsa, Phys. Rev. D 58 (1998) 096002;T. Vrancx, et al. Phys. Rev. C 84 (2011) 045201]

- coupling constants from R o N
 ho branching ratios (HADES, $\pi N o N \pi \pi$ [Phys. Rev. C 102 (2020) 024001])
- analogous Lagrangians for $RN\gamma$ coupling
- VMD1: relative phase of ρ and direct γ contribution is not fixed \rightarrow various interference patterns
- \rho contribution is important although we are below threshold

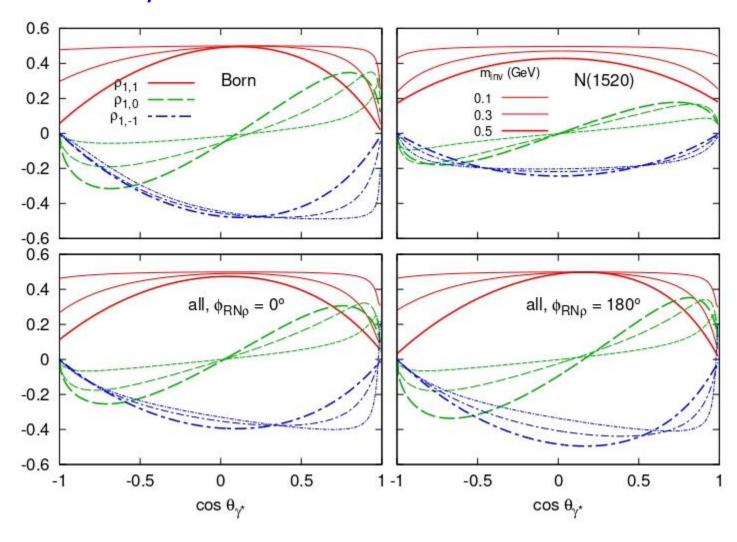


Differential cross section of e^+e^- production

- dominant sources are Born and N(1520)
- error bands: uncertainty of resonance widths and branching ratios
- relative phase of ρ and direct γ has a strong influence



Density matrix elements



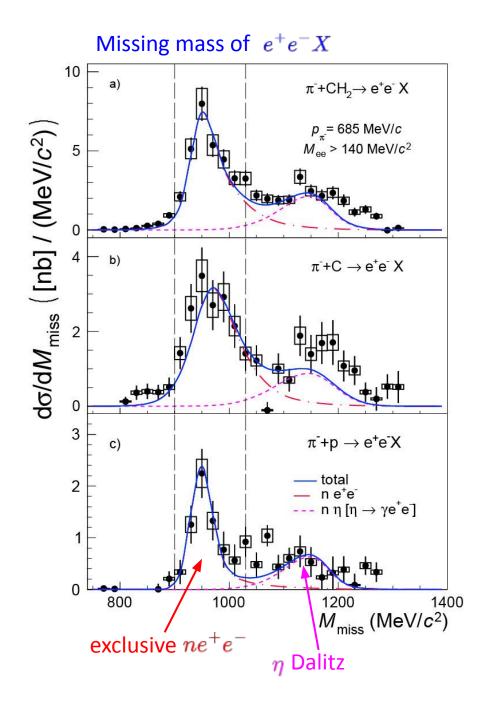
- Born and N(1520) contributions have similar shapes
- longitudinal polarization disappears as $m_{
 m inv}
 ightarrow 0$

HADES results

Quasifree $\pi^- p o n e^+ e^-$ by HADES

[R. Abou Yassine et al., e-Print: 2205.15914 [nucl-ex] (2022)]

- π^- beam: p_{π} = 0.658 GeV ($\sqrt{s_{\pi N}}$ = 1.49 GeV)
- targets: polyethylene (CH₂), carbon (C)
- missing mass cut: select exclusive ne^+e^-
- difference of CH $_2$ and C ightarrow free $\pi^- p
 ightarrow n e^+ e^-$
- low statistics for carbon target \rightarrow quasifree $\pi^- p \rightarrow n e^+ e^-$: $\pi^- + \text{CH}_2$ & effective proton number

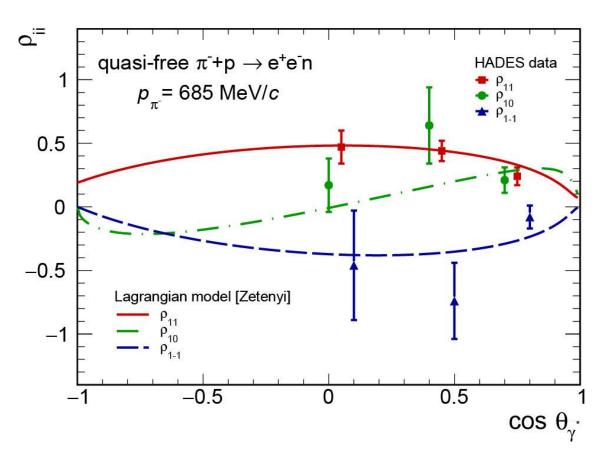


HADES results

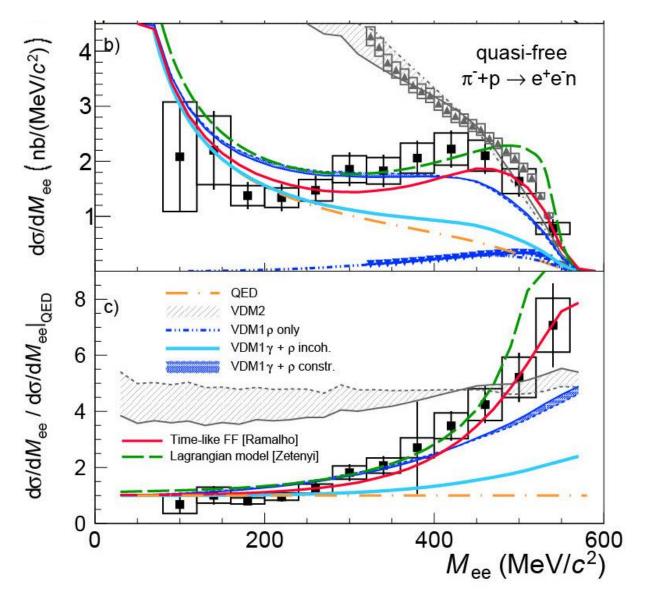
Quasifree $\pi^- p o n e^+ e^-$ by HADES

Polarization density matrix elements:

- ullet extracted from experiment via fitting $d^4\sigma/d\cos heta_{\gamma^*}\,dM_{e^+e^-}\,d\cos heta_e\,d\phi_e$ for $M_{e^+e^-}>300\,{
 m MeV}/c^2$ and 3 bins in $\cos heta_{\gamma^*}$
- ~ consistent with effective Lagr. model
 (dominance of N(1520) and Born terms)



Quasifree $\pi^- p o n e^+ e^-$ by HADES



Differential cross section vs. models

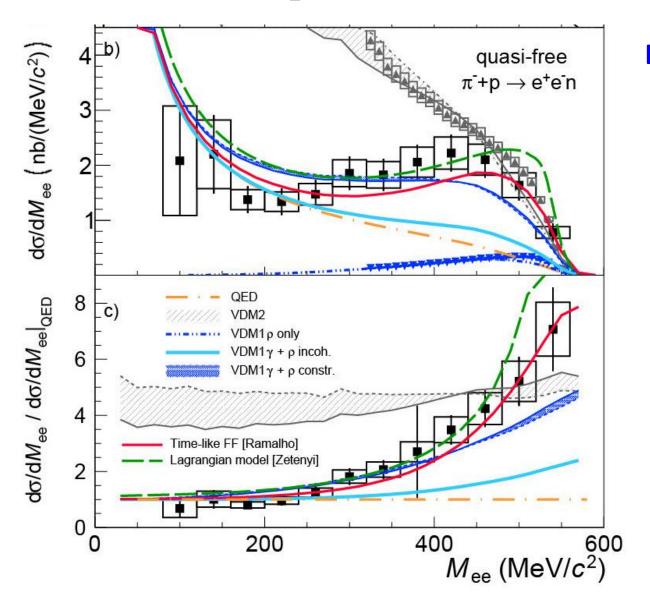
- large excess compared to QED [pointlike N(1520) and N(1535)] for M_{e+e-} > 200 MeV
- lacktriangle and lacktriangle: reconstructed from $\pi^- p o n
 ho^0$ [known from PWA of $\pi^- p o n \pi^+ \pi^-$ (Bonn-Gatchina, HADES data)], via

$$\circ$$
 VMD1: $\Gamma(M_{e^+e^-})=\Gamma_0rac{M_{e^+e^-}}{M_0}$

$$\circ$$
 VMD2: $\Gamma(M_{e^+e^-}) = \Gamma_0igg(rac{M_0}{M_{e^+e^-}}igg)^3$

HADES results

Quasifree $\pi^- p o n e^+ e^-$ by HADES



Differential cross section vs. models

- VMD2: overestimates for low inv. mass
- VMD1: constructive $\gamma \rho$ interference gives the best description of the data
- Covariant Spectator Quark model
 [G. Ramalho, T. Pena, Phys. Rev. D 95, 014003 (2017)]
- our effective Lagrangian model with $\,\phi_{
 ho NR} = 90^\circ \,$ ($m \sim$ incoherent sum)

[M. Z., D. Nitt, M. Buballa, T. Galatyuk, Phys. Rev. C **104**, 015201 (2021)]

Summary

- Quasifree $\pi^- p o n e^+ e^-$ measured at $\sqrt{s} = 1.49$ GeV by HADES
- Related to $\pi^- p \to n \pi^+ \pi^-$ by vector meson dominance (VMD)
- Spin density matrix elements (= polarization state) of γ^* accessible in the experiment
- Differential cross section confronted with various models
 - timelike e.m. transition of the relevant baryon resonances
 - various versions of VMD
- Plans for higher energies

Thank You!

```
R. Abou Yassine et al. (HADES Collaboration & M.Z.), e-Print: 2205.15914 [nucl-ex] (2022)
```

- M. Z., D. Nitt, M. Buballa, T. Galatyuk, Phys. Rev. C **104**, 015201 (2021)
- E. Speranza, M. Z., B. Friman, Phys. Lett. B **764**, 282 (2017)
- M. Z., Gy. Wolf, Phys. Rev. C 86, 065209 (2012)
- B. Zhang, M. Z., in preparation

Collaborators, Acknowledgements

Deniz Nitt, Enrico Speranza, Baiyang Zhang Michael Buballa, Bengt Friman

Members of HADES:

Piotr Salabura, Beatrice Ramstein, Tetyana Galatyuk