

Axial-vector transition form factors of light and singly heavy baryons in χQSM

Jung-Min Suh, Yu-son Jun and Hyun-Chul Kim Inha University

Motivation

- neutrino-nucleon scattering.

 Understanding the axial-vector transition form factor is important because it provides significant information for describing the

 One of axial-vector transitions, hyperon semi-leptonic decay gives the constraint of Cabibbo-Kobayashi-Maskawa mixing angles.

The effective partition function

 $Z_{\chi \rm QSM} = N_c \int D\psi D\psi^{\dagger} D U^a$

$$-\int d^4x \psi^{\dagger} i(i\partial \!\!\!/ + iMU^{\gamma^5} + i\hat{m})\psi \bigg]$$
$$U^{\gamma_5} = \frac{1+\gamma_5}{2}U + \frac{1-\gamma_5}{2}U^{\dagger}$$

A baryon in the large Nc limit

E.Witten Nucl. Phys. B 160 (1979) 57

A baryon can be described as a state of Nc quarks bound by mesonic mean-field.

Baryon correlation function

$\Pi_N(T) = \langle 0 | J_N(0, T/2) J_N^{\dagger}(0, -T/2) | 0 \rangle \sim e^{-N_c E_{\text{val}} + E_{\text{sea}}}$

Vacuum Polarization

Introduction of rotational zero modes

$\frac{\delta S}{\delta U_{\alpha}} = 0$

 $\int DU(\vec{x})F(U(\vec{x})) \Rightarrow \int d^3z DAF(AU_c(\vec{x}-\vec{z})A^{\dagger})$

In the Large N_c limit, we can get the classical mesonic configuration by solving the saddlepoint equation.

A(t) : SU(3) matrices

Collective Hamiltonian

$H_{\rm coll} = H_s + H_{sb}$ $H_{s} = M_{c} + \frac{1}{2I_{1}}J_{i}J_{i} + \frac{1}{2I_{2}}J_{a}J_{a} + \frac{M_{1}}{\bar{m}}\Sigma_{SU(2)}$ $H_{sb} = \alpha D_{88}^{(8)} + \beta Y + \frac{\gamma}{\sqrt{3}} D_{8i}^{(8)} J_i$

$$\alpha = \frac{1}{\bar{m}} \frac{1}{\sqrt{3}} M_8 \Sigma_{SU(2)} - \frac{N_c}{\sqrt{3}} M_8 \frac{K_2}{I_2}$$

 $\beta = \sqrt{3}M_8 \frac{K_2}{I_2} \quad \gamma = -2\sqrt{3}M_8 \left(\frac{K_1}{I_1} - \frac{K_2}{I_2}\right)$

Decomposition of axial-vector transition FF

$$\langle B^{(8)}(p_f, s_f) | A^{\mu(3)} | B^{(10)}(p_i, s_i) \rangle$$

$$= \bar{u}(p_f) \left[\frac{C_3^A(q^2)}{M_8} (\not q g^{\mu\nu} - \gamma^{\mu} q^{\nu}) \right]$$

$$+ C_5^A(q^2) g^{\mu\nu} + \frac{C_6^A(q^2)}{M_8^2} q^{\mu} q^{\nu} \right] u$$

• $C_5^A(q^2)$ is the most important form factor because it can directly be related to the $g_{\pi N\Delta}$ coupling.

) + $\frac{C_4^A(q^2)}{M_2^2} \left(p_f^\lambda q_\lambda g^{\mu\nu} - q^\nu p_f^\mu \right)$

 $\nu_{\nu}(p_i)$

Axial-vector transition FF of $\Delta^+ \rightarrow p$

Strangeness conserving axial-vector transition FF

Strangeness changing axial-vector transition FF

1.0

Axial mass

$M_A \; [{ m GeV}]$	$\Delta^+ \to p$	$\Sigma^{*+} \to \Sigma^+$	$\Sigma^{*0} \to \Lambda$	$\Xi^{*0} \rightarrow \Xi^0$	
Parametrization A	0.863	1.03	1.03	1.35	
Parametrization B	1.17	1.32	1.31	1.47	
LQCD [35] $(m_{\pi} = 297 \text{ MeV})(\text{dipole})$	1.699 ± 0.170	_	_	_	
Fogli et al. [39]	0.75	_	_	_	
ANL [21]	0.93 ± 0.11	_	_	_	
BEBC $[55]$	0.85 ± 0.10	_	_	_	
Rein et al. $[53]$	0.95	_	_	_	
BNL [24]	$1.28\substack{+0.08 \\ -0.10}$	_	_	_	
Lalakulich et al. $[54]^c$	1.05	_	_	_	
Lalakulich et al. $[54]^d$	0.95	_	_	_	
Hernandez et al. [59]	0.985 ± 0.082	_	_	_	
Graczyk et al. [56]	0.94 ± 0.04	_	_	_	
MiniBooNE [26]	1.35 ± 0.17	_	_	_	
Alvarez-Ruso et al. [52]	0.954 ± 0.063	_	_	_	
T2K(Prefit) [28]	1.20 ± 0.03	_	_	_	
T2K(Postfit) [28]	1.13 ± 0.08	—	—	_	

$C_5^A(Q^2) = \frac{C_5^A(0)}{(1 + Q^2/M_A^2)^2}$

 $C_5^A(Q^2) = \frac{C_5^A(0)(1 + aQ^2/(b + Q^2))}{(1 + Q^2/M_A^2)^2}$

a = -1.2, b = 2.0

How about singly heavy baryon?

Heavy quark

In the heavy quark mass limit, a heavy quark spin is conserved so the spin of light-quark system is conserved.

Heavy quark symmetry

$3 \otimes 3 = \overline{3} \oplus 6$

[6] J = 3/2

[6]J = 1/2

Decomposition of axial-vector transition FF

 $A^a_{\mu}(x) = \bar{\psi}(x)\gamma_{\mu}\gamma_5\lambda^a\psi(x) + \bar{\Psi}(x)\gamma_{\mu}\gamma_5\Psi(x)$

 $\langle B'_{\frac{1}{2}}(p',J'_{3})|A^{a}_{\mu}(0)|B_{\frac{3}{2}}(p,J_{3})\rangle$ $= \overline{u}(p', J'_{3}) \left\{ \left\{ \frac{C_{3}^{A(a)}(q^{2})}{M'} \gamma^{\nu} + \frac{C_{4}^{A(a)}(q^{2})}{M'^{2}} p^{\nu} \right\} (g_{\alpha\mu}g_{\rho\nu} - g_{\alpha\rho}g_{\mu\nu})q^{\rho} \right\}$ $+C_5^{A(a)}(q^2)g_{\alpha\mu} + \frac{C_6^{A(a)}(q^2)}{M'^2}q_{\alpha}q_{\mu} \left[u^{\alpha}(p,J_3) \right]$

 $\langle B_{1/2}'(p_f, J_3') | A_{\mu}^a(0) | B_{1/2}(p_i, J_3) \rangle = \bar{u}(p_f, J_3') \left| G_A^{(a)}(q^2) \gamma_{\mu} + \frac{G_P^{(a)}(q^2)}{M' + M} q_{\mu} \right| \left| \frac{\gamma_5}{2} u(p_i, J_3) \right|$

Axial-vector transition FF of singly heavy baryons

Comparison of axial-vector transition FF of between light baryons and singly heavy baryons

Decay widths of singly heavy baryons

TABLE I. Numerical results for the strong decay widths in comparison with the experimental data.								
Decay modes	$\Gamma [MeV]$	Exp. [1]	FOCUS Coll. [2]	CLEO II [3]	Belle [4–6]			
$\Sigma_c^{++} \to \Lambda_c^+ + \pi^+$	2.80	$1.89^{+0.09}_{-0.18}$	$2.05\substack{+0.41 \\ -0.38}$	$2.3\pm0.2\pm0.3$	$1.84 \pm 0.04^{+0.07}_{-0.20}$			
$\Sigma_c^+ \to \Lambda_c^+ + \pi^0$	3.39	< 4.6	-	-	$2.3\pm0.3\pm0.3$			
$\Sigma_c^0 \to \Lambda_c^+ + \pi^-$	2.76	$1.83\substack{+0.11 \\ -0.19}$	$1.55\substack{+0.41 \\ -0.37}$	$2.5\pm0.2\pm0.3$	$1.76\pm0.04^{+0.09}_{-0.21}$			
$\Sigma_c^{*++} \to \Lambda_c^+ + \pi^+$	21.0	$14.78\substack{+0.30 \\ -0.40}$	_	-	$14.77 \pm 0.25 ^{+0.18}_{-0.30}$			
$\Sigma_c^{*+} \to \Lambda_c^+ + \pi^0$	22.1	< 17	-	-	$17.2^{+2.3+3.1}_{-2.1-0.7}$			
$\Sigma_c^{*0} \to \Lambda_c^+ + \pi^-$	21.0	$15.3^{+0.4}_{-0.5}$	-	-	$15.41 \pm 0.41 ^{+0.20}_{-0.32}$			
$\Xi_c^{*+} \to \Xi_c + \pi$	2.12	2.14 ± 0.19	-	-	$2.6\pm0.2\pm0.4$			
$\Xi_c^{*0} \to \Xi_c + \pi$	2.30	2.35 ± 0.22	-	-	-			

[1] P. A. Zyla et al. [Particle Data Group], "Review of Particle Physics," PTEP 2020, no.8, 083C01 (2020). [2] J. M. Link *et al.* [FOCUS], Phys. Lett. B **525**, 205-210 (2002).
[3] M. Artuso *et al.* [CLEO], Phys. Rev. D **65**, 071101 (2002).
[4] Y. Kato *et al.* [Belle], Phys. Rev. D **89**, no.5, 052003 (2014).

[5] S. H. Lee *et al.* [Belle], Phys. Rev. D **89**, no.9, 091102 (2014).
[6] J. Yelton *et al.* [Belle], Phys. Rev. D **104**, no.5, 052003 (2021).

Summary

- compared with the experimental data.

 We calculated the axial-vector transition form factors of light and singly heavy baryons within the chiral quark-soliton model.

The decay widths of singly heavy baryons are computed and are

Thank you very much!

