APCTP Workshop on Nuclear Physics 2022

Physics of Excited Hadrons in the Present and Future Facilities

The axial-vector meson in coupled-channel approach

S. Clymton and H-Ch. Kim

Hadron Theory Group Department of Physics Inha University

Outlines

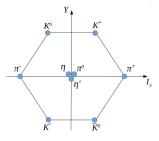
- Motivation
- 2 Formalism
- Results and Discussion
- 4 Summary and Conclusion

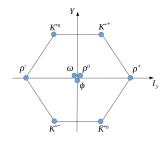
Motivation

- The axial-vector meson
 - The existence of a_1 meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
 - Until now the uncertainty of its mass and width are still large.
 - Their nature is still unclear. Composite? Elementary?

Motivation

- The axial-vector meson
 - The existence of a_1 meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
 - Until now the uncertainty of its mass and width are still large.
 - Their nature is still unclear. Composite? Elementary?





$$I = 0$$
 $h_1(1170)0^ f_1(1285)0^+$
 $I = 1$ $h_1(1235)1^+$ $h_1(1260)1^-$
 $I = 1/2$ $h_1(1270)$

Motivation

- The axial-vector meson
 - ullet The existence of a_1 meson was proven experimentally around four decades ago. [C.Daum (ACCMOR), PLB89, 281 (1980)]
 - Until now the uncertainty of its mass and width are still large.
 - Their nature is still unclear. Composite? Elementary?

- ullet The full off-shell T matrix of this interaction can then be applied to other processes as an elementary process.
 - ullet $Dar{D}$ and $Dar{D}^*$ process
 - ullet $N o \Delta$ axial-vector form factor
 - $\bullet \ \Omega$ baryon radiative form factor
 - \bullet τ decay
 - etc

Formalism

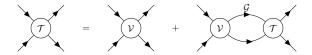
Blanckenbecler-Sugar Scheme

We start from the S matrix, S = 1 + iT, which can be written as

$$S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (P_f - P_i) \mathcal{T}_{fi}$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$\mathcal{T}_{fi}(p',p) = \mathcal{V}_{fi}(p',p) + \frac{1}{(2\pi)^4} \int d^4q \mathcal{V}_{fg}(p',q) \mathcal{G}_g(q) \mathcal{T}_{gi}(q,p)$$



The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$\mathcal{G}_g(q) = \delta \left(q_0 - \frac{E_{1g}}{2} + \frac{E_{2g}}{2} \right) \frac{\pi}{E_{1g} E_{2g}} \frac{E_g}{s - E_g^2}$$

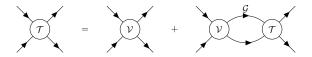
Blanckenbecler-Sugar Scheme

We start from the S matrix, S = 1 + iT, which can be written as

$$S_{fi} = \delta_{fi} - i(2\pi)^4 \delta^4 (P_f - P_i) \mathcal{T}_{fi}$$

The Bethe-Salpeter equation for two-body interaction expressed as

$$\mathcal{T}_{fi}(p',p) = \mathcal{V}_{fi}(p',p) + \frac{1}{(2\pi)^4} \int d^4q \mathcal{V}_{fg}(p',q) \mathcal{G}_g(q) \mathcal{T}_{gi}(q,p)$$

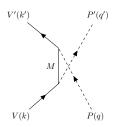


The unitarity requirement of S matrix bring us to Blanckenbecler-Sugar scheme. [R. Blankenbecler, PR142, 1051 (1966)]

$$\mathcal{T}_{fi}(\mathbf{p}, \mathbf{p}') = \mathcal{V}_{fi}(\mathbf{p}, \mathbf{p}') + \frac{1}{(2\pi)^3} \int \frac{d^3q}{2E_{1g}E_{2g}} \mathcal{V}_{fg}(\mathbf{p}, \mathbf{q}) \frac{E_g}{s - E_g^2} \mathcal{T}_{gi}(\mathbf{q}, \mathbf{p}')$$

The potential is modeled by one meson exchange diagram





Each diagram gives

$$\mathcal{V} = IS \times F^2 \times \Gamma_1 \times \mathcal{P} \times \Gamma_2$$

The potential is modeled by one meson exchange diagram

$$\mathcal{V} = IS \times F^2 \times \Gamma_1 \times \mathcal{P} \times \Gamma_2$$

$$\begin{split} \mathcal{L}_{PPV} &= g_1 \operatorname{Tr} \left([P, \partial_{\mu} P]_{-} V^{\mu} \right) \\ \mathcal{L}_{VVV} &= -\frac{1}{2} g_1 \operatorname{Tr} \left[(\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \right] \\ \mathcal{L}_{PVV} &= \frac{g_2}{m_V} \, \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right) \end{split}$$

Coupling constants:

$$\frac{g_1^2}{4\pi} = 0.71$$
$$\frac{g_2^2}{4\pi} = 1.88$$

Ref: G.Janssen, PRC49, 2763 (1994)

$$P = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi^0 + \frac{1}{\sqrt{6}}\eta & K^0 \\ K^- & \bar{K}^0 & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}$$

The potential is modeled by one meson exchange diagram

$$\mathcal{V} = IS \times F^2 \times \Gamma_1 \times \mathcal{P} \times \Gamma_2$$

$$\begin{split} \mathcal{L}_{PPV} &= g_1 \operatorname{Tr} \left([P, \partial_{\mu} P]_{-} V^{\mu} \right) \\ \mathcal{L}_{VVV} &= -\frac{1}{2} g_1 \operatorname{Tr} \left[(\partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}) V^{\mu} V^{\nu} \right] \\ \mathcal{L}_{PVV} &= \frac{g_2}{m_V} \, \varepsilon^{\mu\nu\alpha\beta} \operatorname{Tr} \left(\partial_{\mu} V_{\nu} \partial_{\alpha} V_{\beta} P \right) \end{split}$$

Coupling constants:

$$\frac{g_1^2}{4\pi} = 0.71$$
$$\frac{g_2^2}{4\pi} = 1.88$$

Ref: G.Janssen, PRC49, 2763 (1994)

$$V_{\mu} = \begin{pmatrix} \frac{1}{\sqrt{2}} \rho_{\mu}^{0} + \frac{1}{\sqrt{2}} \omega_{\mu} & \rho_{\mu}^{+} & K_{\mu}^{*+} \\ \rho_{\mu}^{-} & -\frac{1}{\sqrt{2}} \rho_{\mu}^{0} + \frac{1}{\sqrt{2}} \omega_{\mu} & K_{\mu}^{*0} \\ K_{\mu}^{*-} & \bar{K}_{\mu}^{*0} & \phi_{\mu} \end{pmatrix}$$

The potential is modeled by one meson exchange diagram

$$\mathcal{V} = IS \times \mathbf{F}^2 \times \Gamma_1 \times \mathbf{P} \times \Gamma_2$$

We use static propagator,

$$\mathcal{P} = \frac{1}{(k'-k)^2 - m^2} \Longrightarrow \frac{-1}{(\vec{k}' - \vec{k})^2 + m^2}$$

And the form factor

$$F(n,k,k') = \left(\frac{n\Lambda^2 - m^2}{n\Lambda^2 + k^2 + k'^2}\right)^n$$

with

$$\Lambda = \lambda + m$$
.

One-dimensional integral

• Through the partial wave decomposition, the BS equation becomes

$$\mathcal{T}^{fi}_{\lambda'\lambda}(\mathbf{p},\mathbf{p'}) = \mathcal{V}^{fi}_{\lambda'\lambda}(\mathbf{p},\mathbf{p'}) + \frac{1}{(2\pi)^3} \sum_{g,\lambda_q} \int \frac{\mathbf{q}^2 d\mathbf{q}}{2E_{g1}E_{g2}} \mathcal{V}^{fg}_{\lambda'\lambda_g}(\mathbf{p},\mathbf{q}) \frac{E_g}{s - E_g^2} \mathcal{T}^{gi}_{\lambda_g\lambda}(\mathbf{q},\mathbf{p'})$$

where

$$\mathcal{V}_{\lambda'\lambda}^{fi}(\mathbf{p'},\mathbf{p}) = 2\pi \int \mathrm{d}(\cos\theta) d_{\lambda'\lambda}^J(\theta) \mathcal{V}_{\lambda'\lambda}^{fi}(\mathbf{p'},\mathbf{p},\theta),$$

• Evaluating this integral by using principal value

$$\mathcal{T}_{\lambda'\lambda}^{fi}(\mathbf{p}, \mathbf{p}') = \mathcal{V}_{\lambda'\lambda}^{fi}(\mathbf{p}, \mathbf{p}') + \frac{1}{(2\pi)^3} \sum_{g, \lambda_g} \left[\int dE_g \frac{\mathcal{F}(E_g) - \mathcal{F}(\sqrt{s})}{s - E_g^2} - \frac{\mathcal{F}(\sqrt{s})}{2\sqrt{s}} \left(\ln \left| \frac{\sqrt{s} + E_g^{\text{thr}}}{\sqrt{s} - E_g^{\text{thr}}} \right| + i\pi \right) \right]$$

with

$$\mathcal{F}(E_g) = \frac{1}{2} \mathbf{q} \, \mathcal{V}_{\lambda' \lambda_g}^{fg}(\mathbf{p}, \mathbf{q}) \, \mathcal{T}_{\lambda_g \lambda}^{gi}(\mathbf{p}, \mathbf{q}),$$

We solved this integral by utilizing matrix inversion method.

Results and Discussion

$$G = -1$$
 and $I = 1$ a_1 resonance

Channels involved : $\pi \rho$ and $K \bar{K}^*$

Since K and K^* have no definite G-parity,

$$|K\bar{K}^*(-)\rangle = \frac{1}{\sqrt{2}} \left(|K\bar{K}^*\rangle - |\bar{K}K^*\rangle \right)$$

Potential:

$$V^{fi} = \begin{pmatrix} V^{\pi\rho \to \pi\rho} & V^{K\bar{K}^* \to \pi\rho} \\ V^{\pi\rho \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} \end{pmatrix}$$

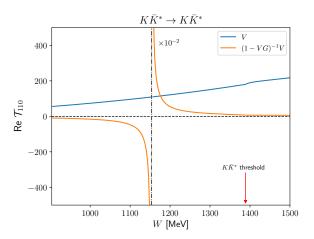
Channels involved : $\pi \rho$ and $K \bar{K}^*$

	meson	channel	IS	$\lambda \; ({\rm MeV})$	$\mid n \mid$
$\pi \rho \to \pi \rho$	π	u	4	600	1
	ho	t	-4	600	1
	ω	u	-4	600	2
$\pi ho o K ar{K}^* (ar{K} K^*)$	K	u	-2(2)	1500	1
	K^*	t	2(-2)	1110	1
$K ar{K}^* o K ar{K}^*$	ho	t	1	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* o \bar{K}K^*$	π	u	1	1050	1
	η	u	-3	1050	1
	ho	u	-1	1050	2
	ω	u	1	1050	2
	ϕ	u	2	1700	2

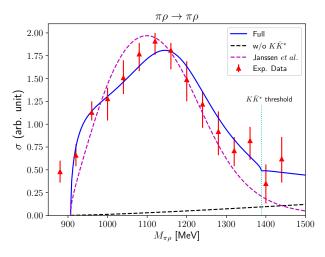
^{*}Note that for ϕ -exchange diagram the coupling g differ by about 14%

a_1 resonance

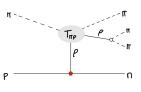
The singularities arises as a result of integral equation in the region below $K\bar{K}^*$ threshold.



$\overline{a_1}$ resonance



We compare the model to experimental data from charge exchange reaction $\pi p \to 3\pi n$.



And define:

$$\sigma \equiv -C \operatorname{Im} \left[T_{\pi \rho}(M_{\pi \rho}) \right]$$

Exp.Data: J.A.Dankowych, PRL46 (1981). Model: G.Janssen, PRC54 (1996)

a_1 properties

- The $a_1(1260)$ pole position, $\sqrt{s_R} = 1170.1 i104.1$ [MeV]
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} (s - s_R) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $a_1(1260)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\rho}$	26.68 - i6.54	0.31 + i0.02	GeV^2
$R_{Kar{K}^*}$	37.17 - i4.74	0.09 + i0.16	$\mathrm{GeV^2}$
$g_{\pi\rho}$	5.20 - i0.63	0.56 + i0.02	GeV
$g_{Kar{K}^*}$	6.11 - i0.39	0.37 + i0.22	GeV

$$G = -1$$
 and $I = 0$
 h_1 resonance

Channels involved : $\pi \rho$, $\eta \omega$, $K\bar{K}^*$ and $\eta \phi$.

$$|K\bar{K}^*(-)\rangle = \frac{1}{\sqrt{2}} \left(|K\bar{K}^*\rangle - |\bar{K}K^*\rangle \right)$$

Potential:

$$V^{fi} = \begin{pmatrix} V^{\pi\rho \to \pi\rho} & V^{\eta\omega \to \pi\rho} & V^{K\bar{K}^* \to \pi\rho} & V^{\eta\phi \to \pi\rho} = 0 \\ V^{\pi\rho \to \eta\omega} & V^{\eta\omega \to \eta\omega} & V^{K\bar{K}^* \to \eta\omega} & V^{\eta\phi \to \eta\omega} = 0 \\ V^{\pi\rho \to K\bar{K}^*} & V^{\eta\omega \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} & V^{\eta\phi \to K\bar{K}^*} \\ V^{\eta\phi \to \pi\rho} = 0 & V^{\eta\omega \to \eta\phi} = 0 & V^{K\bar{K}^* \to \eta\phi} & V^{\eta\phi \to \eta\phi} \end{pmatrix}$$

Channels involved : $\pi \rho$, $\eta \omega$, $K\bar{K}^*$ and $\eta \phi$.

	meson	channel	IS	$\lambda \; ({ m MeV})$	$\mid n \mid$
$\pi \rho \to \pi \rho$	π	u	-8	600	1
	ho	t	-8	600	1
	ω	u	4	600	2
$\pi ho o K ar{K}^* (ar{K} K^*)$	K	u	$ \sqrt{6}(-\sqrt{6}) $ $ \sqrt{6}(-\sqrt{6}) $	1500	1
	K^*	t	$\sqrt{6}(-\sqrt{6})$	1110	1
$K\bar{K}^* o K\bar{K}^*$	ho	t	-3	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* o \bar{K}K^*$	π	u	3	1050	1
	η	u	3	1050	1
	ho	u	-3	1050	2
	ω	u	-1	1050	2
	ϕ	u	-2	1700	2

^{*}All same as in a_1 channel except IS values

Channels involved : $\pi \rho$, $\eta \omega$, $K\bar{K}^*$ and $\eta \phi$.

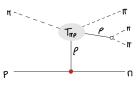
	meson	channel	IS	$\lambda \text{ (MeV)}$	n
$\pi \rho \to \eta \omega$	ρ	u	-4	600	2
$\eta\omega o\eta\omega$	ω	u	4/3	600	2
$\eta\omega \to K\bar{K}^*(\bar{K}K^*)$	K	u	$-\sqrt{6}(\sqrt{6})$	940	1
	K^*	t	$-\sqrt{6}(\sqrt{6})$	940	1
$K\bar{K}^*(\bar{K}K^*) \to \eta\phi$	K	u	$2\sqrt{3}(-2\sqrt{3})$	940	1
	K^*	t	$2\sqrt{3}(-2\sqrt{3})$	940	1
$\eta\phi o\eta\phi$	ϕ	u	16/3	1400	2

^{*}Note that for ϕ -exchange diagram the coupling g_2 differ by about 11%

h_1 resonance



We compare the model to experimental data from charge exchange reaction $\pi p \to 3\pi n$.



And define:

$$\sigma \equiv -C \operatorname{Im} \left[T_{\pi \rho}(M_{\pi \rho}) \right]$$

Exp.Data: J.A.Dankowych, PRL46 (1981). Model: G.Janssen, PRC54 (1996)

h_1 properties

- The $h_1(1170)$ pole position, $\sqrt{s_R} = 1152.3 i162.7$ [MeV]
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} (s - s_R) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $h_1(1170)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\rho}$	17.84 - i10.75	0.31 + i0.01	$\mathrm{GeV^2}$
$R_{\eta\omega}$	16.57 + i6.40	0.08 + i0.04	GeV^2
$R_{Kar{K}^*}$	24.86 + i2.26	-0.02 + i0.22	$\mathrm{GeV^2}$
$R_{\eta\phi}$	70.88 - i12.89	0.96 + i0.10	$\mathrm{GeV^2}$

$$G = +1$$
 and $I = 1$
 b_1 resonance

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

$$|K\bar{K}^*(+)\rangle = \frac{1}{\sqrt{2}} \left(|K\bar{K}^*\rangle + |\bar{K}K^*\rangle \right)$$

Potential:

$$V^{fi} = \begin{pmatrix} V^{\pi\omega \to \pi\omega} & V^{\pi\phi \to \pi\omega} = 0 & V^{\eta\rho \to \pi\omega} & V^{K\bar{K}^* \to \pi\omega} \\ V^{\pi\omega \to \pi\phi} = 0 & V^{\pi\phi \to \pi\phi} = 0 & V^{\eta\rho \to \pi\phi} = 0 & V^{K\bar{K}^* \to \pi\phi} \\ V^{\pi\omega \to \eta\rho} & V^{\pi\phi \to \eta\rho} = 0 & V^{\eta\rho \to \eta\rho} & V^{K\bar{K}^* \to \eta\rho} \\ V^{\pi\omega \to K\bar{K}^*} & V^{\pi\phi \to K\bar{K}^*} & V^{\eta\rho \to K\bar{K}^*} & V^{K\bar{K}^* \to K\bar{K}^*} \end{pmatrix}$$

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

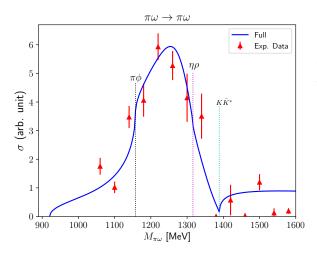
	meson	channel	IS	$\lambda \; ({\rm MeV})$	n
$K\bar{K}^* \to K\bar{K}^*$	ρ	t	1	1050	1
	ω	t	-1	1050	1
	ϕ	t	-2	1700	1
$K\bar{K}^* o \bar{K}K^*$	π	u	1	1050	1
	η	u	-3	1050	1
	ho	u	-1	1050	2
	ω	u	1	1050	2
	ϕ	u	2	1700	2

^{*}All same as in a_1 channel

Channels involved : $\pi\omega$, $\pi\phi$, $\eta\rho$ and $K\bar{K}^*$.

	meson	channel	IS	$\lambda \; ({\rm MeV})$	n
$\pi\omega \to \pi\omega$	ρ	u	4	600	2
$\pi\omega o\eta ho$	ω	u	$4/\sqrt{3}$	600	2
$\pi\omega o K\bar{K}^*(\bar{K}K^*)$	K	u	$\sqrt{2}(\sqrt{2})$	680	1
	K^*	t	$\sqrt{2}(\sqrt{2})$	680	1
$\pi\phi o K\bar{K}^*(\bar{K}K^*)$	K	u	-2(-2)	660	1
	K^*	t	-2(-2)	660	1
$\eta ho o\eta ho$	ρ	u	4/3	600	2
$\eta ho o K ar{K}^* (ar{K} K^*)$	K	u	$\sqrt{6}(\sqrt{6})$	530	1
	K^*	t	$\sqrt{6}(\sqrt{6})$	530	1

b_1 resonance



We compare the model to experimental data from charge exchange reaction $\pi p \to \omega \pi n$.

And define:

$$\sigma \equiv -C \operatorname{Im} \left[T_{\pi\omega}(M_{\pi\omega}) \right]$$

Exp.Data: S.Fukui, PLB257 (1991)

b_1 properties

- The $b_1(1235)$ pole position, $\sqrt{s_R} = 1341.7 i71.1$ [MeV]
- Residue and coupling strength can be defined as

$$\lim_{s \to s_R} (s - s_R) T_{a,b} = R_{a,b}, \qquad g_a = \sqrt{R_{a,a}}$$

• The elastic residue and coupling strength of $b_1(1235)$ resonance for S-wave and D-wave are

	S-wave	D-wave	Unit
$R_{\pi\omega}$	4.35 + i8.65	-0.02 + i0.05	GeV^2
$R_{\pi\phi}$	12.34 + i14.07	0.01 + i0.01	GeV^2
$R_{\eta\rho}$	5.87 + i10.45	0.00 + i0.00	GeV^2
$R_{Kar{K}^*}$	153.21 + i102.73	-0.08 + i0.04	GeV^2

Summary and Conclusion

- We investigated the axial-vector meson resonance from pseudoscalar and vector meson interaction based on the fully off-mass-shell coupled channel formalism.
- By doing so, we generate a_1 , h_1 and b_1 axial-vector meson dynamically.
- We also present the comparison of the model calculation to the experimental data from charge exchange reaction and we extracted the resonance properties of a_1 , h_1 and b_1 axial-vector meson.
- For the future project, we will investigate $S=\pm 1$ channel.

Thank You