Studies on the K* Σ bound-state via K⁺ $p \rightarrow K^{+} \phi p$

Seung-il Nam*

Department of Physics, Pukyong National University (PKNU), Busan, Korea Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul, Korea

Contents based on

S.H.Kim and SiN, PRC100, 065208 (2019), PRC101, 065201 (2020) SiN, PRD103, 054040 (2021)

Why is polarizations?

Hadron productions for understanding of low-E QCD.

- New particle search, particle properties, new physics, etc..
- How to single out what we want from various observables?
- Symmetry and invariance: Gauge, chiral, charge, etc..
- Dynamics: Coupling, structure, Regge, etc..
- More constraints provide more definite information.
- Polarizations of particle spin provide good testing grounds.
- It can be achieved in experiments (beam, target, recoil, scattered).
- In this presentation, we will explore the followings for this purpose:

$$\gamma^*p\to\phi p$$
 and $K^+p\to K^+\phi\,p$

S.H.Kim, SiN, PRC100 (2019) PRC101 (2020)

φ meson EM productions: Interesting physical contents

Diffractive Gluonic exchange via DL Pomeron Donnachie-Landshoff (DL) High-E behavior dominated by Pomeron. Interferences between 1st and 2nd Pomerons? Brodsky et al. PLB461 (1999) Unidentified peak at 2.0~ 2.1 GeV. LEPS & CLAS Resonance, bound state (ΣK^* ?), interference, quantum fluctuation, channel-opening, etc? Full polarizations of involved particles: Various physical constraints.

How can we extract contributions other than Pomeon?: Polarizations

C=+1 vector-like (soft) Pomeron with $\alpha_{\mathbb{P}}(t) = 1 + \epsilon_{\mathbb{P}} + \alpha'_{\mathbb{P}}t,$ $\epsilon_{\mathbb{P}} = 0.08, \ \alpha'_{\mathbb{P}} = 0.25 \,\mathrm{GeV}^{-2}$ PS, S (new), AV (new) mesons in tchannel with Regge trajectories. N* in s- and u-channels: N*(2000,5/2+) and N*(2300,1/2+).

cf) Pomeron+PS meson: Conventional Donnachie-Landshoff (DL) model

Pomeron-dominated cross section for φ -meson EM production

In addition, various meson exchanges provide structure near Eth

N* contribution do not clearly seen.

The "Peak" or "Bump" is not reproduced.

Angular distributions

Non-zero SDME of (helicity, GJ) frame indicates breakdown of (SCHC,TCHC) (X-Channel Helicity Conservation) $x_{c.m.}$

$$ho_{00}^0 \propto \left|\mathcal{M}_{\lambda_{\gamma=1},\lambda_{\phi=0}}
ight|^2 + \left|\mathcal{M}_{\lambda_{\gamma=-1},\lambda_{\phi=0}}
ight|^2$$

Spin density: Manifesting S- & AV-meson contributions.

SDME: Manifesting other contributions (N*s) beyond Pomeron

Scalar component of virtual photon in electro-production.

$$\frac{d\sigma}{d\Phi} = \frac{1}{2\pi} \left(\sigma + \varepsilon \sigma_{\rm TT} \cos 2\Phi + \sqrt{2\varepsilon(1+\varepsilon)} \sigma_{\rm LT} \cos \Phi \right)$$
$$\sigma = \sigma_{\rm T} + \varepsilon \sigma_{\rm L} \qquad \varepsilon = \left[1 + \frac{2k^2}{Q^2} \tan^2 \frac{\theta_e}{2} \right]^{-1}$$

Virtual-photon polarization parameter

Theory reproduces data for

$$Q^2 = 0$$
 and $Q^2 = 2.2 \text{ GeV}^2$.

Basically, EM form factor strongly

suppresses cross sections.

D. G. Cassel et al., PRD24, 2787 (1981) J. P. Santoro et al. (CLAS Collaboration), PRC78, 025210 (2008).

Longitudinal and transverse components

Green: Pomerol Red: Scalar meson

For $\sigma_{T,I}$, Pomeron and scalar meson interfere constructively,

and vice versa for $\sigma_{LT,TT}$, due to destructive interference, going to zero as Q² increases.

As for higher energy, beyond-pomeron (BP) contributions prevails.

Where can we examine BP contributions at high-E?

UPC (Ultra-peripheral collision) at HIC and EIC for instance.

Physical observables in ultra-peripheral collision (UPC)

Elementary + Glauber model

- In general UPC theories, equivalent-photon approx. (EPA) employed since meson produced parallel to the collision axis: $\theta_{13} \sim 0$ Highly relativistic charged fermion scattering: $m_{1,3}^2 \ll s_{NN}$, EPA tells us:
- 1) Almost real photon
- 2) Transverse amplitude dominates
- 3) t-chanel amplitudę dominates
- 4) Collinear photon

Traditionally, Pomeron is usually an only contribution in this game Pomeron+EPA is enough for UPC?

If we go beyond EPA, with non-collinear, longitudinal photon, and non-zero virtuality, we will see BP-contributions.

Also EIC may shed light on this.

Related works in progress.

Hadron productions using meson beam SiN, 2101.03317

Pentaquark bound states measured in hidden-charm ch. at LHCb

$$P_c^+[\bar{D}^*\Sigma_c] \to J/\psi[c\bar{c}]\,p_c$$

Hidden-flavor channel is a key?

Then, what analogous to light-flavor sector?

$$P_s^+[K^*\Sigma] \to \phi[s\bar{s}] p.$$

Mass 2.0 ~ 2.1 GeV peak-like structure. Resonance, interference, higher-oder, etc Isn't it a pentaquark-like molecular bound state? (WIP)

Hadron productions using meson beam

Hadron productions using meson beam

Hadron productions using meson beam SiN, 2101.03317

Significant K*(1680) contribution as Ecm increases

Ps+ peak is observed with S/N $\sim 1.7\%$

Possible measurements in the future J-PARC upgrade

Hadron productions using meson beam

Spin-polarizations of initial- and final-state protons

 $\sigma_{\text{parallel}} \equiv \sigma(\uparrow\uparrow) + \sigma(\downarrow\downarrow), \quad \sigma_{\text{opposite}} \equiv \sigma(\uparrow\downarrow) + \sigma(\downarrow\uparrow),$

When opposite, largest BKG from $\Lambda(1115)$ suppressed

Hadron productions using meson beam

Angular distributions

Dominant hyperon contributions in u-channel

Ps+ also enhanced in the K+ backward scattering region

Hadron productions using meson beam SIN, 2101.03317

If there is 27-plet pentaquark baryon?

 Θ ++(1600,3/2-) enhanced M(φ p) ~ 2 GeV as BKG

Ps+ peak seen unaffected

B. Wu and B. Q. Ma, PLB 586 (2004)

Summary

Polarizations in hadron productions explored.

Beyond Pomeron-exchange picture in φ -meson EM productions.

Complicated interference between L and T photon polarizations.

In SDME, significant S- & AV-meson contributions in addition to N*s.

UPC and EIC will be the testing grounds for "beyond Pomeron"

A pentaquark molecular bound state of Ps+[ΣK*] with S/N~1.7%

Large BKG from K*(1680) decaying into K+ and φ .

By beam-target polarization, BKG is reduced considerably.

Is this Ps+(2071) responsible for the "Weird peak"?

Busan, Korea

Thank you for your attention!!

This talk is supported in part by the National Research Foundation of Korea (NRF) No.2018R1A5A1025563 and No.2022R1A2C1003964