Tetraquark bound and resonant states

Atsushi Hosaka

Research Center for Nuclear Physics, Osaka University Advanced Science Research Center, Japan Atomic Energy Agency

1. Exotics
 2. Tetraquarks
 3. Summary

1. Exotics - previous century

Beyond the standard: $q q \bar{q} \bar{q}$ mesons, $q q q q \bar{q}$ baryons and more

Some histories 20th and this centuries

20th centuries

A SCHEMATIC MODEL OF BARYONS AND MESONS
Phys. Lett. 8, 214 (1964)
M. GELL-MANN

California institute of Technsiogy, Pasolena, Calijornia
Feceived 4 January 1964
anti-triplet as anti-quarks \bar{q}. Baryons can now be constructed from quarks by using the combinations (qqq) (qqqqa), etc., while mesons are made out of $(q \bar{q}),(\mathrm{qg} \overline{\mathrm{q}} \overline{\mathrm{q}})$, etc. It is assuming that the lowest baryon configuration (qqq) gives just the represen-

Molecular Charmonium: A New Spectroscopy?*

Phys. Lett. 38, 317 (1977)

A. De Rújula, Howard Georgi, \dagger and S. L. Glashow

Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138
(Received 23 November 1976)
Recent data compel us to interpret several peaks in the cross section of $e^{-} e^{+}$annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in $e^{-} e^{+}$annihilation.

$\bar{K} N$ molecule $-\Lambda(1405)$

POSSIBLE RESONANT STATE IN PION-HYPERON SCATTERING*

R. H. Dalitz and S. F. Tuan

Enrico Fermi Institute for Nuclear Studies and Department of Physics, University of Chicago, Chicago, Illinois
(Received April 27, 1959)
PhysRevLett.2.425
....
will be pointed out here that this situation makes it quite probable that there should exist a resonant state for pion-hyperon scattering at an energy of about 20 Mev below the $K^{-}-p$ (c.m.) threshold energy. In the present discussion, charge-

This is being confirmed....

This century

Θ^{+}

Theiry came first....

Prediction
by the chiral Solitons
Z.Phys. A359 (1997)

305-314
D. Diakonov in Osaka 2012

LEPS@SPring-8

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022

$X(3872)$

Pentaquark Tetraquark

Experiment came first....

Belle@KEK, PRL91, 262001 (2003) and further confirmed at Fermi Lab, SLAC, LHC, BEP, ...

$u \bar{u} c \bar{c}, d \bar{d} c \bar{c}$
Heavy and light quarks
Many other findings have are following

LHC's continuous reports

LHCb, PRL122 (2019) 222001

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the PresentiandtFalturiREadi0ities: July 11-16, 2022

Latest status

CERN-LHC Seminar on Tuesday 5 July, https://indico.cern.ch/event/1176505/

59 hadrons have been observed by LHCb

More than 15 states are exotics:
 \Rightarrow New naming scheme

arxiv2206.15233 $T_{\psi \psi}(6900)$

What's the next?

Marek Karliner: Questions to be answered

1. Do they exist?
2. If they do, which ones?
3. What is their internal structure?
4. How best to look for them?

Marek Karliner, QNP proceedings,2018@Tsukuba https://journals.jps.jp/doi/book/10.7566/QNP2018

Marek Karliner

Studying heavy (exotic) hadrons is somewhat similar to investigating the social life of various quarks:
(a) Who with whom?
(b) For how long?
(c) A short episode? or
(d) "Till Death Us Do Part"?

These are for exotics, but then ...

Furthermore?

- Bare quarks and gluons $==>$ Effective degrees of freedom for hadrons

Constituent gluons
http://ppssh.phys.sci.kobeu.
ac.jp/~yamazaki/lectures/07/modernphys-yamazaki07.pdf

Quark model

Constituent quarks

Question of
Effective degrees of freedom \rightleftarrows the non-trivial QCD vacuum

Nontrivial QCD vacuum

Uniqueness of QCD as a many-body problem \rightarrow Non-trivial dynamics

QCD vacuum is not empty \sim Instantons are created and annihilated

- Extended (topological) object of gluons, of size $\sim 0.2 \mathrm{fm}$
- QCD vacuum is topologically nontrivial
- Chiral symmetry is broken spontaneously $m \neq 0$

$$
\left.\langle\bar{q} q\rangle \sim \int \frac{d^{4} k}{i(2 \pi)^{4}} \operatorname{tr} \frac{1}{m-K} \sim \int_{\infty}^{\infty} d \lambda \nu(\lambda) \frac{\mu}{\lambda^{2}+\mu^{2}}\right|_{\mu \rightarrow 0}
$$

Banks-Casher, NPB169(1989)193
D. Diakonov, PPNP51(2003)173

Fukaya et al, PRL104.122002 (2010), PRD. 83.074501 (2011)

- Instanton Induced Interaction (III) with $U_{A}(1)$ breaking

Kobayashi-Maskawa_PTP44(1970)1422
G. 't Hooft, PRL37.8 (1976), PRD14, 3432 (1976)

$$
\mathscr{L}_{I I I}=g_{D}\left(\operatorname{det}\left[\bar{q}_{i}\left(1-\gamma_{5}\right) q_{j}\right]+h . c .\right)
$$

Snapshot of topological densities fluctuating in the vacuum Derek Leinweber, 2003, 2004 http://www.physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel/index.html

$$
\text { Systematic study: Hatsuda-Kunihiro: Phys. Repts. } 247 \text { (1994) 221-367 }
$$

2. Tetraquarks $Q Q^{\prime} \bar{q} \bar{q}^{\prime}$

LHCb

Nature Commun. 13 (2022) 1, 3351, arXiv: 2109.01056

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022

Why $T_{c c}$ is interesting

- Toward answering "Who with whom?
- Check many theoretical models Quarks, Diquarks, triquarks, molecules, hybrid, ...
- Are they bound or resonant states?
- The role of heavy vs light quarks
- why not clear evidence to find exotics only with light q 's

$$
\text { Light } \ll \Lambda_{Q C D} \ll m_{Q}
$$

Interplay of light and heavy scales of QCD

> Discuss in terms of the standard quark model by precisely solving four-body system

Q, \bar{Q}, and $q, \bar{q}:$ two distinct scales

Non-perturbative
Perturbative \sim Color-Coulomb
Color Coulomb for Q, \bar{Q} sector

$$
H=\frac{p^{2}}{2 M_{O}}-\frac{\alpha}{r}
$$

$$
Q Q: 3 \times 3=\overline{3}+6
$$

$$
Q \bar{Q}: 3 \times \overline{3}=1+8
$$

$\sqrt{8}$

$$
E_{B}=\frac{1}{2} \alpha^{2} M_{Q} \gg \Lambda_{Q C D}
$$

Stability

$Q Q \bar{q} \bar{q}$

$$
E_{B} \sim \Lambda_{Q C D}
$$

$\downarrow \downarrow \begin{aligned} & \text { Very strongly } \\ & \text { bound } Q \bar{Q}-1 \frac{\alpha}{r}\end{aligned}$

- O

Decay into ordinary mesons

$$
J / \psi
$$

$$
E_{B} \sim \alpha M_{Q}
$$

We expect:

- $Q \bar{Q} q \bar{q} \rightarrow[Q \bar{Q}]+[q \bar{q}], \quad Q \bar{Q} Q \bar{Q} \rightarrow[Q \bar{Q}]+[Q \bar{Q}]$ \Rightarrow form moleculars near thresholds (with suitable force)
\Rightarrow decay into mesons
- $Q Q \bar{q} \bar{q} \rightarrow[Q Q][\bar{q} \bar{q}]$ => stay as stable tetraquark

Expected J^{P}

00

- Orbitally in S-state
- $Q Q$ must has $j^{P}=1^{+}$due to Pauli principle
- $\bar{q} \bar{q}$ is a good diquark $S=I=0$

The lowest $T_{Q Q}$ has $j^{P}=1^{+}, I=0$

Quark model - 4-body calculation

Meng et al, PLB814 (2021) 136095
Gauss expansion method ~Hiyama et al, Prog. Part. Nucl. Phys. 51 (2003) 223

Hamiltonian

$$
\begin{aligned}
H= & \sum_{i}^{4}\left(m_{i}+\frac{\boldsymbol{p}_{i}^{2}}{2 m_{i}}\right)-T_{G} \quad V_{i j}(\boldsymbol{r})=-\frac{\kappa}{r}+\lambda r^{p}-\Lambda \\
& -\frac{3}{16} \sum_{i<j=1}^{4} \sum_{a}^{8}\left(\left(\lambda_{i}^{a} \cdot \lambda_{j}^{a}\right) V_{i j}\left(\boldsymbol{r}_{i j}\right)\right) \quad+\frac{2 \pi \kappa^{\prime}}{3 m_{i} m_{j}} \frac{\exp \left(-r^{2} / r_{0}^{2}\right)}{\pi^{3 / 2} r_{0}^{3}} \boldsymbol{\sigma}_{i} \cdot \sigma_{j}
\end{aligned}
$$

Expand WF by different combinations of coordinates

$\Psi_{I, J M}=\sum_{C} \xi_{1}^{(C)} \sum_{\gamma} B_{\gamma}^{(C)} \eta_{I}^{(C)} \left\lvert\,\left[\left[\left[\chi_{\frac{1}{2}} \chi_{\frac{1}{2}}\right]_{s} \chi_{\frac{1}{2}}\right]_{\Sigma} \chi_{\frac{1}{2}}\right]_{K}\right.$

$$
\begin{equation*}
\left.{ }^{C} \times\left[\left[\phi_{n \ell}^{(C)}\left(\mathbf{r}_{C}\right) \psi_{N L}^{(C)}\left(\mathbf{R}_{C}\right)\right]_{\Lambda} \phi_{\nu \lambda}^{\prime(C)}\left(\rho_{C}\right)\right]_{G}\right]_{J M}, \tag{3}
\end{equation*}
$$

Ansatz

Diagonalize
APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022

Comparison with threshold energies important

$=>$ Consistency check with meson masses \sim accuracy of the model/method

Parameters		Masses (MeV)		
			Cal	Exp
$m_{u, d}(\mathrm{GeV})$	0.277	$\eta_{b}\left(0^{-}\right)$	9375	9399
$m_{s}(\mathrm{GeV})$	0.593	$\Upsilon\left(1^{-}\right)$	9433	9460
$m_{c}(\mathrm{GeV})$	1.826	$\eta_{c}\left(0^{-}\right)$	2984	2984
$m_{b}(\mathrm{GeV})$	5.195	$J / \psi\left(1^{-}\right)$	3102	3097
p	2/3	$B^{-}\left(0^{-}\right)$	5281	5279
κ	0.4222	$B^{*-}\left(1^{-}\right)$	5336	5325
κ^{\prime}	1.7925	$B_{S}\left(0^{-}\right)$	5348	5367
$\lambda\left(\mathrm{GeV}^{5 / 3}\right)$	0.3798	$B_{s}^{*}\left(1^{-}\right)$	5410	5415
$\Lambda(\mathrm{GeV})$	1.1313	$D^{-}\left(0^{-}\right)$	1870	1870
$A\left(\mathrm{GeV}^{B-1}\right)$	1.5296	$D^{*-}\left(1^{-}\right)$	2018	2010
B	0.3263			

Results - bound states

Arrows indicate the energy gain (binding energy) from the relevant thresholds

M. Karliner:

Proc. 8th Int. Conf. Quarks and Nuclear Physics (QNP2018) JPS Conf. Proc. 26, 011005 (2019) https://doi.org/10.7566/JPSCP.26.011005
Blue dots are added by AH from our results

Comparison with lattice results

	$I\left(J^{P}\right)$	This work	$[27]$	$[28]$	$[29]$	$[30]$	$[31]$
$b b \bar{q} \bar{q}$	$0\left(1^{+}\right)$	-173	-189 ± 13	-143 ± 34	-	-186 ± 15	-128 ± 26
$b c \bar{q} \bar{q}$	$0\left(1^{+}\right)$	-40	-	-	13 ± 3	-	-
$c c \bar{q} \bar{q}$	$0\left(1^{+}\right)$	-23	-	-23 ± 11	-	-	-
$b s \bar{q} \bar{q}$	$0\left(1^{+}\right)$	-5	-	-	16 ± 2	-	-
$b b s \bar{q} \bar{q}$	$\frac{1}{2}\left(1^{+}\right)$	-59	-98 ± 10	-87 ± 32	-	-	-
$b b \bar{q} \bar{q}$	$1\left(0^{+}\right)$	N	-	-5 ± 18	-	-	-
$b c \bar{q} \bar{q}$	$0\left(0^{+}\right)$	-37	-	-	17 ± 3	-	-
$c c \bar{q} \bar{q}$	$1\left(0^{+}\right)$	N	-	26 ± 11	-	-	-
$b s \bar{q} \bar{q}$	$0\left(0^{+}\right)$	-7	-	-	18 ± 2	-	-

[27] A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118,(2017) 142001 $m_{\pi}=164,299,415 \mathrm{MeV}$
[28] P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99 (2019) 034507, $m_{\pi}=153-689 \mathrm{MeV}$
[29] R. Hudspith, B. Colquhoun, A. Francis, R. Lewis, K. Maltman, Phys Rev D.102.114506 (2020). $m_{\pi}=164,299,415 \mathrm{MeV}$
[30] P. Mohanta, S. Basak, Phys Rev D.102. 094516 (2020)
[31] L. Leskovec, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 100 (1) (2019)

Results - bound states

Arrows indicate the energy gain (binding energy) from the relevant thresholds

Results - bound states

Singly heavy baryon like

Molecular

hadron interaction
APCTP workshop on Nucrar Qhystcs 2020: Exotic Hadrons in the Present and Future Facilities: July it-16, 2022

Results - Resonant states

Scaling method

They can be scattering states

Resonances Position:
Sequence of horizontal lines that repel each other.
Width:
Distance of repulsion

Results - Resonant states

[MeV]	$b b \bar{q} \bar{q}$
50	
0	
-50	$B B$
-100-	
-150-	$\underline{-173} O\left(1^{+}\right)$

Results - Resonant states

Summary for $T_{Q Q}$

- Stable tetraquarks exist for $Q Q \bar{q} \bar{q}$ (Heavy + light)
- Different configurations are formed depending on their energies
- The most stable one looks like a $[Q Q] \bar{q} \bar{q} \sim \bar{Q} \bar{q} \bar{q}(\sim Q q q)$
- Shallow ones are like molecule
- No stable all heavy $Q Q \bar{Q} \bar{Q}$ ($>Q \bar{Q}+Q \bar{Q}$)
- There are also resonances;

Negative parity ones ($L=1$) may form heavy quark triplet,

$$
J=L+S=0,1,2
$$

Future

- Decays, inclusion of pion exchange interaction

