### **Tetraquark bound and resonant states**

Atsushi Hosaka Research Center for Nuclear Physics, Osaka University

Advanced Science Research Center, Japan Atomic Energy Agency

- 1. Exotics
- 2. Tetraquarks
- 3. Summary

## 1. Exotics — previous century

**Beyond the standard**:  $qq\bar{q}\bar{q}$  mesons,  $qqqq\bar{q}$  baryons and more

Some histories 20th and this centuries

#### 20th centuries

#### A SCHEMATIC MODEL OF BARYONS AND MESONS

Phys. Lett. 8, 214 (1964)

M. GELL-MANN

California Institute of Technology, Pasadena, California

Received 4 January 1964 anti-triplet as anti-quarks  $\bar{q}$ . Baryons can now be constructed from quarks by using the combinations (q q q),  $(q q q q \bar{q})$ , etc., while mesons are made out of  $(q \bar{q})$ ,  $(q q \bar{q} \bar{q})$ , etc. It is assuming that the lowest baryon configuration (q q q) gives just the represen-

#### Molecular Charmonium: A New Spectroscopy?\* Phys. Lett. 38, 317 (1977)

A. De Rújula, Howard Georgi, † and S. L. Glashow Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 (Received 23 November 1976)

Recent data compel us to interpret several peaks in the cross section of  $e^-e^+$  annihilation into hadrons as being due to the production of four-quark molecules, i.e., resonances between two charmed mesons. A rich spectroscopy of such states is predicted and may be studied in  $e^-e^+$  annihilation.

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 3 /30

## $\overline{K}N$ molecule — $\Lambda(1405)$

#### POSSIBLE RESONANT STATE IN PION-HYPERON SCATTERING\*

R. H. Dalitz and S. F. Tuan

Enrico Fermi Institute for Nuclear Studies and Department of Physics, University of Chicago, Chicago, Illinois (Received April 27, 1959)

. . . .

PhysRevLett.2.425

will be pointed out here that this situation makes it quite probable that there should exist a resonant state for pion-hyperon scattering at an energy of about 20 Mev below the  $K^- - p$  (c.m.) threshold energy. In the present discussion, charge-

This is being confirmed....

#### This century

 $\Theta^+$ 

#### Theiry came first....





D. Diakonov in Osaka 2012



Prediction by the chiral Solitons Z.Phys. A359 (1997) 305-314

 $\leq$ 



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022

Further study is on

going at

### *X*(3872)

#### Pentaquark

**Tetraquark** 

#### Experiment came first....

Belle@KEK, PRL91, 262001 (2003) and further confirmed at Fermi Lab, SLAC, LHC, BEP, ...





uūcē, ddcē

#### Heavy and light quarks

Many other findings have are following

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 6 /30

### LHC's continuous reports

LHCb, PRL122 (2019) 222001

X(3872)

Pc(4310, 4460, 4520)



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the PresentiandtFalture Padioties: July 11-16, 2022 7/30



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 8/30

## What's the next?

Marek Karliner: Questions to be answered

1. Do they exist?

2. If they do, which ones?

- 3. What is their internal structure?
- 4. How best to look for them?

Marek Karliner, QNP proceedings, 2018@Tsukuba https://journals.jps.jp/doi/book/10.7566/QNP2018



Marek Karliner

Studying heavy (exotic) hadrons is somewhat similar to investigating the social life of various quarks:

- (a) Who with whom?
- (b) For how long?
- (c) A short episode? or
- (d) "Till Death Us Do Part"?

#### These are for exotics, but then ...

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 9 /30

### **Furthermore**?

• Bare quarks and gluons ==> Effective degrees of freedom for hadrons



# Question of **Effective degrees of freedom** *⇐* **the non-trivial QCD vacuum**

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 10/30

## Nontrivial QCD vacuum

Uniqueness of QCD as a many-body problem  $\rightarrow$  Non-trivial dynamics

QCD vacuum is not empty ~ Instantons are created and annihilated

- Extended (topological) object of gluons, of size  $\sim 0.2$  fm
- QCD vacuum is topologically nontrivial
- Chiral symmetry is broken spontaneously  $m \neq 0$

$$\langle \bar{q}q \rangle \sim \int \frac{d^4k}{i(2\pi)^4} \operatorname{tr} \frac{1}{m-\mathcal{K}} \sim \int_{\infty}^{\infty} d\lambda \nu(\lambda) \frac{\mu}{\lambda^2 + \mu^2} |_{\mu \to 0}$$

Banks-Casher, NPB169(1989)193 D. Diakonov, PPNP51(2003)173 Fukaya et al, PRL104.122002 (2010), PRD.83.074501 (2011)

• Instanton Induced Interaction (III) with  $U_A(1)$  breaking

Kobayashi-Maskawa\_PTP44(1970)1422 G. 't Hooft, PRL37.8 (1976), PRD14, 3432 (1976)

$$\mathscr{L}_{III} = g_D \left( \det[\bar{q}_i(1 - \gamma_5)q_j] + h \cdot c \cdot \right)$$



Snapshot of topological densities fluctuating in the vacuum Derek Leinweber, 2003, 2004 http://www.physics.adelaide.edu.au/theory/staff/ leinweber/VisualQCD/Nobel/index.html



Systematic study: Hatsuda-Kunihiro: Phys. Repts. 247 (1994) 221-367

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 11/30

## **2.** Tetraquarks $QQ'\bar{q}\bar{q}'$

### LHCb

Nature Commun. 13 (2022) 1, 3351, arXiv: 2109.01056



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 13/30



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 14/30

# Why $T_{cc}$ is interesting

- Toward answering "Who with whom?
- Check many theoretical models Quarks, Diquarks, triquarks, molecules, hybrid, ...
- Are they bound or resonant states?
- The role of heavy vs light quarks
- why not clear evidence to find exotics only with light q's

Light  $<< \Lambda_{QCD} << m_Q$ 

Interplay of light and heavy scales of QCD

Discuss in terms of the standard quark model by precisely solving four-body system

# $Q, \overline{Q}, and q, \overline{q}$ : two distinct scales



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 16/30



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 17/30

We expect:

- $Q\bar{Q}q\bar{q} \rightarrow [Q\bar{Q}] + [q\bar{q}], \quad Q\bar{Q}Q\bar{Q} \rightarrow [Q\bar{Q}] + [Q\bar{Q}]$ => form moleculars near thresholds (with suitable force) => decay into mesons
- $QQ\bar{q}\bar{q} \rightarrow [QQ][\bar{q}\bar{q}]$ => stay as stable tetraquark

# **Expected** $J^P$



- Orbitally in S-state
- QQ must has  $j^P = 1^+$  due to Pauli principle
- $\bar{q}\bar{q}$  is a good diquark S = I = 0

The lowest 
$$T_{QQ}$$
 has  $j^P = 1^+$ ,  $I = 0$ 





APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 20/30

#### Comparison with threshold energies important

=> Consistency check with meson masses ~ accuracy of the model/method

| Parameters                      |        | Masses (MeV)                     |      |      |  |
|---------------------------------|--------|----------------------------------|------|------|--|
|                                 |        |                                  | Cal  | Exp  |  |
| $m_{u,d}$ (GeV)                 | 0.277  | $\eta_b(0^-)$                    | 9375 | 9399 |  |
| $m_s$ (GeV)                     | 0.593  | $\Upsilon(1^{-})$                | 9433 | 9460 |  |
| $m_c$ (GeV)                     | 1.826  | $\eta_c(0^-)$                    | 2984 | 2984 |  |
| $m_b$ (GeV)                     | 5.195  | $J/\psi(1^-)$                    | 3102 | 3097 |  |
| р                               | 2/3    | $B^{-}(0^{-})$                   | 5281 | 5279 |  |
| К                               | 0.4222 | $B^{*-}(1^{-})$                  | 5336 | 5325 |  |
| $\kappa'$                       | 1.7925 | $B_{s}(0^{-})$                   | 5348 | 5367 |  |
| $\lambda$ (GeV <sup>5/3</sup> ) | 0.3798 | $B_{s}^{*}(1^{-})$               | 5410 | 5415 |  |
| $\Lambda$ (GeV)                 | 1.1313 | D <sup>-</sup> (0 <sup>-</sup> ) | 1870 | 1870 |  |
| $A (\text{GeV}^{B-1})$          | 1.5296 | $D^{*-}(1^{-})$                  | 2018 | 2010 |  |
| В                               | 0.3263 |                                  |      |      |  |
|                                 |        |                                  |      |      |  |

### **Results** — bound states



#### Arrows indicate the energy gain (binding energy) from the relevant thresholds

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 22/30

M. Karliner: Proc. 8th Int. Conf. Quarks and Nuclear Physics (QNP2018) JPS Conf. Proc. 26, 011005 (2019) <u>https://doi.org/10.7566/JPSCP.26.011005</u> Blue dots are added by AH from our results



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 23/30

### **Comparison with lattice results**

|       | $I(J^P)$           | This work | [27]        | [28]        | [29]       | [30]          | [31]        |
|-------|--------------------|-----------|-------------|-------------|------------|---------------|-------------|
| bbą̄ą | 0(1 <sup>+</sup> ) | -173      | $-189\pm13$ | $-143\pm34$ | _          | $-186 \pm 15$ | $-128\pm26$ |
| bcą̄ą | 0(1 <sup>+</sup> ) | -40       | —           | —           | $13 \pm 3$ | —             | _           |
| ccąą  | 0(1 <sup>+</sup> ) | -23       | —           | $-23\pm11$  | —          | —             | —           |
| bsą̄ą | 0(1 <sup>+</sup> ) | —5        | —           | _           | $16\pm2$   | —             | —           |
| bbsq  | $\frac{1}{2}(1^+)$ | -59       | $-98\pm10$  | $-87\pm32$  | —          | _             | —           |
| bbq̄q | 1(0 <sup>+</sup> ) | Ν         | _           | $-5\pm18$   | _          | _             | _           |
| bcą̄ą | 0(0 <sup>+</sup> ) | -37       | —           | _           | $17 \pm 3$ | _             | _           |
| ccąą  | 1(0 <sup>+</sup> ) | Ν         | —           | $26 \pm 11$ | —          | —             | —           |
| bsą̄ą | 0(0 <sup>+</sup> ) | -7        | _           | _           | $18\pm2$   | _             | _           |

- [27] A. Francis, R.J. Hudspith, R. Lewis, K. Maltman, Phys. Rev. Lett. 118,(2017) 142001  $m_{\pi} = 164, 299, 415 \ MeV$
- [28] P. Junnarkar, N. Mathur, M. Padmanath, Phys. Rev. D 99 (2019) 034507,  $m_{\pi} = 153 - 689 \ MeV$
- [29] R. Hudspith, B. Colquhoun, A. Francis, R. Lewis, K. Maltman, Phys Rev D.102.114506 (2020).  $m_{\pi} = 164, 299, 415 \ MeV$
- [30] P. Mohanta, S. Basak, Phys Rev D.102. 094516 (2020)

[31] L. Leskovec, S. Meinel, M. Pflaumer, M. Wagner, Phys. Rev. D 100 (1) (2019)

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 24/30

### **Results** — bound states



#### Arrows indicate the energy gain (binding energy) from the relevant thresholds

APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 25/30

**Results** — bound states



### **Results — Resonant states**

Meng et al, PLB824 (2022) 136800

#### Scaling method



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022  $\frac{27}{30}$ 

#### **Results** — **Resonant** states



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 28/30

### **Results** — **Resonant** states



APCTP workshop on Nuclear Physics 2020: Exotic Hadrons in the Present and Future Facilities: July 11-16, 2022 29/30

# **Summary for** $T_{QQ}$

- Stable tetraquarks exist for  $QQ\bar{q}\bar{q}$  (Heavy + light)
- Different configurations are formed depending on their energies
- The most stable one looks like a  $[QQ]\bar{q}\bar{q}\sim\bar{Q}\bar{q}\bar{q}$  (  $\sim Qqq)$
- Shallow ones are like molecule
- No stable all heavy  $QQ\bar{Q}\bar{Q}$  ( >  $Q\bar{Q} + Q\bar{Q}$ )
- There are also resonances; Negative parity ones (L = 1) may form heavy quark triplet, J = L + S = 0,1,2

Future

• Decays, inclusion of pion exchange interaction