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1. introduction

❏ Multistrangeness production in hadron physics
 a. photoproduction (γ p → K K Ξ)

> CLAS & GlueX Collaborations
   at JLab is producing the data.

> The production mechanism is
   a two-step process.

> The hadron coupling constants
   are not well known.

> Theoretical analyses
   γ p → K K Ξ(1318)
    Nakayama et al. PRC.74.035205 (2006)

   γ p → K+ K+ Ξ*-(1530)
    No analyses yet

Goetz (CLAS) PRC.98.062201(R) (2018)

Ernst (GlueX) AIP.CP.2249.030041 (2020)

γ p → K+ K+ Ξ-(1318)
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1. introduction

❏ Multistrangeness production in hadron physics
 b. pp interaction (p p → Ξ Ξ)

> FANDA Collaboration at GSI-FAIR will produce
   the data.
    Lutz et al. 0903.3905 [hep-ex] Physics Performance Report

> The production mechanism is a two-step process.

> The amplitudes are described by the loop diagrams
    within a modified Regge type model.
    Titov et al. 1105.3847 [hep-ph]

> More rigorous analyses are called for.

❏ Loop diagrams

❏ Scattering amplitude

Titov et al. 1105.3847 [hep-ph]

> K & K* exchanges are possible.
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2. K- p → K Ξ     theoretical framework

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

❏ Multistrangeness production in hadron physics (c. K- p → K Ξ)
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.
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> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

◻ tetraquark in charm sector [LHCb, Nature Physics (2022)]

   > First observation with [ccud] content, Tcc(3875, 1+), width Г ~ 410 keV
      in the mass spectrum of “D0 D0 π+”
◻ tetraquark in strange sector
   > No meson of strangeness two is known to be exist.

❏ The evidence of the pentaquark in charm sector, Pc+[uudcc], is
     clearer than that in strange sector, Ps+[uudss] & θ+[uudds].
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‣ Use the dominant decay process: φ → K+K-, K* → Kπ, etc

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0

Rescattering effect

❏ We employ a “Regge + Resonance + Rescattering” approach.
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2. K- p → K Ξ     theoretical framework
❏ Multistrangeness production in hadron physics (c. K- p → K Ξ)
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

❏ Effective Lagrangians ❏ Coupling constants

(λ = 1) Pseudoscalar (PS) form
(λ = 0) Pseudovector (PV) form
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◻ (Fig. b) We employ a hybridized Regge model to describe the backward angles in the u channel.
    “Baryon exchange processes” Storrow, Phys.Rept.103.317 (1984)

◻ (Fig. a) Additionally, in the s channel, we include (Λ* & Ʃ*) resonances
    which couple strongly to KN & KΞ channels.

◻ Box diagram is calculated from the 3-dimensional reduction of the Bethe-Salpeter equation.

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0
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2. K- p → K Ξ     theoretical framework
❏ Multistrangeness production in hadron physics (c. K- p → K Ξ)
> Only (Λ(*) & Ʃ(*)) hyperons mediate in the Born diagrams.
> t-channel meson exchanges are not possible because no meson of strangeness two exists.

1(1)   -1(1)          1(1)   -1(1)                               [isospin factors]   1(1)   1(1)            √2     -√2
◻ Isospin factors

Λ exchange:

Ʃ exchange:

◻ u-channel Ʃ exchange: σ (K- p → K+ Ξ- ) ⨉ 4 = σ (K- p → K0 Ξ0)
◻ We consider two different isospin channels simultaneously: useful to constrain model parameters.

(A) K- p → K+ Ξ- (B) K- p → K0 Ξ0
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sth (K- p → K Ξ)
        = 1.81 GeV

Λ : α(u) = -0.65 + 0.94u
Λ(1405) : excluded

Λ hyperons Ʃ hyperons

sth

sth

Ʃ  : α(u) = -0.79 + 0.87u
Ʃ* : α(u) = -0.27 + 0.9u

2. K- p → K Ξ     theoretical framework
❏ Hyperon Regge trajectories
     Storrow, Phys.Rept.103.317 (1984)
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Λ hyperons Ʃ hyperons

sth

sth

Ʃ  : α(u) = -0.79 + 0.87u
Ʃ* : α(u) = -0.27 + 0.9u

2. K- p → K Ξ     theoretical framework
❏ Hyperon Regge trajectories
     Storrow, Phys.Rept.103.317 (1984)

❏ As seen, hyperon Regge trajectories involve many of 3 & 4 star resonances.

sth (K- p → K Ξ)
        = 1.81 GeV

 7/2-   ?
 9/2+  ?
11/2-  ?

 11/2-  ?

Λ : α(u) = -0.65 + 0.94u
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2. K- p → K Ξ     theoretical framework
❏ PDG 2020
❏ We include (Λ* & Ʃ*) resonances
    which couple strongly to
    KN & KΞ channels.
❏ Partial decay width
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2. K- p → K Ξ     theoretical framework
❏ PDG 2020
❏ We include (Λ* & Ʃ*) resonances
    which couple strongly to 
    KN & KΞ channels.
❏ Partial decay width

✓

✓

✓
✓

✓ turn out to be important.
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❏ Total cross section (K- p → K+ Ξ-) [u-channel background]

sth            : σ(ps) > σ(pv)
high energy: σ(ps) < σ(pv)

> pseudoscalar (ps) form (λ=1)                                                                  > pseudovector (pv) form (λ=0)

[s-channel 
 resonant
 contribution]

> We adopt the pv scheme rather than the ps scheme. 13
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3. K- p → K Ξ     results

❏ Isospin rule
> u-channel Ʃ & Ʃ* exchange
    σ (K- p → K+ Ξ- ) ⨉ 4
 = σ (K- p → K0 Ξ0)

❏ Total cross section (K- p → K+ Ξ- & K0 Ξ0) [u-channel background, pv form]
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3. K- p → K Ξ     results

> Asymptotic behavior:

log
scale:

❏ Isospin rule
> u-channel Ʃ & Ʃ* exchange
    σ (K- p → K+ Ξ- ) ⨉ 4
 = σ (K- p → K0 Ξ0)

> Analytical behavior: > u-channel Regge amplitudes describe
   high energies (W ≳ 2.5 GeV) very well.

❏ Total cross section (K- p → K+ Ξ- & K0 Ξ0) [u-channel background, pv form]
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3. K- p → K Ξ     results
❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
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3. K- p → K Ξ     results

> Backward peaks due to
 a u-channel background
 contribution are clearly verified. 
> Inclusion of various s-channel
 Λ* & Ʃ* resonances provides
 good agreement with the data.

❏ Total & Differential cross sections (K- p → K+ Ξ- & K0 Ξ0) [u-channel background + s-channel Λ* & Ʃ*]
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3. K- p → K Ξ     results
❏ We used old experimental data taken in
    1960s and 1970s.
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Λ(1890,3/2+)     Ʃ(2030,7/2+)     Ʃ(2250,7/2- ?)

❏ The evidence of these three Y* resonances
    looks very convincing.

❏ More data from the J-PARC E05
    experiment are strongly called for.
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3. K- p → K Ξ     results
Previous works

Sharov et al. EPJA.47.109 (2011)

Shyam et al. PRC.84.042201 (2011)

> Effective Lagrangian approach
Kamano et al. PRC.90.065204 (2014)

> Dynamical coupled-channel approach to K induced reactions
Feijoo et al. PRC.92.015206 (2015)

> Coupled-channel unitarized chiral perturbation approach
Nakayama et al. PRC.85.042201 (2012)
Jackson et al. PRC.89.025206 (2014)

> Model independent aspects
Jackson et al. PRC.91.065208 (2015)

> Effective Lagrangian approach in which “the rescattering contribution”
   is accounted for by “a phenomenological contact amplitude”
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3. K- p → K Ξ     results
Comparison with other works

Λ(1890,3/2+)   Ʃ(2030,7/2+)   Ʃ(2250,7/2- ?)

Jackson et al. PRC.91.065208 (2015)

❏ The structure at W ≈ 2.2 GeV are
    explained by a destructive effect between
    “contact term” and “resonant amplitudes”.

Λ(1890,3/2+)
Ʃ(2030,7/2+)
Ʃ(2250,5/2- ?)

contact term
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3. K- p → K Ξ     results
❏ Rescattering amplitude

ΛV = (φ, ρ, ω)
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3. K- p → K Ξ     results
❏ Rescattering amplitude

Λ

◻ Naive calculation by assuming forward
    production of φ:

◻ Except for “P = 1/(t1-MK2)(t2-MK2)”, which is
   a rapidly varying function of cosθʹ, therefore
   essentially determines the angular distribution.

V = (φ, ρ, ω)
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3. K- p → K Ξ     results
❏ Rescattering amplitude

◻ We fully calculate the singular part.

V = (φ, ρ, ω)

πΛ   (ρΛ,ωΛ)    φΛ
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3. K- p → K Ξ     results
❏ Rescattering amplitude

◻ We fully calculate the singular part.

V = (φ, ρ, ω)

 (ρΛ,ωΛ)

> It is difficult to clarify the role of the box diagrams with only the TCS data.
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3. K- p → K Ξ     results
❏ We can polarize “the incoming nucleon” or “the outgoing Ξ baryon”:
    Target (T), Recoil (P), Target-recoil (K) asymmetries

Theory: Jackson et al. PRC.91.065208 (2015)

Recoil asymmetries
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4. Application

(a) “open” strange (charm) production
π- p → K*0 Λ                            [Regge + Resonance]     π- p → D*- Λc+
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4. Application

π−

K∗0

p Λ

π−

p Λ

(a) (b)

K∗0

N

π−

K∗0

p ΛΛ,Σ

(c)

K∗

K,K∗ ππ, ρ ρ K,K∗

π

π−

K∗0

p ΛN

ρ

π, ρ K

(d)

K∗

K

Λ,Σ

π−

D∗−

p Λ+

c

π−

p Λ+

c

(a) (b)

D∗−

N

π−

D∗−

p Λ+

cΛc,Σc

(c)

D∗

D,D∗ ππ ρ D,D∗

π

D∗

D

Λc,Σc

π- p → Mi Bi → K*0 Λ                          [Rescattering]        π- p → Mi Bi → D*- Λc+

‣ Use the dominant decay process:                         K* → Kπ, ρ → ππ          D* → Dπ, ρ → ππ

(a) “open” strange (charm) production
π- p → K*0 Λ                            [Regge + Resonance]     π- p → D*- Λc+
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4. Application

(a) “open” strange (charm) production
π- p → K*0 Λ

> K exchange governs dσ/dt near −t′ ≈ 0, whereas
   K* exchange becomes dominant as −t′ increases.

S.H.Kim et al.
PRD.92.094021 (2015)



How to describe the 3-body decay process
π- + p → V + Y → (P + π) + Y
in the rest frame of the vector-meson?

▢ Differential cross section

▢ Decay angular distributions

with

▢ Normalization factor

▢ Spin factor

Θ: polar angle
Ф: azimuthal angle

24

(a) “open” strange (charm) production     [π- p → K*0 Λ (D*- Λc+)]
4. Application



1. spin-density matrices (ρλλ')
(1) Unpolarized case

(2) Polarized Y hyperon

❏ Quantization axis in the rest frame of the V-meson
    “s”-frame (helicity frame)                : anti-parallel to the outgoing Y
    “t”-frame (Gottfried-Jackson frame): parallel to the incoming π

2. decay angular distributions (W)

(1) Unpolarized case

(2) Polarized Y hyperon

25

(a) “open” strange (charm) production     [π- p → K*0 Λ (D*- Λc+)]

π-

4. Application

λ, λʹ: helicity states of the vector meson



enhancement of enhancement of

1. spin-density matrices (ρλλ')
     Unpolarized case

26

4. Application

S.H.Kim, Y,Oh, A.I.Titov,
PRC.95.055206 (2017)



Exp.: Crennell et al, 
PRD.6.1220 (1972)

enhancement of enhancement of

π- p → K*0 Λ
1. spin-density matrices (ρλλ') Unpolarized case

27

(a) “open” strange (charm) production
4. Application

S.H.Kim, Y,Oh, A.I.Titov,
PRC.95.055206 (2017)



2. decay angular distributions (W)
(1) Unpolarized case                        (2) Polarized Y hyperon

❏ V- and PS-meson exchanges
    exhibit totally different shapes.

28

(1)

(2)

(a) “open” strange (charm) production

Θ: polar angle
Ф: azimuthal angle

4. Application

S.H.Kim, Y,Oh, A.I.Titov,
PRC.95.055206 (2017)



(1) Unpolarized case                        (2) Polarized Y hyperon

2. decay angular distributions (W)

❏ V- and PS-meson exchanges
    exhibit totally different shapes.
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(1)

(2)

(a) “open” strange (charm) production

Θ: polar angle
Ф: azimuthal angle

4. Application

S.H.Kim, Y,Oh, A.I.Titov,
PRC.95.055206 (2017)
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π- p → φ n [Regge + Resonance]

‣ Use the dominant decay process: φ → K+K-, ρπ,   K* → Kπ,   ρ → ππ

π- p → Mi Bi → φ n [Rescattering]

(b) “hidden” strange (charm) production
4. Application

Ps0[uddss]
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π- p → φ n [Regge + Resonance]
(b) “hidden” strange (charm) production
4. Application

Ps0[uddss]

γ p → φ p [Pomeron + Resonance]

Ps+[uudss]

[S.H.Kim, T.S.H.Lee, S.i.Nam, Y. Oh, PRC.104.045202 (2021)][T.Ishikawa et al. Proposal submitted
 using the J-PARC E16 spectrometer (2022)]



5. Summary & Future work

32

◇ Multistrangeness production, K- p → K Ξ, is investigated in a hybridized Regge model
    for two different isospin channels (K- p → K+ Ξ- & K0 Ξ0).

◇ As for a background contribution, (Λ & Ʃ & Ʃ*) hyperon Regge trajectories are
    considered in the u channel to describe the backward angles.

◇ We employ a “pseudovector” scheme for the KNY & KΞY vertices rather than a “pseudoscalar” scheme.

◇ For K- p → K0 Ξ0, only (Ʃ & Ʃ*) Regge trajectories are possible and their relative contributions
    are well constrained.

◇ For K- p → K+ Ξ-, Λ Regge trajectory is more dominant than (Ʃ & Ʃ*) ones.

◇ Λ(1890, 3/2+), Ʃ(2030, 7/2+), and Ʃ(2250, 7/2- ?) play a crucial role in explaining the bump structures.

◇ The box diagrams may play an important role.
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◇ Production of multistrangeness (S < -1) baryons
    K- p → K- p    ➪   K- 12C → K- 12C
    K- p → K+ Ξ   ➪   K- 12C → K+ 12

ΞBe
   > A distorted-wave impulse approximation within the multiple scattering formulation
   > Ξ hypernuclei is important to study multistrangeness systems and strange neutron stars in astrophysics.

◇ Relevant experiments to date at J-PARC:
    [P05] Spectroscopic Study of Ξ-Hypernucleus, 12

ΞBe, via the 12C(K-,K+) Reaction
    [P50] Charmed Baryon Spectroscopy via the (π-,D*-) reaction
    [P85] Spectroscopy of Omega Baryons
    [LoI] Study of Σ-N interaction using light Σ-nuclear system
    [LoI] Ξ Baryon Spectroscopy High-momentum Secondary Beam

◇ Rescattering effects could be important for the meson induced production:
    K- p → K+ Ξ,        π- p → φ n   
    K- p → φ (Λ,Ʃ),   π- p → D(*) (Λc,Ʃc)
    > The systematic analyses should be carried out.
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Thank you very much for your attention
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3. K- p → K Ξ     results

❏ Rescattering amplitude

❏ Resonant amplitude

> It becomes a forward peak
   as J increases.

> It is the only channel
   which provides decreasing
   behavior at forward angles.



3. K- p → K Ξ     results

❏ Rescattering amplitude

❏ Resonant amplitude

> It becomes a forward peak
   as J increases.

> It is the only channel
   which provides decreasing
   behavior at forward angles.

> More accurate data are called for from the J-PARC.
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