Physics Highlights and Perspectives with Electron Beams in Mainz

Patrick Achenbach U Mainz July 2022

Experimental Opportunities at Mainz University

From established high-precision experiments

Physics Highlights and Perspectives with Electron Beams in Mainz

... to the energy recovering

The Mainz Microtron until the 2010s

Physics Highlights and Perspectives with Electron Beams in Mainz

Kinematic Reach of MAMI

Excitation range in photoproduction:

Kinematic plane in elastic scattering:

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \frac{1}{\varepsilon \left(1 + \tau\right)} \left[\varepsilon G_{E}^{2}\left(Q^{2}\right) + \tau G_{M}^{2}\left(Q^{2}\right)\right]$$

J. C. Bernauer et al. (A1 Collab.), PRC 90, 015206 (2014)

- Full coverage of nucleon structure physics

Probing many aspects of QCD bound states

Physics Highlights and Perspectives with Electron Beams in Mainz

Spectrometer Facility at MAMI

Physics Highlights and Perspectives with Electron Beams in Mainz

The Role of Precision

High-order corrections for superb optics:

- Large solid angle accept.: 28 msr
- Large momentum accept.: up to 25 %
- High vertex resolution: 3 5 mm
- Good angular resolution: < 3 mrad
- Long target acceptance: 50 mm
- Large angular range: 15° 160°

K. I. Blomqvist et al. (A1 Collab.), NIM A 403, 263 (1998)

Selected Result: Hypernuclear Binding Energy

A. Esser et al. (A1 Collab.), PRL 114, 232501 (2015)

- High-resolution decay-pion spectroscopy of light hypernuclei pioneered at MAMI
- Charge symmetry breaking considerably stronger in hyper- than in ordinary nuclei

Selected Result: Monopole Transition in ⁴He

Physics Highlights and Perspectives with Electron Beams in Mainz

Photon Beam Facility at MAMI

Glasgow photon tagging spectrometer

Physics Highlights and Perspectives with Electron Beams in Mainz

Selected Results: Deuteron Photodisintegration

- Study of beam-spin asymmetry $\Sigma \rightarrow M3$ transition
- Ancillary large-acceptance nucleon polarimeter surrounding deuterium target
- Study of polarisation transfer from circularly-polarised photon to final state neutron
 - \rightarrow Both p and n highly polarised in d* resonance region

Signatures for the existence of an exotic quark configuration in light-quark sector

Physics Highlights and Perspectives with Electron Beams in Mainz

Mainz Energy-Recovering Superconducting Accelerator

Two main operation modes

- 1. Energy recovery mode, 30–105 MeV, 10000 µA: internal target + spectrometers
- 2. External mode, polarized, 155 MeV, 150 µA: thick targets + solenoid

+ parasitic beam dump experiment

Realization of MESA on Mainz University Campus

- Funding of PRISMA and PRISMA+ Cluster of Excellence
- Funding of Major Research Investments in 2019
- New Centre for Fundamental Physics (CFP I + II buildings)

- New accelerator workshop and storage buildings finished in 2019
- Ground breaking for new underground hall in spring 2019

Civil Construction 2021–22

Nuclear Physics News International

Volume 31, Issue 3 July-September 2021

- 2022: Handover of experimental halls
- March 2023: Delivery of STAR/PORT
- Early 2023: Start of MESA assembly
- Early 2025: First beam for experiment

Nucl. Phys. News 31 (2021)

MESA Experiment Program • Open Challenges from Neutron Star Merger • Hyperion Puzzle

Nu PECC

Physics Highlights and Perspectives with Electron Beams in Mainz

Taylor & Franci Taylor & Francis Group

The P2 Experiment

- Weinberg angle central parameter of Standard model
- Cross section asymmetry in elastic scattering of 40x10⁻⁹
- Precision goal:
 - $\delta sin^2 \theta_W \sim 0.0003 \ (< 2 \ \%)$
 - D. Becker et al. (P2 Collab.) EPJ A 54, 208 (2018)

Physics Highlights and Perspectives with Electron Beams in Mainz

The MAGIX Spectrometers

High resolution spectrometers STAR/PORT

- Double-arm, compact design
- Momentum resolution: $\Delta p/p < 10^{-4}$
- Innovative GEM-TPC focal plane detector

Gas jet (or polarized gas) target

- Dark photon search visible decay
- Dark photon search invisible decay
- Proton electromagnetic form factors
- Deuteron electrodisintegration
- Transition form factor of ¹²C Hoyle state
- Nuclear astrophysical (γ,n) reactions
- S-factor of the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction
- Knockout reactions from light nuclei
- Exclusive measurements on ³He/⁴He
- Inclusive measurements on ⁴He, ¹⁶O
- Charge radius of deuteron, ⁴He
- Electrons for neutrino physics

Commissioned at MAMI in 2017/18

- Supersonic gas jet
- Gas density O(10¹⁹/cm²)
- Beam size O(mm)
- H₂, ³He, ⁴He, O₂,, Xe
- Luminosity $O(10^{35} \text{ cm}^{-2} \text{ s}^{-1})$ @ 10¹⁹/cm²

Physics Highlights and Perspectives with Electron Beams in Mainz

Target Performance at MAMI

Collab.) NIM A1013, 165668 (2021)

- Ultimate precision in elastic scattering
- Target system commissioned for MESA

Physics Highlights and Perspectives with Electron Beams in Mainz

Proton Elastic Scattering

Projections

Y. Wang, publication preprint 2022

Significant improvement of data at low Q^2

Physics Highlights and Perspectives with Electron Beams in Mainz

The MESA Beam Dump Experiment

- Beam energy ~ 150 MeV
- e p \rightarrow e n π^+ threshold at 152 MeV
 - 10 000 h beam ~ 3 x 10²² EOT

Physics Highlights and Perspectives with Electron Beams in Mainz

external beam

beann-dump

Projected Exclusion Limits for DarkMESA

Different types of experiments are sensitive to different models

Physics Highlights and Perspectives with Electron Beams in Mainz

Summary

MAMI electron accelerator: *E* ~ 185 - 1600 MeV

- Strong history of low-energy hadron physics results

Energy-recovering MESA accelerator: *E* < 155 MeV

- Up to 10 mA beam current
- Extracted beam mode & energy recovering mode
- Start of MESA data in 2023

MAGIX experiment at MESA

- High beam intensities and windowless internal target
- Operation with gases from H_2 to Xe
- First physics results in 2025

Thank you for your attention!

