Inclusive electron scattering off the proton with CLAS12 Timothy B. Hayward,

Valerii Klimenko for the CLAS Collaboration

July 14, 2022

Extending Knowledge of the Nucleon PDF in the Resonance Region

- Global QCD analyses have provided detailed information on the nucleon PDFs in a wide range of fractional longitudinal momentum, x, from 10⁻⁴ to 0.9.
- At large x, in the nucleon resonance region W < 2.5 GeV, the PDFs are significantly less explored.
- Extractions in this region require accounting for higher twist effects, target-mass corrections and evaluation from the nucleon resonance electroexcitations.

CLAS Results

- CLAS measured the inclusive cross section up to x = 0.9 (W = 2.5 GeV) and Q² from 0.25 to 4.5 GeV².
- Large acceptance of the CLAS detector allows for integration of the signal at a fixed Q² over a large range in x.

Hall C Results

- Extended inclusive electron data up to Q² = 7.5 GeV².
- Information provided on the longitudinal and transverse components of the cross section.
- Limited acceptance of the Hall C detector constrains the accessible W range for any given value of Q^{2.}

		x range				
W^2	region	$Q^2 = 2 \; (\text{GeV}^2)$	$Q^2 = 6 \; (\mathrm{GeV}^2)$			
	1^{st}	0.66 - 0.83	0.85 - 0.93			
	2^{nd}	0.55 - 0.66	0.79 - 0.85			
	3^{rd}	0.47 - 0.55	0.73 - 0.79			
	4^{th}	0.40 - 0.47	0.67 - 0.73			
1	DIS	0.35 - 0.40	0.62 - 0.67			

TABLE IV: An example of the x ranges covered by different resonance regions for two Q^2 values.

S. P. Malace et al., Phys. Rev. C 80 (2009) 035207, [nucl-ex 0905.2374]

Updated R = σ_L / σ_T

- Hall C data allows for Rosenbluth separation of 167 data points.
- First separate values of F_1 and F_L in this kinematic regime.

Empirical fit in the Resonance Region

- Fit by Christy & Bosted (2010).
- Constrained by L/T separated cross section measurements from Hall C.
- Fit incorporates photoproduction data at Q² = 0.
- Smooth transition from photoproduction all the way into the DIS region.

Data Set	Q^2_{Min} (GeV ²)	Q^2_{Max} (GeV ²)	# Data Points
E94-110 [5]	0.18	5	1259
E00-116 [14]	3.6	7.5	256
E00-002 15	0.06	2.1	1346
SLAC DIS $[16]$	0.6	9.5	296
Photoproduction (Old) [17–19]	0	0	242
Photoproduction (DAPHNE) [20]	0	0	57

TABLE II: Summary of data sets included in the fit.

$$\sigma_{T,L}(W^2, Q^2) = \sigma_{T,L}^R + \sigma_{T,L}^{NR}$$
$$\sigma_{T,L}^R(W^2, Q^2) = W \sum_{i=1}^7 BW_{T,L}^i(W^2) \cdot [A_{T,L}^i(Q^2)]^2$$

- 2. Resonant cross section defined by threshold-dependent BW forms with Q² dependent amplitudes.
- 3. Non-resonant background varies smoothly with W.

Interpolative Web Feature

- 2d-interpolation over W and Q² of the CLAS experimental results on F₂ (W,Q²) structure function (see <u>CLAS</u> <u>Physics DB</u>).
- F₁(W,Q²) was computed by employing M. Osipenko's parameterization for σ_T/σ_L ratio (M. Osipenko et al., *Phys. Rev. D* 67 (2003), 09200).
- CLAS results further interpolated over Q² < 7.0 GeV² by employing the OPE expression for the Q² evolution of F_{1,2} accounting both for the CLAS results and world results parameterization in (P. Bosted, M.E. Christy, *Phys. Rev. C* 77, (2008) 065206).

Range of applicability (current version):

1.1 GeV < W < 2.0 GeV; 2.0 GeV² < Q^2 < 7.0 GeV²

UCONN

- Check consistent of CLAS12 results on SF and CS with CLAS/World data.
- Validate the luminosity monitoring and efficiency evaluations for scattered electrons.

7

γ*pN* Electrocouplings

• γ*pN* electrocouplings derived from CLAS exclusive meson production off the proton.

$$ep \to e'\pi N$$
 $ep \to e'\eta N$ $ep \to e'\pi^+\pi^-p$

• Estimates for contributions are therefore independent of inclusive electron scattering measurements and allow for calculations of the resonant contributions to the cross section. $\begin{array}{c}
M^{*} & M_{r} & \Gamma_{r} \\
M^{*} & M_{r} & M_{r} & \Gamma_{r} \\
M^{*} & M_{r} & M_{r} \\
M^{*} & M_{r} & M_{r} & M$

1 V	[MeV]	[MeV]	L_r	$\rho_{\pi N}$	$\rho_{\eta N}$	$\rho_{r.}$	[GeV]
$\Delta(1232) \ 3/2^+$	1232	117	1	1.00	0	0	
$N(1440) \ 1/2^+$	1430	350	1	0.65	0	0.35	0.3
$N(1520) \ 3/2^-$	1515	115	2	0.60	0	0.40	0.1
$N(1535) \ 1/2^-$	1535	150	0	0.45	0.42	0.13	0.5
$\Delta(1620) \; 1/2^-$	1630	140	0	0.25	0	0.75	0.5
$N(1650) \ 1/2^-$	1655	140	0	0.60	0.18	0.22	0.5
$N(1675) 5/2^-$	1675	150	2	0.40	0	0.60	0.5
$N(1680) 5/2^+$	1685	130	3	0.68	0	0.32	0.2
$\Delta(1700) \; 3/2^-$	1700	293	2	0.10	0	0.90	0.22
$N(1710) \ 1/2^+$	1710	100	1	0.13	0.30	0.57	0.5
$N(1720) \ 3/2^+$	1748	114	1	0.14	0.04	0.82	0.5
$N'(1720) \ 3/2^+$	1725	120	1	0.38	0	0.62	0.5
					_		

X

Resonant Contributions

• Studies elucidate the contributions from excited nucleon states to the three resonance regions.

 $\sigma^R_{T,L}(W,Q^2)$

$$= \frac{\pi}{q_{\gamma}^{2}} \sum_{R} (2J_{R}+1) \frac{M_{R}^{2} \Gamma_{R}(W) \Gamma_{\gamma,R}^{1,L}(M_{R},Q^{2})}{\left(M_{R}^{2}-W^{2}\right)^{2} + \left(M_{R}\Gamma_{R}(W)\right)^{2}}$$

Decay widths of resonance R to γ*p related to electrocouplings from previous slide.

$$\begin{split} \Gamma^{T}_{\gamma,R}(W = M_{R},Q^{2}) &= \frac{q^{2}_{\gamma,R}(Q^{2})}{\pi} \frac{2M}{(2J_{R}+1)M_{R}} \\ &\times \left(\left| A^{R}_{1/2}(Q^{2}) \right|^{2} + \left| A^{R}_{3/2}(Q^{2}) \right|^{2} \right), \\ \Gamma^{L}_{\gamma,R}(W = M_{R},Q^{2}) &= \frac{2q^{2}_{\gamma,R}(Q^{2})}{\pi} \frac{2M}{(2J_{R}+1)M_{R}} \\ &\times \left| S^{R}_{1/2}(Q^{2}) \right|^{2}, \end{split}$$

• Extension of previous analysis to now include interference effects by adding the amplitudes coherently.

Q² evolution

- Resonant contributions remain strong over the range of available data.
- First and third peaks decrease with Q² (in absolute value) when compared to the second peak which decreases more slowly.
- Further extensions to higher Q² become possible as CLAS12 exclusive meson production analyses continue.

From Resonances to DIS

- 1. LT fits (dotted lines) slightly underestimate the data.
- 2. Inclusion of TMC (dashed lines) increases the PDFs generally increase.
- 3. Inclusion of HT (solid lines) further increases the fits.

- With adequate accounting for low-energy effects the resonance data agree with the scaling curve from DIS/Drell-Yan/etc (more or less known for 50 years!).
- Comparisons between interpolated F_2 from CLAS data and extrapolated F_2 from higher W shows the **intriguing possibility to provide constraints for nucleon PDFs by utilizing resonance data**.
- CLAS12 with higher Q² could be even more useful for bridging the gap to DIS.

Motivations for (e,e'X) CLAS12

- First measurements Q²>5 GeV² with nearly complete coverage in W (from meson threshold to 2.5 GeV) of inclusive electron scattering in the resonance region.
- Increase knowledge of the nucleon PDF in the resonance region in order to study the structure of the proton.
- Extend our understanding of the emergence of hadron mass and extend the scope of explorations of quark-hadron duality.

Thomas Jefferson National Accelerator Facility

- Continuous Electron Beam Accelerator Facility (CEBAF) is located in Newport News, VA.
- Four experimental halls (A, B, C and D) receive a recently upgraded 12 GeV electron beam.
- Race track design with parallel north and south linear accelerators that pass the beam up to five times.
- CLAS12 located in Hall B.

CLAS12 (Hall B) Physics Program

- International collaboration with more than 40 member institutions and 200 full members.
- CLAS(12) is the world's only large acceptance and high luminosity spectrometer for fixed target lepton scattering experiments.

- 1. Study of the nucleon resonance structure at photon virtualities from 2.0 to 12 GeV²
- 2. Study of Generalized Parton Distributions (GPDs), (2 +1) D imaging of the proton and the study of its gravitational and mechanical structure.
- 3. Study of the Transverse Momentum Dependence (TMDs) and the of 3D structure in momentum space.
- 4. Study of J/ψ Photoproduction, LHCb Pentaquarks and Timelike Compton Scattering.
- 5. Study of meson spectroscopy in search of hybrid mesons
- 6. Much more!

CLAS12 Spectrometer

V. Burkert et al., Nucl. Instrum. Meth. A 959 (2020) 163419

- This is our first cross section measurement at 12 GeV; important to understand electron efficiency for other semiinclusive and exclusive experiments
- CLAS12: very high luminosity, wide acceptance, low Q²
- Began data taking in Spring 2018 many "run periods" now available.

Data from Fall 2018 - 10.6 GeV electron beam, longitudinally polarized beam, liquid H₂ target.

CLAS12 Kinematic Reach

 CLAS12 inclusive data offer opportunities to explore evolution of the ground state nucleon PDF at a Q² range where the transition from the strong-QCD toward pQCD regimes is expected.

Electron Identification

- Limited to Forward Detector (5 35° coverage in polar angle)
- Negative track with a hit in TOF, ECAL and HTCC
- >2.0 photoelectrons in HTCC
- 3.5-σ cuts on a parameterized momentum-dependent sampling fraction
- PCAL and DC Fiducial cuts

Simulation

- Inclusive EG: M. Sargsyan, CLAS-NOTE 90-007 (1990)
- Elastic tail + Inelastic radiated
- Kinematic range:
 - Theta range 5 36°
 - Scattered electron momentum 1.9 10 GeV
 - Full Q² coverage
 - Additional kinematic smearing to match the resolution of reconstructed data.

events

Cross Section Calculation

$$\frac{d\sigma}{dQ^2dW} = \frac{1}{\Gamma_{\nu}} \cdot \frac{1}{\Delta Q^2 \Delta W} \cdot \frac{RC \cdot N \cdot BCC}{\eta \cdot N_0} \cdot \frac{1}{N_A \rho t / A_{\omega}}$$

- Q² four-momentum transfer squared
- W invariant mass of the final hadron system
- Γ_{ν} virtual photon flux factor
- RC radiative correction factor
- BCC bin centering correction
- N bin event yield
- $\eta\,$ is the product of geometrical acceptance and electron detection efficiency
- N₀ live-time corrected incident electron flux summed over all data runs
- N_A Avogadro's number
- ρ target density
- t target length
- A_{ω} atomic weight of the target

- CLAS12 detector system described in "GEMC^{"1,} a detailed GEANT4 simulation package.
- Same reconstruction algorithm used for simulation and data ~10-40% acceptance depending on the bin.

1. M. Ungaro et al., "The CLAS12 Geant4 simulation," Nucl. Instrum. Meth. A, vol. 959, p. 163422, 2020.

Radiative Corrections

Preliminary Results

- Preliminary CLAS12 measurements ٠
- CLAS data (after interpolation into the grid of our experiment), Phys. Rev. D67, 092001 (2003)

Summary

- Preliminary results on inclusive electron scattering cross sections are available from CLAS12 in the kinematic range of 1.18 < W < 2.50 GeV and 2.6 < Q² < 9.0 GeV² and show agreement with world data in overlapping Q² regions to with 20%.
- First data with broad coverage in W over the entire resonance region up to $Q^2 = 9.0 \text{ GeV}^2$ where the transition from quark-gluon confinement toward pQCD is expected to take place.
- Approach for the evaluation of the resonance contributions to inclusive electron scattering by employing the CLAS results on $\gamma_v pN^*$ electrocouplings has been developed, tested with CLAS, Hall A/C data and can be extended to higher Q² with exclusive data from CLAS12.
- Inclusive electron scattering data from CLAS12 and the evaluated resonant/non-resonant contributions will be important in order to gain insight into the ground state nucleon PDF at large values of x in the resonance region.

Back up

Structure Functions in Inclusive Scattering

Inclusive F_1 and F_2 structure functions are related to the total virtual photon-nucleon cross sections σ_T and σ_L for transversely and longitudinally polarized photons,

$$F_1(Q^2, W) = \frac{KM}{4\pi^2 \alpha} \sigma_T(Q^2, W)$$

$$F_2(Q^2, W) = \frac{KM}{4\pi^2 \alpha} \frac{2x}{\rho} (\sigma_T(Q^2, W) + \sigma_L(Q^2, W))$$

 $= \rho^2 F_2(Q^2, W) - 2xF_1(Q^2, W)$

Convenient to define the longitudinal structure

function F₁ in terms of the longitudinal cross

 $F_L(Q^2, W) = \frac{KM}{4\pi^2 \alpha} 2x\sigma_L(Q^2, W)$

section (or F_1 and F_2).

F₂ can be written in terms of the unpolarized cross section (measured here).

$$F_2(Q^2, W) = \frac{KM}{4\pi^2 \alpha} 2x\rho^2 \frac{1+R}{1+\epsilon R} \sigma_U(Q^2, W)$$

$$\sigma_U(Q^2, W) = \sigma_T(Q^2, W) + \epsilon \sigma_L(Q^2, W),$$

$$R(Q^2, W) = \frac{\sigma_L(Q^2, W)}{\sigma_T(Q^2, W)}$$

R is the ratio of longitudinal to transverse cross sections. Total inclusive cross sections have been measured extensively but the ratio R is known with much less accuracy.

c.f. A. N. Hiller Blin et al., Phys. Rev. C 104 (2021) 2, 025201, [hep-ph 2105.05834]

Systematics

- Pion misidentification as electrons
- Model dependence (RC, BCC, etc.)
- Momentum corrections
- Sector dependence

Empty Target

