#### Photo- and Electroproduction with JBW

Michael Döring for Jülich-Bonn-Washington (JBW) collaboration

With D. Rönchen, M. Mai et al.





Supported by



DOE DE-AC05-06OR23177 & DE-SC0016583



HPC support by JSC grant jikp07

[several slides by D. Rönchen and M. Mai]

#### Degrees of freedom: Quarks or hadrons, or both?

e.g.: Review by [Thiel, Afzal, Wunderlich, arXiv:2202.05055]

QCD at low energies Non-perturbative dynamics How many states are there? What are they?

- $\rightarrow$  mass generation & confinement
- $\rightarrow$  rich spectrum of excited states
- $\rightarrow$  missing resonance problem)
- $\rightarrow$  2-quark/3-quark, hadron molecules, ...



#### Results in dynamical quark picture

Quark-diguark with reduced pseudoscalar + vector diguarks: GE, Fischer, Sanchis-Alepuz, PRD 94 (2016)

[parts of slide courtesy of G. Eichmann, Few Body 2018]





M [GeV]

Using ONLY meson-baryon degrees of freedom (no explicit quark dynamics):

Manifestly gauge invariant approach based on full BSE solution

[Ruic, M. Mai, U.-G. Meissner PLB 704 (2011)]



 $\rightarrow$  Making the "Missing resonance problem" worse ?!

### Lattice QCD for excited baryons



 $m_{\pi} = 396 \text{ MeV} [\text{Edwards et al., Phys.Rev. D84 (2011)}]$ 

- Pioneering spectroscopic calculations
- Information on existence, width & properties of resonances requires
  - Meson-baryon interpolating operators
  - Detailed finite-volume analysis



How about  $\pi\pi N$ ? Roper resonance?

#### Analyticity of the scattering amplitude in different approaches

#### Cuts and Unitarity



3-body

• 3-body unitarity:

 $\rightarrow$  Meson exchange from requirements of the S-matrix

#### Other cuts

- to approximate left-hand cut  $\rightarrow$  Baryon *u*-channel exchange
- $\sigma$ ,  $\rho$  exchanges from crossing plus analytic continuation.







#### The Julich-Bonn Dynamical Coupled-Channel Approach e.g. EPJ A 49, 44 (2013)

Dynamical coupled-channels (DCC): simultaneous analysis of different reactions

The scattering equation in partial-wave basis

$$\langle L'S'p'|T^{IJ}_{\mu\nu}|LSp\rangle = \langle L'S'p'|V^{IJ}_{\mu\nu}|LSp\rangle +$$

$$\sum_{\gamma,L''S''} \int_{0}^{\infty} dq \quad q^{2} \quad \langle L'S'p'|V^{IJ}_{\mu\gamma}|L''S''q\rangle \frac{1}{E - E_{\gamma}(q) + i\epsilon} \langle L''S''q|T^{IJ}_{\gamma\nu}|LSp\rangle$$



- potentials V constructed from effective  $\mathcal{L}$
- s-channel diagrams: T<sup>P</sup>
   genuine resonance states
- t- and u-channel: T<sup>NP</sup> dynamical generation of poles
   partial waves strongly correlated

### JBW: Channels and Analytic Structure

Channels included:



#### Single-meson photoproduction with JBW

A boundary condition for electroproduction analysis

e.g.: D. Ronchen et al., EPJA (2018), arXiv: <u>1801.10458</u>

### JBW: Photoproduction Data base

- $\pi N \rightarrow X$ : > 7,000 data points ( $\pi N \rightarrow \pi N$ : GW-SAID WI08 (ED solution))
- $\gamma N \rightarrow X$ :



New JPARC data on pion-induced reactions coming!

| Reaction                           | Observables (# data points)                                                                        | p./channel |
|------------------------------------|----------------------------------------------------------------------------------------------------|------------|
| $\gamma p  ightarrow \pi^0 p$      | $d\sigma/d\Omega$ (18721), $\Sigma$ (2927), $P$ (768), $T$ (1404), $\Delta\sigma_{31}$ (140),      |            |
|                                    | G (393), H (225), E (467), F (397), C <sub>x'</sub> (74), C <sub>z'</sub> (26)                     | 25,542     |
| $\gamma p \to \pi^+ n$             | $d\sigma/d\Omega$ (5961), $\Sigma$ (1456), $P$ (265), $T$ (718), $\Delta\sigma_{31}$ (231),        |            |
|                                    | G (86), H (128), E (903)                                                                           | 9,748      |
| $\gamma p  ightarrow \eta p$       | $d\sigma/d\Omega$ (9112), $\Sigma$ (403), $P$ (7), $T$ (144), $F$ (144), $E$ (129)                 | 9,939      |
| $\gamma p  ightarrow K^+ \Lambda$  | $d\sigma/d\Omega$ (2478), $P$ (1612), $\Sigma$ (459), $T$ (383),                                   |            |
|                                    | $C_{x'}$ (121), $C_{z'}$ (123), $O_{x'}$ (66), $O_{z'}$ (66), $O_x$ (314), $O_z$ (314),            | 5,936      |
| $\gamma p  ightarrow K^+ \Sigma^0$ | $d\sigma/d\Omega$ (4271), $P$ (422), $\Sigma$ (280), $T$ (127), $C_{x',z'}$ (188), $O_{x,z}$ (254) | 5,542      |
| $\gamma p  ightarrow K^0 \Sigma^+$ | $d\sigma/d\Omega$ (242), $P$ (78)                                                                  | 320        |
|                                    | in total                                                                                           | 57,027     |

A new web interface [https://jbw.phys.gwu.edu/]

### Selected Fit Results (I)

•  $\gamma p \to K^+ \Lambda$ :

http://collaborations.fz-juelich.de/ikp/meson-baryon/main



### Selected Fit Results (II)

•  $\gamma p \to K^+ \Lambda$ :

http://collaborations.fz-juelich.de/ikp/meson-baryon/main



#### Extension to $K\Sigma$ photoproduction

[D. Roenchen et al., preliminary]

Simultaneous analysis of  $\pi N \to \pi N, \eta N, K\Lambda, K\Sigma$  and  $\gamma p \to \pi N, \eta N, K\Lambda, K\Sigma$ 

- $\bullet$  > 67,000 data points in total
  - $\gamma p \rightarrow K^+ \Sigma^0$ :  $d\sigma/d\Omega$ , P,  $\Sigma$ , T,  $C_{x',z'}$ ,  $O_{x,z}$  = 5,652 •  $\gamma p \rightarrow K^0 \Sigma^+$ :  $d\sigma/d\Omega$ , P = 448
- polarizations scaled by new  $\Lambda$  decay constant  $\alpha_{-}$  (Ireland PRL 123 (2019), 182301), if applicable

•  $\chi^2$  minimization with MINUIT on JURECA [Jülich Supercomputing Centre, JURECA: JLSRF 2, A62 (2016)]

#### Resonance analysis:

- all 4-star N and ∆ states up to J = 9/2 are seen
   (exception: N(1895)1/2<sup>-</sup>) + some states rated less than 4 stars
- no additional s-channel diagram, but indications for new dyn. gen. poles



#### Resonances in $K\Sigma$ photoproduction

[D. Roenchen et al., preliminary]





dominant partial waves: I = 3/2

Exception:  $P_{13}$  partial wave (I = 1/2):

| N(1720) 3/2 <sup>+</sup> | Re $E_0$        | $-2$ Im $E_0$       | $\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$ | $\theta_{\pi N \to K\Sigma}$ |
|--------------------------|-----------------|---------------------|---------------------------------------------------------------------------|------------------------------|
| * * **                   | [MeV]           | [MeV]               | [%]                                                                       | [deg]                        |
| 2022                     | 1726            | 185                 | 5.9                                                                       | 82                           |
| 2017                     | <b>1689</b> (4) | <b>191</b> (3)      | 0.6(0.4)                                                                  | <b>26</b> (58)               |
| PDG 2021                 | $1675 \pm 15$   | $250^{+150}_{-100}$ | —                                                                         | —                            |

| N(1900) 3/2 <sup>+</sup> | Re $E_0$        | $-2$ Im $E_0$   | $\frac{\Gamma_{\pi N}^{1/2} \Gamma_{K\Sigma}^{1/2}}{\Gamma_{\text{tot}}}$ | $\theta_{\pi N \to K\Sigma}$ |
|--------------------------|-----------------|-----------------|---------------------------------------------------------------------------|------------------------------|
| * * **                   | [MeV]           | [MeV]           | [%]                                                                       | [deg]                        |
| 2022                     | 1905            | 93              | 1.3                                                                       | -40                          |
| 2017                     | <b>1923</b> (2) | <b>217</b> (23) | 10(7)                                                                     | -34(74)                      |
| PDG 2021                 | 1920±20         | $150 \pm 50$    | 4±2                                                                       | 110±30                       |

drop in cross section ("cusp-like structure") due to  $N(1900)3/2^+$ 

#### Pion and eta Electroproduction

A first step towards a coupled-channel photo- and electroproduction analysis

M. Mai et al., 2104.07312 [nucl-th], 2111.04774 (PRC)

# Single-meson electroproduction to reveal resonance structure

- ANL-Osaka PRC 80, 025207 (2009), Few-Body Syst. 59, 24 (2018),...
- Aznauryan, Burkert, Mokeev et al., PRC 80, 055203 (2009), Int. J. Mod. Phys. E22, 1330015 (2013),...
- EtaMAID2018, EPJA 54 (2018), 210
- MAID2007, EPJA 34 (2007) 69
- SAID, PiN Newsletter 16, 150 (2002)
- Gent group Phys. Rev. C 89, 065202 (2014),...

#### Highlights:

- Simultaneous description of pion photo- and electroproduction (MAID)
- Consistent extraction of the Roper form factor from single and double pion electroproduction
- New resonance in electroproduction claimed Mokeev et al., PLB (2020) <u>2004.13531 [nucl-ex]</u>



#### Needed: Coupled-channel electroproduction analysis

Take advantage of multi-channel approach  $\rightarrow\,$  analyze simultaneously final states  $\pi N,\,\eta N,\,K\Lambda$ 

~10<sup>5</sup> pion electroproduction data;  $\eta N, K\Lambda$  :

| Reaction                | Observable                                         | $Q^2$ [GeV] | W $[GeV]$  | Ref.  |
|-------------------------|----------------------------------------------------|-------------|------------|-------|
|                         | $\sigma_U,  \sigma_{LT},  \sigma_{TT}$             | 1.6 - 4.6   | 2.0 - 3.0  | [132] |
| $ep \to e'p'\eta$       | $\sigma_U,  \sigma_{LT},  \sigma_{TT}$             | 0.13 - 3.3  | 1.5 - 2.3  | [137] |
|                         | $d\sigma/d\Omega$                                  | 0.25 - 1.5  | 1.5 - 1.86 | [138] |
|                         | $P_N^0$                                            | 0.8 - 3.2   | 1.6 - 2.7  | [139] |
|                         | $\sigma_U, \sigma_{LT}, \sigma_{TT}, \sigma_{LT'}$ | 1.4 - 3.9   | 1.6 - 2.6  | [140] |
| $ep \to e' K^+ \Lambda$ | $P'_x, P'_z$                                       | 0.7 - 5.4   | 1.6 - 2.6  | [141] |
|                         | $\sigma_T, \sigma_L, \sigma_{LT}, \sigma_{TT}$     | 0.5 - 2.8   | 1.6 - 2.4  | [142] |
|                         | $P'_x, P'_z$                                       | 0.3 - 1.5   | 1.6 - 2.15 | [143] |

**Table 1:** Overview of  $\eta p$  and  $K^+\Lambda$  electroproduction data measured at CLAS for different photon virtualities  $Q^2$  and total energy W. Based on material provided by courtesy of D. Carman (JLab) and I. Strakovsky (GW).

- Many of these (and similar) data await analysis.
- Many more data to emerge at Jlab ( $Q^2 = 5 12 \text{ Ge}v^2$ )

e.g.: Carman, Joo, Mokeev, Few Body Syst. 61, 29 (2020)

- Approved Jlab experiments to study
  - Higher-lying nucleon resonances
  - Hybrid baryons
  - Transition regime between nonperturbative and perturbative regions

#### Pion Electroproduction – data base



#### Pion Electroproduction – data base



- Data base grown over decades with recent input mostly by CLAS, MAMI.
- Far from complete: Kinematic gaps & consistency issues. Need to combine information from different (W, Q<sup>2</sup>) regions
- Need to combine information from simultaneous analysis of different final states  $(\pi N/\eta N/KY/\pi \pi N,....)$  to extract resonance helicity couplings

#### **Kinematics**



#### **Polarized Observables**

• CLAS: Structure functions  $\sigma_{LT'}$ 

K. Joo et al. [CLAS], <u>Phys. Rev. C 68 (2003)</u>, K. Joo et al. [CLAS], Phys. Rev. C 70 (2004).

• Jlab-Hall A for  $K_{1D} = \{K_{1D}^X | X = A, B, ..., T\}$ 

J. J. Kelly, Phys. Rev. Lett. 95 (2005).

 Response functions (R) ⇔ Kelly notation (RL, RT, ...) ⇐ Helicity amplitudes H ⇔ CGNL amplitude. For example:

$$\begin{split} \sigma_{T} &= \frac{k}{q_{\gamma}} R_{T}^{00} , \quad \sigma_{L} = \frac{k}{q_{\gamma}} \frac{Q^{2}}{\omega^{2}} R_{L}^{00} , \quad \sigma_{TT} = \frac{k}{q_{\gamma}} R_{TT}^{00} \\ \sigma_{LT} &= \frac{k}{q_{\gamma}} \frac{\sqrt{Q^{2}}}{\omega} R_{LT}^{00} , \quad \sigma_{LT'} = \frac{k}{q_{\gamma}} \frac{\sqrt{Q^{2}}}{\omega} R_{LT'}^{00} , \\ P_{Y} &= -\sqrt{2\epsilon(1+\epsilon)} \frac{\omega}{\sqrt{Q^{2}}} \frac{R_{LT}^{00}}{R_{T}^{00} + \epsilon \omega^{2}/Q^{2} R_{L}^{00}} \\ \rho_{LT} &= \sqrt{2\epsilon(1+\epsilon)} \frac{R_{LT}^{00}}{R_{T}^{00} + \epsilon(R_{L}^{00} + R_{TT}^{00})} , \\ \rho_{LT'} &= \sqrt{2\epsilon(1-\epsilon)} \sin \phi \frac{\sigma_{LT'}}{d\sigma^{v}/d\Omega} , \end{split}$$

#### Parameterization

- Photoproduction solution as constraint
- Constraints from (Pseudo)-threshold:



$$q = \frac{\sqrt{\lambda(W^2, m^2, -Q^2)}}{2W}$$
$$k = \frac{\sqrt{\lambda(W^2, m^2, M^2)}}{2W}$$

• Siegert's theorem at pseudo-threshold:

$$\frac{E_{l_+}}{L_{l_+}} \to 1, \qquad \qquad \frac{E_{l_-}}{L_{l_-}} \to \frac{-l}{l-1}$$

Amaldi, Fubini, Furlan, Springer Tracts Mod. Phys. 83, 1 (1979) Tiator, Few-body Systems 57, 1087 (2016)

• Watson's theorem, multi-channel unitarity

$$M_{\mu\gamma^{*}}(q, W, Q^{2}) = V_{\mu\gamma^{*}}(q, W, Q^{2}) + \sum_{\kappa} \int dp p^{2} T_{\mu\kappa}(q, p, W) G_{\kappa}(p, W) V_{\nu\gamma^{*}}(p, W, Q^{2})$$
$$V_{\mu\gamma^{*}}(p, W, Q^{2}) = \alpha_{\mu\gamma^{*}}^{NP}(p, W, Q^{2}) + \sum_{i} \frac{\gamma_{\mu;i}^{a}(p)\gamma_{\gamma^{*};i}^{c}(W, Q^{2})}{W - m_{i}^{b}}$$

### Parameterization (2)

- Up to *D*-waves included (photoproduction part includes up to J=9/2)
- Energy range up to  $W \approx 1.6$  allows to include  $\eta N$  electro-production without much extra effort, but *KY* electroproduction requires additional work
- Final state interaction given by JuBo/JBW model such that pole positions and hadronic branching ratios (pole residues) are universal as required by reaction dynamics
- Q<sup>2</sup>-dependence: Several analytic forms tested; settled for:

$$\tilde{F}(Q^2) = \tilde{F}_D(Q^2) e^{-\beta_0 Q^2/m^2} P^N(Q^2/m^2)$$
where
$$P^N: \text{Polynomial}$$

$$\tilde{F}_D(Q^2) = \frac{1}{(1+Q^2/b^2)^2} \frac{1+e^{-Q_r^2/Q_w^2}}{1+e^{(Q^2-Q_r^2)/Q_w^2}}$$

• Other analytic forms?

Ramalho et al., <u>arXiv:1909.00013</u>

### Results (1): Fit Strategies

- Six different fit strategies:
  - Avoid fitting structure function if corresponding cross sections can be fitted (respect data correlations)
  - Sequential  $S \rightarrow S+P \rightarrow S+P+D$  waves;
  - Subsets of data until full data set reached
  - Simultaneous fit all parameters (209) set to zero without any (!) guidance
  - Extend data range from  $0 < Q^2 < 4~{\rm Gev^2}$  to  $0 < Q^2 < 6~{\rm Gev^2}$  to check for stability

| Fit              | $\sigma_L$ |           | $d\sigma$      | $/d\Omega$ | $\sigma_T$ + | - $\epsilon \sigma_L$ | σ              | T         | $\sigma_I$         | LT        | $\sigma_L$ | LT'       | $\sigma_T$ | $\Gamma T$ | K              | D1        | P         | $\mathcal{P}_Y$ | $\rho_{I}$ | LT        | ρ         | LT'       | $\chi^2$        |
|------------------|------------|-----------|----------------|------------|--------------|-----------------------|----------------|-----------|--------------------|-----------|------------|-----------|------------|------------|----------------|-----------|-----------|-----------------|------------|-----------|-----------|-----------|-----------------|
|                  | $\pi^0 p$  | $\pi^+ n$ | $\int \pi^0 p$ | $\pi^+ n$  | $\pi^0 p$    | $\pi^+ n$             | $\int \pi^0 p$ | $\pi^+ n$ | $\pi^0 p$          | $\pi^+ n$ | $\pi^0 p$  | $\pi^+ n$ | $\pi^0 p$  | $\pi^+ n$  | $\int \pi^0 p$ | $\pi^+ n$ | $\pi^0 p$ | $\pi^+ n$       | $\pi^0 p$  | $\pi^+ n$ | $\pi^0 p$ | $\pi^+ n$ | $\chi_{ m dof}$ |
| $\mathfrak{F}_1$ | _          | 9         | 65355          | 53229      | 870          | 418                   | 87             | 88        | 1212               | 133       | 862        | 762       | 4400       | 251        | 4493           | _         | 234       | _               | 525        | _         | 3300      | 10294     | 1.77            |
| $\mathfrak{F}_2$ | —          | 4         | 69472          | 55889      | 1081         | 619                   | <b>65</b>      | 78        | 1780               | 150       | 1225       | 822       | 4274       | 237        | 4518           | —         | 325       | —               | 590        | —         | 3545      | 10629     | 1.69            |
| $\mathfrak{F}_3$ | —          | 8         | 66981          | 54979      | 568          | 388                   | 84             | 95        | 1863               | 181       | 1201       | 437       | 3934       | 339        | 4296           | —         | 686       | —               | 687        | —         | 3556      | 9377      | 1.81            |
| $\mathfrak{F}_4$ | _          | 22        | 63113          | 52616      | 562          | 378                   | 153            | 107       | 1270               | 146       | 1198       | 1015      | 4385       | 218        | 5929           | —         | 699       | —               | 604        |           | 3548      | 11028     | 1.78            |
| $\mathfrak{F}_5$ | _          | 20        | 65724          | 53340      | 536          | 528                   | 125            | 81        | 1507               | 219       | 1075       | 756       | 4134       | 230        | 5236           | —         | 692       | —               | 554        |           | 3580      | 11254     | 1.81            |
| F6               | _          | 18        | 71982          | 58434      | 1075         | 501                   | 29             | 68        | 13 <mark>53</mark> | 135       | 1600       | 1810      | 3935       | 291        | 5364           | _         | 421       | _               | 587        | _         | 3932      | 11475     | 1.78            |

### Results (2): Kelly data

The closest to a complete data set there is



 $\pi^{0}$ p, Q<sup>2</sup>=1 GeV<sup>2</sup>, W=1.23 GeV,  $\phi$ =15<sup>0</sup>

J. J. Kelly, Phys. Rev. Lett. 95 (2005).



data: CLAS, Phys. Rev. C (2003) 0301012 [nucl-ex], Phys. Rev. Lett. (2002) 0110007 [hep-ex]

### Results (4): Large Multipoles

**Prominent multipoles are well determined**, even with significantly different fit strategies (e.g., all parameters initially set to zero, no guidance for fit!)  $M_{1+}^{3/2} (\Delta(1232))$ 



Fit strategies 1-6 together with MAID (open dots) for the magnetic multipole of the  $\Delta(1232)$  Drechsel et al., EPJA (2007) <u>0710.0306 [nucl-th]</u>



### Results (5): Other multipoles

- Less prominent multipoles are sometimes less well determined
- Overall: solutions are still surprisingly close together given vastly different strategies
- Differences from various strategies (different local  $\chi^2$  minima) much larger than statistical uncertainties; larger than typical MAID uncertainties.
- **Example**: S-wave multipoles [*mfm*] as function of energy W at fixed  $Q^2 = 0.2 GeV^2$



### Results (6): Roper Multipole

 $M_{1-}^{1/2}$  (N(1440)) Non-trivial structure Zero transition Helicity coupling still to be extracted • Re4 2  $Re\,M$  $Im\,M$ 0 -21.0 [mfm] 1.2 0.5 1.4 00000 1.5 0.0 3 5 5 2 4 2 3 4 0 0 Im4  $Q^2 \; [\text{GeV}^2]$  (W=1.38 GeV fixed) 2 0  $^{-2}$  $\mathfrak{F}_1$ · — ·  $\mathfrak{F}_4$ 1.0 1.2 Q2 (Cerri  $--- \mathfrak{F}_2 - - \mathfrak{F}_5$ 0.5 1.4  $\mathfrak{F}_3$ - **3**6  $W_{[GeV]}$ 0.0 o MAID2007 (Strategy 1 only)

#### $\eta$ Electroproduction

[M. Mai et al., arXiv: 2111.04774]

• 
$$N_{data}^{\eta p} = 1,874$$
 (only  $d\sigma/d\Omega$ ) (84,842 in total)

kinematic range:  $0 < Q^2 < 4 \text{ GeV}^2$ ,  $1.13 < W < 1.6 \text{ GeV}^2$ 

■ 8 different fit strategies: 4 with standard  $\chi^2$ , 4 with weighted  $\chi^2$  to account for the smaller  $N_{data}^{\eta p}$ → better data description with weighted fit strategies:

Selected fit results:  $\gamma^* p \rightarrow \eta p$  at W = 1.5 GeV,  $Q^2 = 1.2$  GeV<sup>2</sup>. Data: Denizli et al. (CLAS) PRC 76 (2007)



Selected multipoles at W = 1535 MeV



#### Outlook

- Statistical challenges
- DCC approaches for three-body physics

#### Parameterization Dependence

 Can parametrization dependence be avoided? Not if the data is far from being complete enough to represent even a truncated complete electroproduction experiment

> L. Tiator et al. Phys. Rev. C (2017), <u>arXiv: 1702.08375</u> Wunderlich, Svarc et al., <u>arXiv:1708.06840</u>

 Single-Q<sup>2</sup> analysis can decrease parametrization-independence but not remove it (discrete & continuous ambiguities).

Y. Wunderlich, <u>arXiv:2111.09587</u>

 Future: Bias-variance tradeoff: Different statistical criteria (Akaike, Bayesian) to find sweet spot between no. of parameters (flexibility of parametrization) and data accuracy

#### J. Landay et al., Phys.Rev.C (2017), <u>arXiv: 1610.07547</u>

- Challenges: PWA solution uncertainties dominated by
  - Ambiguities
  - Empty kinematic regions (in W and Q<sup>2</sup>)
  - Systematic data uncertainty/consistency

### DCC approaches for three-body physics

- Strength of DCC approaches: Allows for general three-body amplitudes, ordered and truncated by "isobars"
- DCC approaches well suited for three-body meson physics

ANL/Osaka (Kamano et al.) arXiv:1106.4523

Three-body unitarity + Dispersive representations to construct a general 3-body amplitude

Aaron et al., <u>Phys. Rev. 174 (1968)</u> M. Mai et al., <u>arXiv:1706.06118</u>



#### Unitary three-body scattering equation

Mai et al., arXiv:1706.06118



• One can map to field theory but does not have to. Result is a-priori dispersive.

### Extraction of $a_1(1260)$ from IQCD



- First-ever three-body resonance from 1<sup>st</sup> principles
- A step towards understanding axials, Roper, exotics,...]



### Extraction of $a_1(1260)$ from IQCD

#### [Mai/GWQCD]



### Summary

- JBW model: Phenomenology of excited baryons through coupledchannels, two- and three-body dynamics
- Analysis finds/confirms new states in analysis of photo-production data, renewed effort to explore additional reaction channels
- Pion and eta electroproduction analysis
  - Exploration of parameter space through different fit strategies reveals different local minima leading to significantly different multipole content.
  - Yet, prominent multipole well determined, albeit with uncertainties larger than in other analyses.
- Extraction of helicity couplings and single-bin analyses planned
- Upgrade KY electroproduction under way
- Machine Learning: How to find a minimal resonance spectrum through model selection J. Landay et al., Phys.Rev.D (2019), <u>1810.00075 [nucl-th]</u>
- Unitary dispersive amplitudes for analysis of IQCD data allow access to dynamics of three-body systems (resonances)

(spare slides)

#### Machine learning and Model selection for baryon spectrum

[J. Landay et al., <u>arXiv:1810.00075</u>, <u>arXiv: 1610.07547</u>]

#### Least Absolute Shrinkage and Selection Operator (LASSO)



See, e.g.: *The Elements of Statistical Learning*: Data Mining, Inference, and Prediction, T. Hastie, R. Tibshirani, J. Friedman, Springer 2009 second ed.

### The Sweet Spot for $\lambda$

#### • Example: Smoothing a curve

Smoothning splines use a form of regularization:

$$\hat{f} = \underset{f}{\operatorname{argmin}} \sum_{i=1}^{n} \left( y_i - f(x_i) \right)^2 + \lambda \cdot \underbrace{\int \left( f''(x) \right)^2 dx}_{R(f)}$$

Example with n = 100 points:



## Information theory criteria



#### **Resonance selection** $(K^-p \to K\Xi)$



#### Bayesian Information Criterion for model selection 2.6



#### Data description of selected model

