Chiral anomaly and the pion properties in the light-front quark model

Ho-Meoyng Choi (Kyungpook National Univ.)

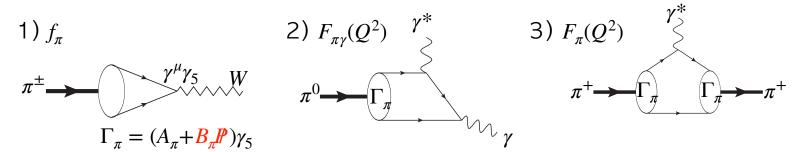
in collaboration with C.-R. Ji

(Ref. Phys. Rev. D 102, 036005 (2020))

APCTP Workshop on Nuclear Physics 2022: Physics of Excited Hadrons in the Present and Future Facilities, July 11-16, Jeju, Korea

Outline

- 1. Motivation
- 2. Model Description: Light-Front Quark Model(LFQM)
 - Role of axial-vector coupling in the chiral limit $(M_\pi, m_Q \to 0)$
- 3. Application



- 4. Numerical Results
- 5. Conclusion

1. Motivation

- Pion is the lightest pseudo-Goldstone boson arising from the SSB of the chiral symmetry in QCD.
- $\pi^0 \to \gamma \gamma^*$ is the simplest exclusive process in testing QCD and understanding the structure of the pion.

1. Motivation

- Pion is the lightest pseudo-Goldstone boson arising from the SSB of the chiral symmetry in QCD.
- $\pi^0 \to \gamma \gamma^*$ is the simplest exclusive process in testing QCD and understanding the structure of the pion.

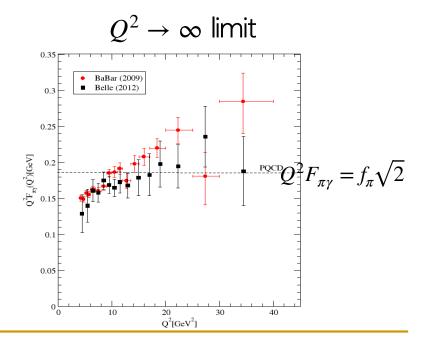
Its complete understanding requires a formulation capable of explaining

$$Q^2 o 0$$
 limit and

: Adler-Bell-Jackiw (ABJ) anomaly (or chiral anomaly), which determines

$$\Gamma_{\pi^0 \to \gamma \gamma} \propto |F_{\pi \gamma}(0)|^2$$

$$F_{\pi\gamma}^{\text{ABJ}}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}}$$



• The purpose of this work is to explore

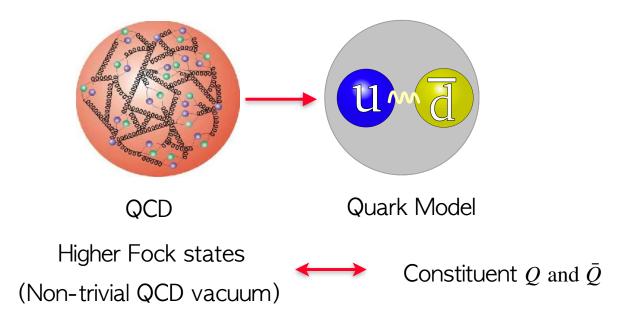
"the correlation between the nontrivial QCD vacuum effect and the constituent quark mass", through the analysis of

- (1) the nonzero axial vector coupling for the consistency with the chiral anomaly
- (2) the difference between the constituent quark picture $(M_{\pi} < 2m)$ and the current quark picture $(M_{\pi} > 2m)$
- (3) the quark mass variation effects on $F_{\pi\gamma}(Q^2), F_{\pi}(Q^2)$

in the LFQM using $\Gamma_{\pi} = (A_{\pi} + B_{\pi} P) \gamma_5$ for the pion spin-orbit structure.

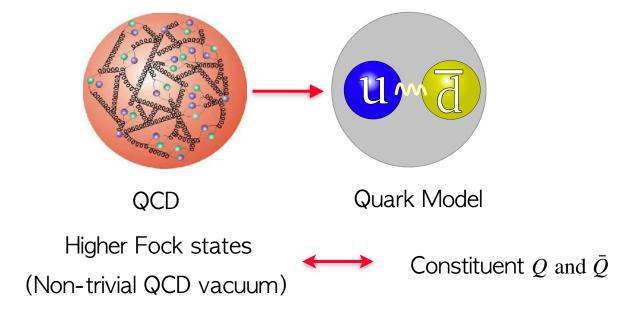
2. Model Description: Light-Front Quark Model (LFQM)

$$|\pi\rangle = \psi_{q\bar{q}} \, |\, q\bar{q}\rangle \, + \, \psi_{q\bar{q}g} \, |\, q\bar{q}g\rangle \, + \, \cdots \equiv \Psi^\pi_{Q\bar{Q}} \, |\, Q\bar{Q}\rangle \; : \; \text{mock-hadron approx.}$$



2. Model Description: Light-Front Quark Model (LFQM)

$$|\pi\rangle = \psi_{q\bar{q}} |q\bar{q}\rangle + |\psi_{q\bar{q}g}| |q\bar{q}g\rangle + \cdots \equiv \Psi^{\pi}_{Q\bar{Q}} |Q\bar{Q}\rangle \; : \; \text{mock-hadron approx.}$$



Pion in LFQM:

$$P = (P^{+}, P^{-}, \mathbf{P}_{\perp})$$

$$P^{\pm} = P^{0} \pm P^{3}$$

$$(x_{1}, \mathbf{k}_{1\perp}, \lambda_{1})$$

$$x_{i} = \frac{k_{i}^{+}}{P^{+}}$$

$$\sum_{i=1}^{2} x_{i} = 1, \sum_{i=1}^{2} \mathbf{k}_{i\perp} = 0$$

$$(x_{2}, \mathbf{k}_{2\perp}, \lambda_{2})$$

2. Model Description

$$|\pi\rangle = \psi_{q\bar{q}} |q\bar{q}\rangle + |\psi_{q\bar{q}g}| |q\bar{q}g\rangle + \cdots \equiv \Psi^{\pi}_{Q\bar{Q}} |Q\bar{Q}\rangle$$

$$P = (P^{+}, P^{-}, \mathbf{P}_{\perp})$$

$$P^{\pm} = P^{0} \pm P^{3}$$

$$(x_{1}, \mathbf{k}_{1\perp}, \lambda_{1})$$

$$x_{i} = \frac{k_{i}^{+}}{P^{+}}$$

$$\sum_{i=1}^{2} x_{i} = 1, \sum_{i=1}^{2} \mathbf{k}_{i\perp} = 0$$

$$(x_{2}, \mathbf{k}_{2\perp}, \lambda_{2})$$

$$\Psi^{\pi}_{Q\bar{Q}} \equiv \Psi_{\pi}(x_i, \mathbf{k}_{i\perp}, \lambda_i) = \phi_{R}(x_i, \mathbf{k}_{i\perp}) \chi(x_i, \mathbf{k}_{i\perp}, \lambda_i)$$

Normalization: $\langle \Psi^{\pi}_{Q\bar{Q}} | \Psi^{\pi}_{Q\bar{Q}} \rangle = P_{Q\bar{Q}}$

$$\phi_{R}(x,\mathbf{k}_{\perp}) = \sqrt{P_{Q\bar{Q}}} \frac{4\pi^{3/4}}{\beta^{3/2}} \sqrt{\frac{\partial k_{z}}{\partial x}} e^{-\frac{\vec{k}^{2}}{2\beta^{2}}}, \qquad \qquad \int_{0}^{1} dx \int \frac{d^{2}\mathbf{k}_{\perp}}{16\pi^{3}} |\phi_{R}(x,\mathbf{k}_{\perp})|^{2} = P_{Q\bar{Q}}.$$

$$\{\mathbf{k}_{\perp},k_{z}\} \to \{\mathbf{k}_{\perp},x\}$$

2. Model Description

$$|\pi\rangle = \psi_{q\bar{q}} |q\bar{q}\rangle + |\psi_{q\bar{q}g}| |q\bar{q}g\rangle + \cdots \equiv \Psi^{\pi}_{Q\bar{Q}} |Q\bar{Q}\rangle$$

$$P = (P^{+}, P^{-}, \mathbf{P}_{\perp})$$

$$(x_{1}, \mathbf{k}_{1\perp}, \lambda_{1})$$

$$x_{i} = \frac{k_{i}^{+}}{P^{+}}$$

$$\sum_{i=1}^{2} x_{i} = 1, \sum_{i=1}^{2} \mathbf{k}_{i\perp} = 0$$

$$(x_{2}, \mathbf{k}_{2\perp}, \lambda_{2})$$

$$\Psi^{\pi}_{Q\bar{Q}} \equiv \Psi_{\pi}(x_i, \mathbf{k}_{i\perp}, \lambda_i) = \phi_{R}(x_i, \mathbf{k}_{i\perp}) \chi(x_i, \mathbf{k}_{i\perp}, \lambda_i)$$

$$\chi_{\lambda_1\lambda_2}(x,\mathbf{k}_\perp) = \mathcal{N}\bar{u}_{\lambda_1}(k_1)\Gamma_\pi v_{\lambda_2}(k_2) \text{ satisfying } \langle \chi_{\lambda_1\lambda_2}|\chi_{\lambda_1\lambda_2}\rangle = 1$$

$$\Gamma_{\pi} = (A_{\pi} + B_{\pi} P) \gamma_5$$

where we set $A_{\pi} = M_{\pi}$, B_{π} being a free parameter.

2. Model Description
$$|\pi\rangle = \psi_{q\bar{q}}|q\bar{q}\rangle + \psi_{q\bar{q}g}|q\bar{q}g\rangle + \cdots \equiv \Psi^{\pi}_{Q\bar{Q}}|Q\bar{Q}\rangle$$

$$P = (P^+, P^-, \mathbf{P}_\perp)$$

$$Q \longrightarrow (x_1, \mathbf{k}_{1\perp}, \lambda_1)$$

$$M_0^2 = \frac{m_Q^2 + \mathbf{k}_{1\perp}^2}{x_1} + \frac{m_{\bar{Q}}^2 + \mathbf{k}_{2\perp}^2}{x_2}$$

$$Q \longrightarrow (x_2, \mathbf{k}_{2\perp}, \lambda_2)$$

$$\Psi^{\pi}_{Q\bar{Q}} \equiv \Psi_{\pi}(x_i, \mathbf{k}_{i\perp}, \lambda_i) = \phi_{R}(x_i, \mathbf{k}_{i\perp}) \chi(x_i, \mathbf{k}_{i\perp}, \lambda_i)$$

$$\chi_{\lambda_1 \lambda_2}(x, \mathbf{k}_{\perp}) = \begin{pmatrix} \chi_{\uparrow \uparrow} & \chi_{\uparrow \downarrow} \\ \chi_{\downarrow \uparrow} & \chi_{\downarrow \downarrow} \end{pmatrix} \propto \begin{pmatrix} -k^L \mathcal{M} & m \mathcal{M} + x(1-x) \mathbf{B}_{\pi} \epsilon_B \\ -m \mathcal{M} - x(1-x) \mathbf{B}_{\pi} \epsilon_B & -k^R \mathcal{M} \end{pmatrix}$$

$$\mathcal{M} = M_{\pi} + 2B_{\pi}m, \epsilon_B = M_{\pi}^2 - M_0^2, \quad k^{R(L)} = k_x \pm ik_y$$

$$\chi_{\lambda_1 \lambda_2}(x, \mathbf{k}_\perp) = \mathcal{N} \bar{u}_{\lambda_1}(k_1) (\mathbf{M}_{\pi} + \mathbf{B}_{\pi} \mathbf{P}) \gamma_5 v_{\lambda_2}(k_2)$$

Chiral limit
$$(M_{\pi}, m \to 0)$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{sgn}(-\mathbf{B}_{\pi})$$

$$sgn(-B_{\pi}) = - sgn(B_{\pi})$$

$$\operatorname{sgn}(B_{\pi}) = \begin{cases} 1 & \text{for } B_{\pi} > 0 \\ -1 & \text{for } B_{\pi} < 0 \\ 0 & \text{for } B_{\pi} = 0 \end{cases}$$

$$\chi_{\lambda_1 \lambda_2}(x, \mathbf{k}_\perp) = \mathcal{N} \bar{u}_{\lambda_1}(k_1) (\mathbf{M}_{\pi} + \mathbf{B}_{\pi} \mathcal{P}) \gamma_5 v_{\lambda_2}(k_2)$$

Chiral limit
$$(M_{\pi}, m \to 0)$$

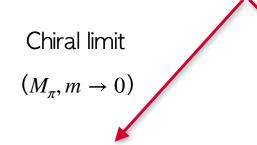
$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{sgn}(-\mathbf{B}_{\pi})$$

$$\operatorname{sgn}(-\mathbf{B}_{\pi}) = -\operatorname{sgn}(\mathbf{B}_{\pi})$$

$$\operatorname{sgn}(B_{\pi}) = \begin{cases} 1 & \text{for } B_{\pi} > 0 \\ -1 & \text{for } B_{\pi} < 0 \\ 0 & \text{for } B_{\pi} = 0 \end{cases}$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow)$$

$$\chi_{\lambda_1\lambda_2}(x,\mathbf{k}_\perp) = \mathcal{N}\bar{u}_{\lambda_1}(k_1)(\mathbf{M}_\pi + \mathbf{B}_\pi P)\gamma_5 v_{\lambda_2}(k_2)$$



$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{sgn}(-B_{\pi})$$

$$sgn(-B_{\pi}) = -sgn(B_{\pi})$$

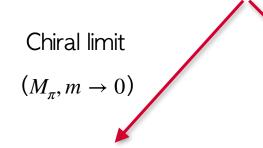
$$\operatorname{sgn}(B_{\pi}) = \begin{cases} 1 & \text{for } B_{\pi} > 0 \\ -1 & \text{for } B_{\pi} < 0 \\ 0 & \text{for } B_{\pi} = 0 \end{cases}$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow)$$

Zero-binding limit
$$(M_{\pi} \to M_0 \text{ or } \epsilon_B = 0) \qquad \qquad \Gamma_{\pi} \propto \gamma_5$$

$$\chi_{\lambda_1 \lambda_2}^{(M_0)} = \frac{1}{\sqrt{2(\mathbf{k}_{\perp}^2 + m^2)}} \begin{pmatrix} -k^L & m \\ -m & -k^R \end{pmatrix}$$

$$\chi_{\lambda_1\lambda_2}(x,\mathbf{k}_\perp) = \mathcal{N}\bar{u}_{\lambda_1}(k_1)(\mathbf{M}_\pi + \mathbf{B}_\pi P)\gamma_5 v_{\lambda_2}(k_2)$$



$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{sgn}(-B_{\pi})$$

$$sgn(-B_{\pi}) = -sgn(B_{\pi})$$

$$\operatorname{sgn}(B_{\pi}) = \begin{cases} 1 & \text{for } B_{\pi} > 0 \\ -1 & \text{for } B_{\pi} < 0 \\ 0 & \text{for } B_{\pi} = 0 \end{cases}$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow)$$

Zero-binding limit
$$(M_{\pi} \to M_0 \text{ or } \epsilon_B = 0) \qquad \qquad \Gamma_{\pi} \propto \gamma_5$$

$$\chi_{\lambda_1 \lambda_2}^{(M_0)} = \frac{1}{\sqrt{2(\mathbf{k}_{\perp}^2 + m^2)}} \begin{pmatrix} -k^L & m \\ -m & -k^R \end{pmatrix}$$
Chiral limit
$$(m \to 0)$$

$$\chi_{\uparrow \downarrow}^{(M_0)} = \chi_{\downarrow \uparrow}^{(M_0)} = 0$$

$$\chi_{\lambda_1 \lambda_2}(x, \mathbf{k}_\perp) = \mathcal{N} \bar{u}_{\lambda_1}(k_1) (\mathbf{M}_{\pi} + \mathbf{B}_{\pi} \mathcal{P}) \gamma_5 v_{\lambda_2}(k_2)$$

Chiral limit
$$(M_{\pi}, m \to 0)$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \text{sgn}(-B_{\pi})$$

$$sgn(-B_{\pi}) = -sgn(B_{\pi})$$

$$\operatorname{sgn}(B_{\pi}) = \begin{cases} 1 & \text{for } B_{\pi} > 0 \\ -1 & \text{for } B_{\pi} < 0 \\ 0 & \text{for } B_{\pi} = 0 \end{cases}$$

$$(M_{\pi} \to M_0 \text{ or } \epsilon_B = 0)$$

Zero-binding limit
$$(M_\pi \to M_0 \text{ or } \epsilon_B = 0) \qquad \qquad \Gamma_\pi \propto \gamma_5$$

$$\chi_{\lambda_1 \lambda_2}^{(M_0)} = \frac{1}{\sqrt{2(\mathbf{k}_{\perp}^2 + m^2)}} \begin{pmatrix} -k^L & m \\ -m & -k^R \end{pmatrix}$$

Chiral limit
$$(m \to 0)$$

$$\chi_{\uparrow\downarrow}^{(M_0)} = \chi_{\downarrow\uparrow}^{(M_0)} = 0$$

$$\chi_{\lambda_1 \lambda_2}^{\text{chiral}} = \frac{1}{\sqrt{2}} (\uparrow \downarrow - \downarrow \uparrow)$$

Axial vector coupling (i.e. $B_{\pi} < 0$) is absolutely required to have non-zero chiral limit!

(1) Pion decay constant

$$\langle 0 \, | \, \bar{q} \gamma^\mu (1 - \gamma_5) q \, | \, \pi(P) \rangle = i f_\pi P^\mu$$
 Using $\mu = +$

$$f_{\pi} = 2\sqrt{2N_c} \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\pi}(x, \mathbf{k}_{\perp}), \qquad \psi_{\pi}(x, \mathbf{k}_{\perp}) = \frac{1}{\sqrt{2}} (\chi_{\uparrow\downarrow} - \chi_{\downarrow\uparrow}) \phi_{R}(x, \mathbf{k}_{\perp})$$

$$\psi_{\pi}(x, \mathbf{k}_{\perp}) = \frac{1}{\sqrt{2}} (\chi_{\uparrow\downarrow} - \chi_{\downarrow\uparrow}) \phi_{R}(x, \mathbf{k}_{\perp})$$

(1) Pion decay constant

$$\langle 0 \, | \, \bar{q} \gamma^{\mu} (1 - \gamma_5) q \, | \, \pi(P) \rangle = i f_{\pi} P^{\mu}$$
 Using $\mu = +$

$$f_{\pi} = 2\sqrt{2N_c} \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\pi}(x, \mathbf{k}_{\perp}), \qquad \psi_{\pi}(x, \mathbf{k}_{\perp}) = \frac{1}{\sqrt{2}} (\chi_{\uparrow\downarrow} - \chi_{\downarrow\uparrow}) \phi_{R}(x, \mathbf{k}_{\perp})$$

Twist-2 pion Distribution amplitude (DA):

$$\phi_{\pi}(x) = \int^{Q^2} \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\pi}(x, \mathbf{k}_{\perp}), \qquad \int_0^1 dx \; \phi_{\pi}(x) = \frac{f_{\pi}}{2\sqrt{2N_c}}.$$

In the chiral limit, we obtain

$$f_{\pi}^{\text{chiral}} = \sqrt{P_{Q\bar{Q}}} \frac{\sqrt{3}\beta}{2^{3/4}\pi^{1/4}} \Gamma(\frac{5}{4}), \quad \phi_{\pi}^{\text{chiral}}(x) = \frac{2\sqrt{2}f_{\pi}^{\text{chiral}}}{\sqrt{3}\pi} \sqrt{x(1-x)}$$

(1) Pion decay constant

$$\langle 0 \, | \, \bar{q} \gamma^{\mu} (1 - \gamma_5) q \, | \, \pi(P) \rangle = i f_{\pi} P^{\mu}$$
 Using $\mu = +$

$$f_{\pi} = 2\sqrt{2N_c} \int_0^1 dx \int \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\pi}(x, \mathbf{k}_{\perp}), \qquad \psi_{\pi}(x, \mathbf{k}_{\perp}) = \frac{1}{\sqrt{2}} (\chi_{\uparrow\downarrow} - \chi_{\downarrow\uparrow}) \phi_{R}(x, \mathbf{k}_{\perp})$$

Twist-2 pion Distribution amplitude (DA):

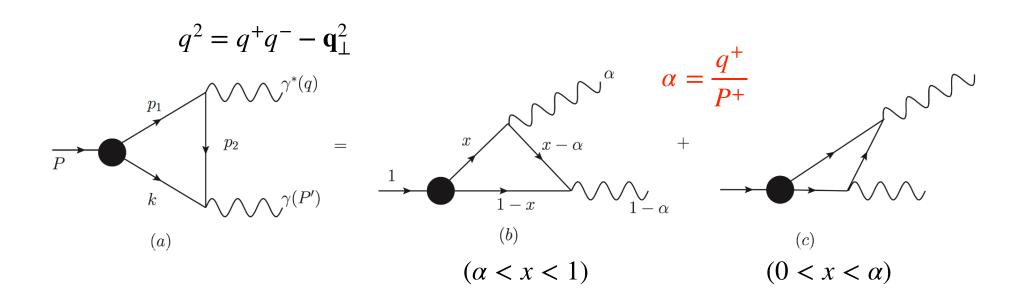
$$\phi_{\pi}(x) = \int^{Q^2} \frac{d^2 \mathbf{k}_{\perp}}{16\pi^3} \psi_{\pi}(x, \mathbf{k}_{\perp}), \qquad \int_0^1 dx \; \phi_{\pi}(x) = \frac{f_{\pi}}{2\sqrt{2N_c}}.$$

In the chiral limit, we obtain

$$f_{\pi}^{\text{chiral}} = \sqrt{P_{Q\bar{Q}}} \frac{\sqrt{3}\beta}{2^{3/4}\pi^{1/4}} \Gamma(\frac{5}{4}), \qquad \phi_{\pi}^{\text{chiral}}(x) = \frac{2\sqrt{2}f_{\pi}^{\text{chiral}}}{\sqrt{3}\pi} \sqrt{x(1-x)} = \frac{\phi_{\pi}^{\text{AdS/CFT}}(x)}{\text{Brodsky, de Teramond}}$$

(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

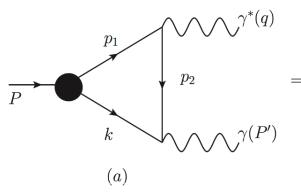
$$\langle \gamma(P-q) \, | \, J_{\rm em}^{\mu} \, | \, \pi^0(P) \rangle = i e^2 F_{\pi\gamma}(Q^2) \epsilon^{\mu\nu\rho\sigma} P_{\nu} \epsilon_{\rho} q_{\sigma},$$

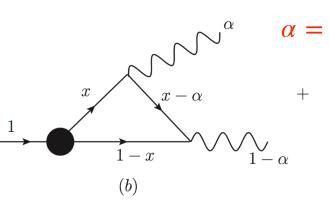


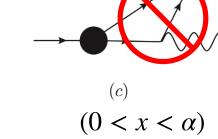
(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

$$\langle \gamma(P-q) \, | \, J_{\rm em}^\mu \, | \, \pi^0(P) \rangle = i e^2 F_{\pi\gamma}(Q^2) \epsilon^{\mu\nu\rho\sigma} P_\nu \epsilon_\rho q_\sigma, \label{eq:gamma_phi}$$

$$q^2 = q^+ q^- - \mathbf{q}_\perp^2$$







(1) For $q^+=0$ frame $(\alpha=0)$: spacelike region, i.e. $q^2=-\mathbf{q}_\perp^2=-Q^2<0$

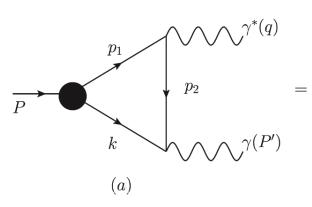
$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 (1 - x) dx \int d^2 \mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{\mathbf{k'}_{\perp}^2 + m^2}, \ \mathbf{k'}_{\perp} = \mathbf{k}_{\perp} + (1 - x)\mathbf{q}_{\perp}$$

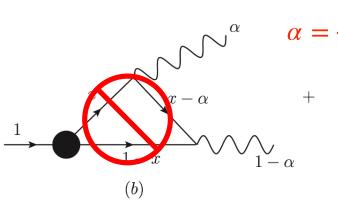
 $(\alpha < x < 1)$

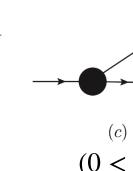
(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

$$\langle \gamma(P-q) \, | \, J_{\rm em}^\mu \, | \, \pi^0(P) \rangle = i e^2 F_{\pi\gamma}(Q^2) \epsilon^{\mu\nu\rho\sigma} P_\nu \epsilon_\rho q_\sigma, \label{eq:gamma_phi}$$

$$q^2 = q^+ q^- - \mathbf{q}_\perp^2$$







$$(\alpha < x < 1)$$

$$(0 < x < \alpha)$$

(2) For $q^+ = P^+$ with $\mathbf{q}_{\perp} = 0$ frame $(\alpha = 1)$: timelike region, i.e. $q^2 = q^+q^- > 0$

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

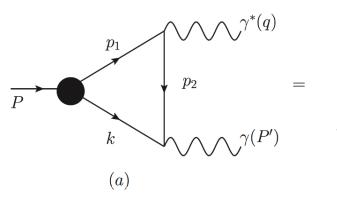
Choi, Ryu, Ji, PRD 96, 056008(17)

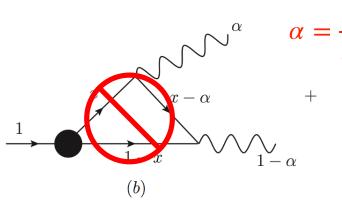
Simple pole

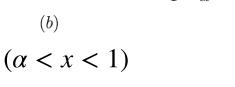
(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

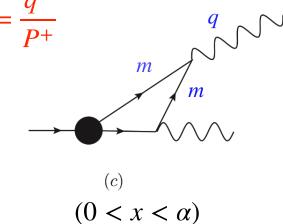
$$\langle \gamma(P-q) \, | \, J_{\rm em}^\mu \, | \, \pi^0(P) \rangle = i e^2 F_{\pi\gamma}(Q^2) \epsilon^{\mu\nu\rho\sigma} P_\nu \epsilon_\rho q_\sigma, \label{eq:gamma_phi}$$

$$q^2 = q^+ q^- - \mathbf{q}_\perp^2$$









(2) For $q^+ = P^+$ with $\mathbf{q}_{\perp} = 0$ frame $(\alpha = 1)$: timelike region, i.e. $q^2 = q^+q^- > 0$

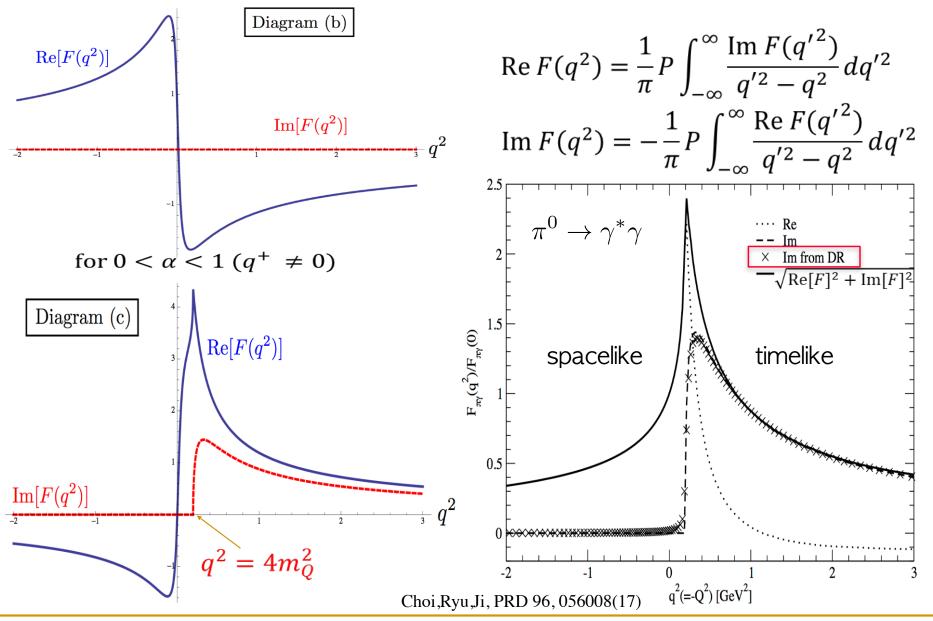
$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

Choi, Ryu, Ji, PRD 96, 056008(17)

Imaginary part starts at $q_{th}^2 = 4m^2$

e.g.) Direct vs. DR Calculations

Dispersion Relation(DR) for $F(q^2) = \text{Re } F(q^2) + i \text{Im } F(q^2)$:

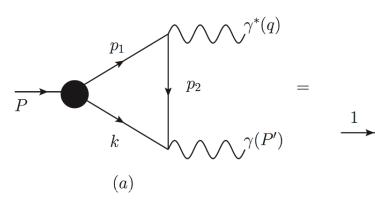


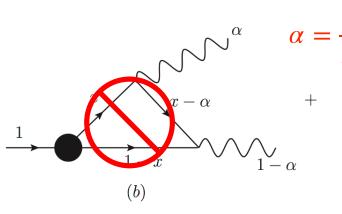
$$F_{(a)}^{Cov}(q^2) = [F_{(b)}^{LF} + F_{(c)}^{LF}]_{0 < \alpha < 1} = [F_{(b)}^{LF}]_{\alpha = 0} = [F_{(c)}^{LF}]_{\alpha = 1}$$

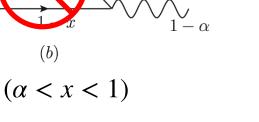
(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

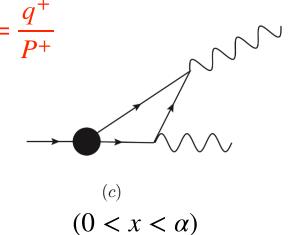
$$\langle \gamma(P-q) \, | \, J^\mu_{\rm em} \, | \, \pi^0(P) \rangle = i e^2 F_{\pi\gamma}(Q^2) \epsilon^{\mu\nu\rho\sigma} P_\nu \epsilon_\rho q_\sigma, \label{eq:gamma_phi}$$

$$q^2 = q^+ q^- - \mathbf{q}_\perp^2$$









(2) For $q^+ = P^+$ with $\mathbf{q}_{\perp} = 0$ frame $(\alpha = 1)$: timelike region, i.e. $q^2 = q^+q^- > 0$

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

Choi, Ryu, Ji, PRD 96, 056008(17)

$$Q^2 F_{\pi \gamma}(Q^2) \to \text{constant as } Q^2 \to \infty$$

(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

• TFF at $Q^2 = 0$

$$\Gamma_{\pi^0 \to \gamma\gamma} = \frac{\pi}{4} \alpha_{\rm em}^2 M_{\pi}^3 |F_{\pi\gamma}(0)|^2$$

$$F_{\pi\gamma}^{\text{exp}}(0) = 0.272(3) \text{ GeV}^{-1}$$

$$F_{\pi\gamma}^{\text{ABJ}}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}^{\text{Exp}}} \simeq 0.276 \text{ GeV}^{-1}$$

3. Application (2) $\pi^0 \to \gamma \gamma^*$ transition form factor (TFF)

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

• TFF at $Q^2 = 0$

$$\Gamma_{\pi^0 \to \gamma\gamma} = \frac{\pi}{4} \alpha_{\rm em}^2 M_{\pi}^3 |F_{\pi\gamma}(0)|^2$$

$$F_{\pi\gamma}^{\text{exp}}(0) = 0.272(3) \text{ GeV}^{-1}$$

$$F_{\pi\gamma}^{\text{ABJ}}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}^{\text{Exp}}} \simeq 0.276 \text{ GeV}^{-1}$$

$$F_{\pi\gamma}^{\text{chiral}}(0) = \frac{\sqrt{\frac{\pi^3}{32}} [\Gamma(\frac{1}{4})]^2 P_{Q\bar{Q}}}{2\sqrt{2}\pi^2 f_{\pi}^{\text{chiral}}}$$

3. Application (2) $\pi^0 \to \gamma \gamma^*$ transition form factor (TFF)

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

• TFF at $Q^2 = 0$

$$\Gamma_{\pi^0 \to \gamma \gamma} = \frac{\pi}{4} \alpha_{\rm em}^2 M_{\pi}^3 |F_{\pi \gamma}(0)|^2$$

$$F_{\pi\gamma}^{\text{exp}}(0) = 0.272(3) \text{ GeV}^{-1}$$

$$F_{\pi\gamma}^{\text{ABJ}}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}^{\text{Exp}}} \simeq 0.276 \text{ GeV}^{-1}$$

To fit both
$$(F_{\pi\gamma}^{\rm Exp}(0), f_{\pi}^{\rm Exp})$$
 $P_{Q\bar{Q}} < 0.1$ is required!

$$F_{\pi\gamma}^{\text{chiral}}(0) = \frac{\sqrt{\frac{\pi^3}{32}} [\Gamma(\frac{1}{4})]^2 P_{Q\bar{Q}}}{2\sqrt{2}\pi^2 f_{\pi}^{\text{chiral}}}$$

(2) $\pi^0 \rightarrow \gamma \gamma^*$ transition form factor (TFF)

$$F_{\pi\gamma}(q^2) = \frac{e_u^2 - e_d^2}{\sqrt{2}} \frac{\sqrt{2N_c}}{4\pi^3} \int_0^1 \frac{dx}{(1-x)} \int d^2\mathbf{k}_{\perp} \frac{\psi_{\pi}(x, \mathbf{k}_{\perp})}{M_0^2 - \mathbf{q}^2}$$

• TFF at $Q^2 = 0$

$$\Gamma_{\pi^0 \to \gamma\gamma} = \frac{\pi}{4} \alpha_{\rm em}^2 M_{\pi}^3 |F_{\pi\gamma}(0)|^2$$

$$F_{\pi\gamma}^{\text{exp}}(0) = 0.272(3) \text{ GeV}^{-1}$$

Significant higher Fock-states contribute in the chiral limit!

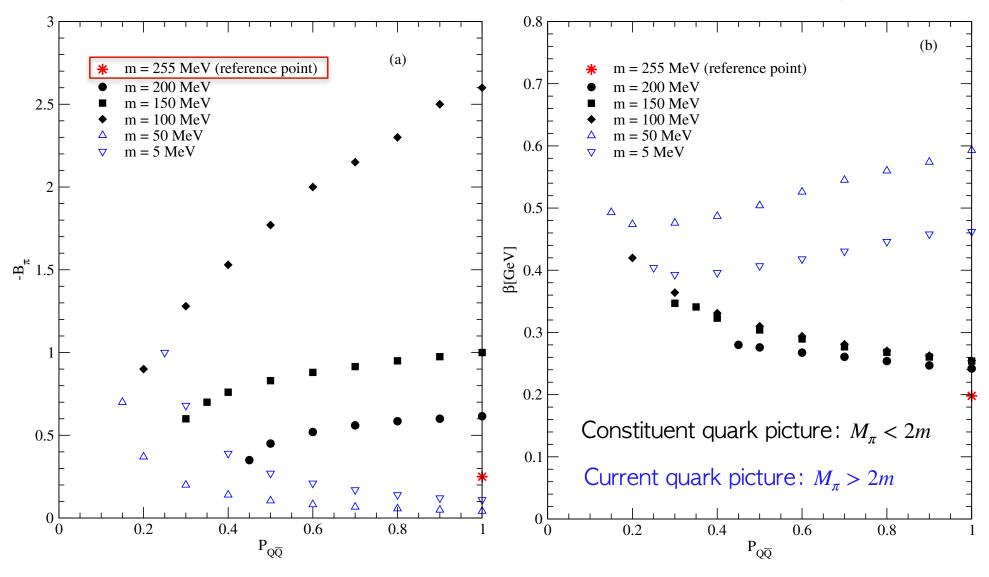
 $P_{O\bar{O}}$ increases as m increases!

$$F_{\pi\gamma}^{\text{ABJ}}(0) = \frac{1}{2\sqrt{2}\pi^2 f_{\pi}^{\text{Exp}}} \simeq 0.276 \text{ GeV}^{-1}$$

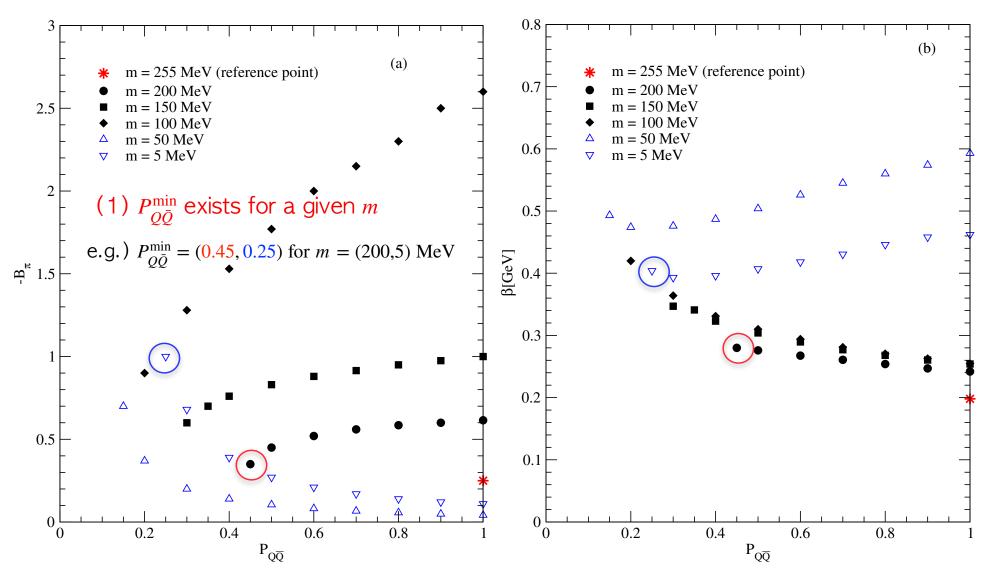
To fit both
$$(F_{\pi\gamma}^{\rm Exp}(0), f_{\pi}^{\rm Exp})$$
 $P_{Q\bar{Q}} < 0.1$ is required!

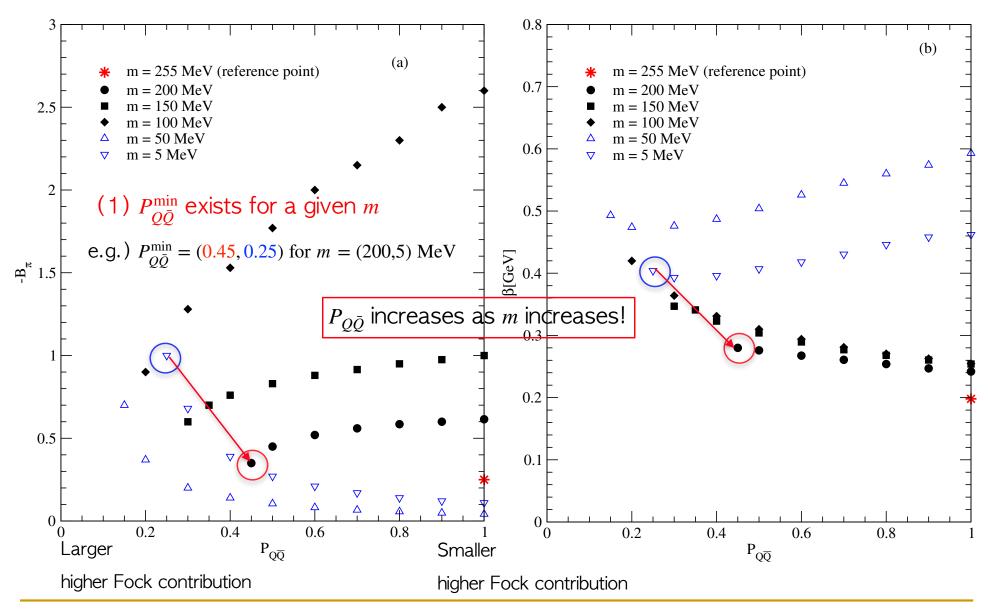
$$F_{\pi\gamma}^{\text{chiral}}(0) = \frac{\sqrt{\frac{\pi^3}{32}} [\Gamma(\frac{1}{4})]^2 P_{Q\bar{Q}}}{2\sqrt{2}\pi^2 f_{\pi}^{\text{chiral}}}$$

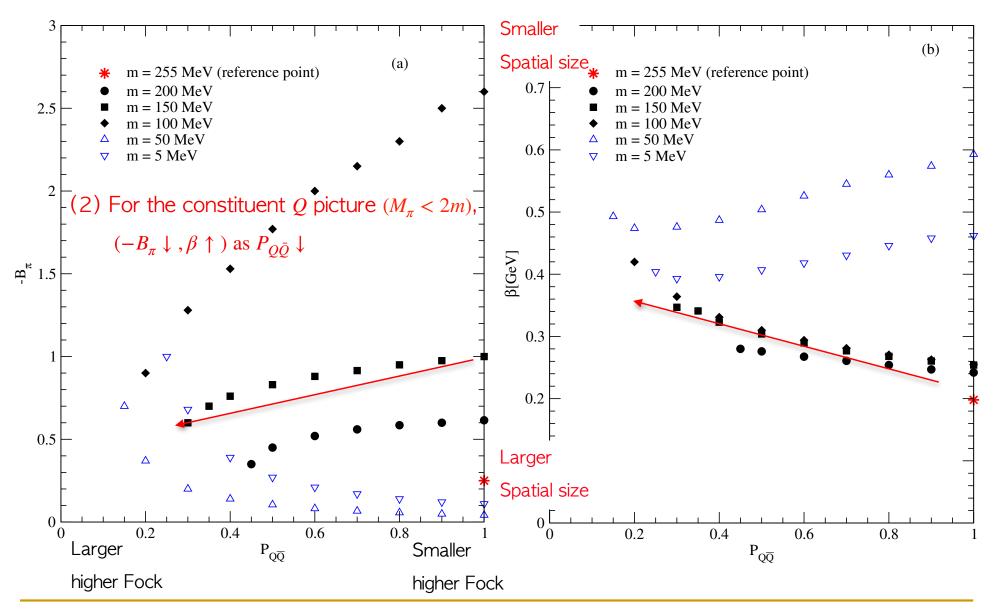
• Possible solution sets for $(-B_{\pi} \ vs \ P_{Q\bar{Q}})$ and $(\beta \ vs \ P_{Q\bar{Q}})$ satisfying both $f_{\pi}^{\rm Exp}$ and $F_{\pi\gamma}^{\rm Exp}(0)$.

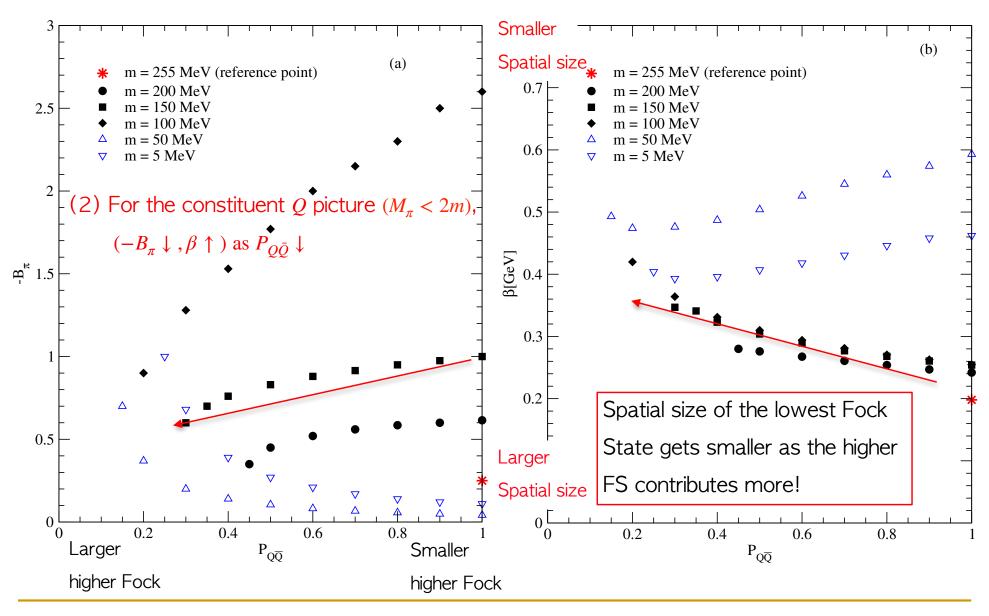


c.f.) $(M_{\pi},m)=(135,5)$ MeV satisfies the GMOR relation $M_{\pi}^2f_{\pi}^2=-2(m_q+m_{\bar q})\langle q\bar q\rangle$









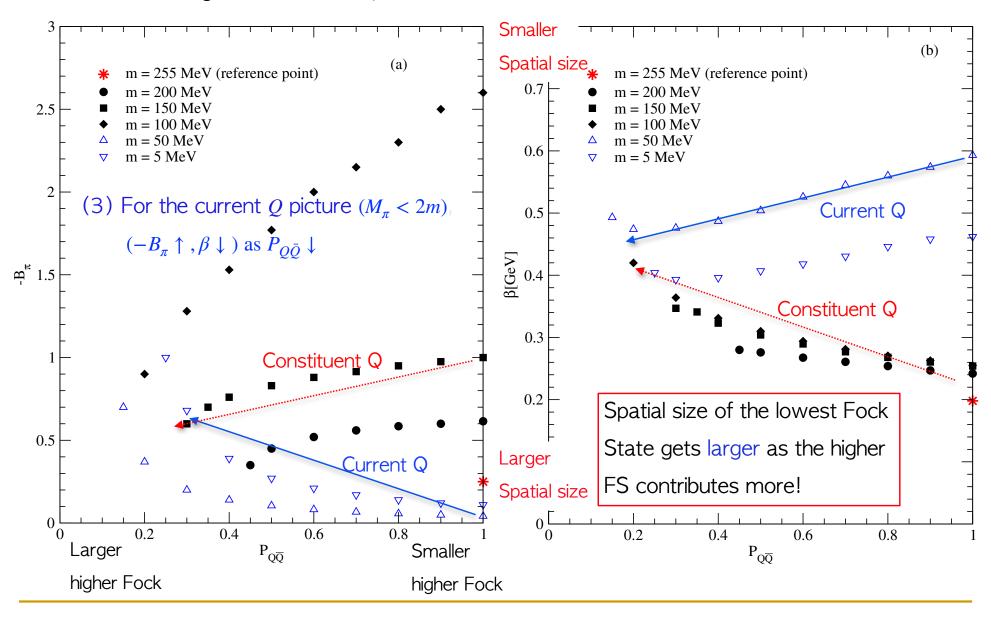
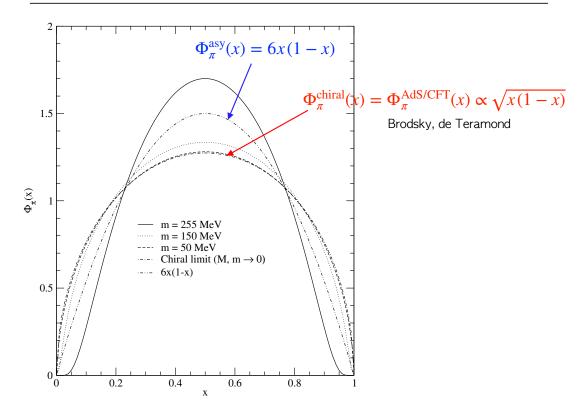


TABLE I: Model parameters (B_{π}, β) depending on the variation of (M_{π}, m) and $P_{Q\bar{Q}}$. We denote $(M_{\pi}, m, \beta, f_{\pi})$ in unit of MeV.

$\overline{(M_{\pi},m)}$	$P_{Qar{Q}}$	B_{π}	β	f_{π}^{Th}	$F_{\pi\gamma}^{\mathrm{Th}}(0) \ [\mathrm{GeV}^{-1}]$
$\overline{(135,255)}$	1	-0.25	198.0	130.4	0.271
$\overline{(135,150)}$	0.3	-0.60	346.9	130.6	0.272
(135,50)	0.15	-0.7	493.0	130.7	0.271
(0,0)	0.078	< 0	668.5	130.9	0.276
Exp. [44]	_	_		130.2(1.7)	0.272(3)



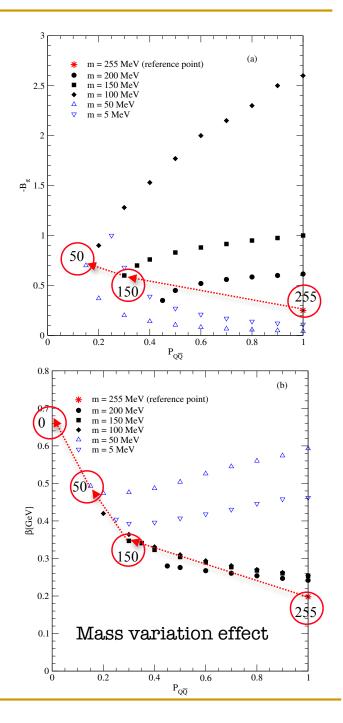
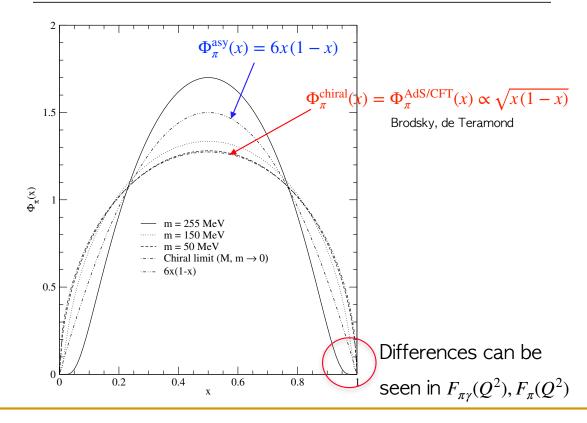
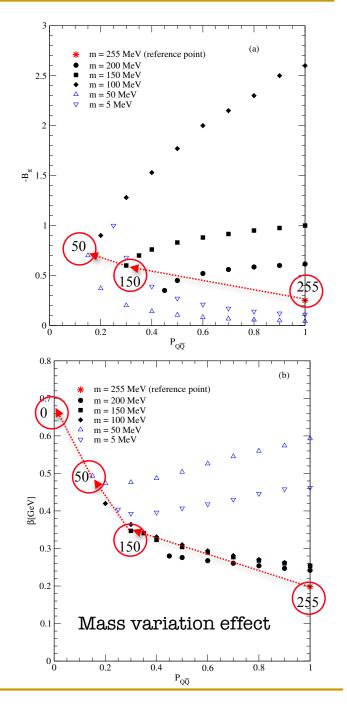


TABLE I: Model parameters (B_{π}, β) depending on the variation of (M_{π}, m) and $P_{Q\bar{Q}}$. We denote $(M_{\pi}, m, \beta, f_{\pi})$ in unit of MeV.

$\overline{(M_{\pi},m)}$	$P_{Qar{Q}}$	B_{π}	β	f_{π}^{Th}	$F_{\pi\gamma}^{\mathrm{Th}}(0) \ [\mathrm{GeV}^{-1}]$
$\overline{(135,255)}$	1	-0.25	198.0	130.4	0.271
$\overline{(135,150)}$	0.3	-0.60	346.9	130.6	0.272
(135,50)	0.15	-0.7	493.0	130.7	0.271
(0,0)	0.078	< 0	668.5	130.9	0.276
Exp. [44]	_	_		130.2(1.7)	0.272(3)





• Estimation of the quark mass variation effect on Q^2 evolution of $F_{\pi\gamma}(Q^2)$ and $F_{\pi}(Q^2)$

As a first attempt to estimate the quark mass variation effect, we use the mixing between m_{ref} and $m(< m_{\text{ref}})$ via

$$\langle \Psi_{m'}^{\pi} | \Psi_{m}^{\pi} \rangle = \delta_{m'm} \sqrt{P_{m'}P_{m}} = \delta_{m'm}P_{m}$$
 $m_{\text{ref}} = m = 255 \text{ MeV and } P_{Q\bar{Q}} = P_{m_{\text{ref}}} = 1$

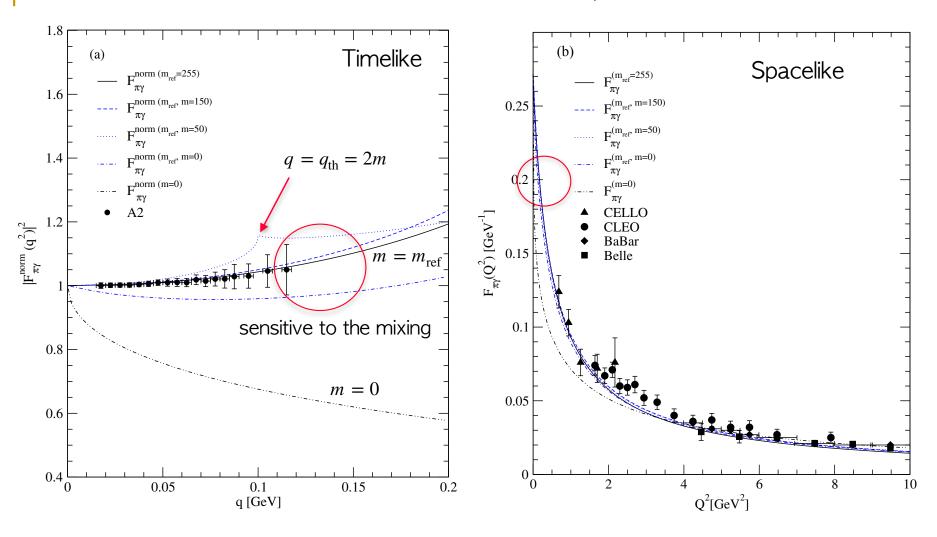
e.g.) Prescription of the mixing between $m_{\rm ref}$ and $m=150~{\rm MeV}$

$$F_{\pi\gamma}^{(m_{\rm ref},m=150)}(Q^2) = \frac{\sqrt{1-\tilde{P}_m}F_{\pi\gamma}^{(m_{\rm ref})}(Q^2) + \sqrt{\tilde{P}_m}F_{\pi\gamma}^{(m=150)}(Q^2)}{\sqrt{1-\tilde{P}_m} + \sqrt{\tilde{P}_m}}, \text{ with } F_{\pi\gamma}^{(m_{\rm ref},m)}(0) = F_{\pi\gamma}^{\rm Exp}(0).$$

$$F_{\pi}^{(m_{\text{ref}},m=150)}(Q^2) = (1 - \tilde{P}_m)F_{\pi}^{(m_{\text{ref}})}(Q^2) + \tilde{P}_mF_{\pi}^{(m=150)}(Q^2), \text{ with } F_{\pi}^{(m_{\text{ref}},m)}(0) = 1.$$

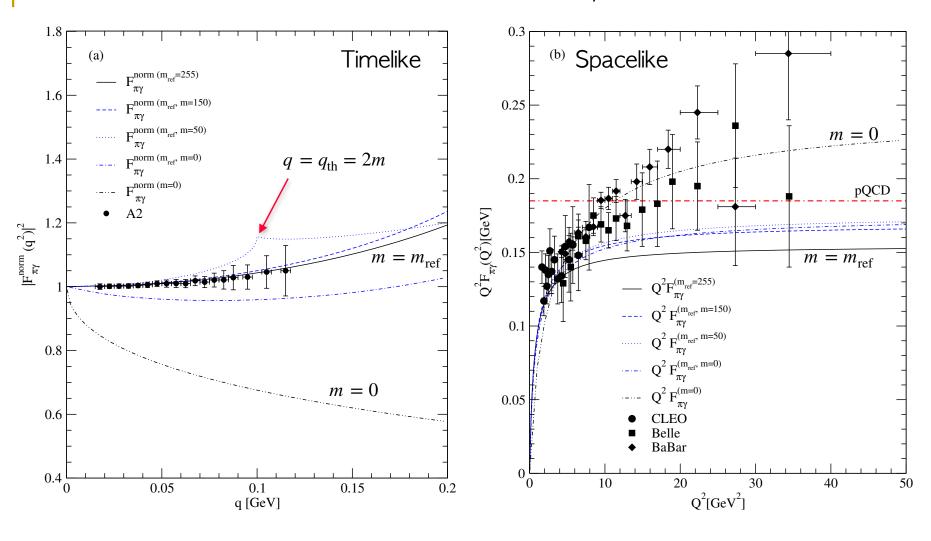
$$\tilde{P}_m = \frac{P_m}{(P_{m_{\rm ref}} + P_m)} = \frac{0.3}{1.3} \approx 0.23$$
: renormalized probability

• Quark mass variation effect on $F_{\pi\gamma}(Q^2)$



• In constraining the model parameters, the analysis in timelike region is important.

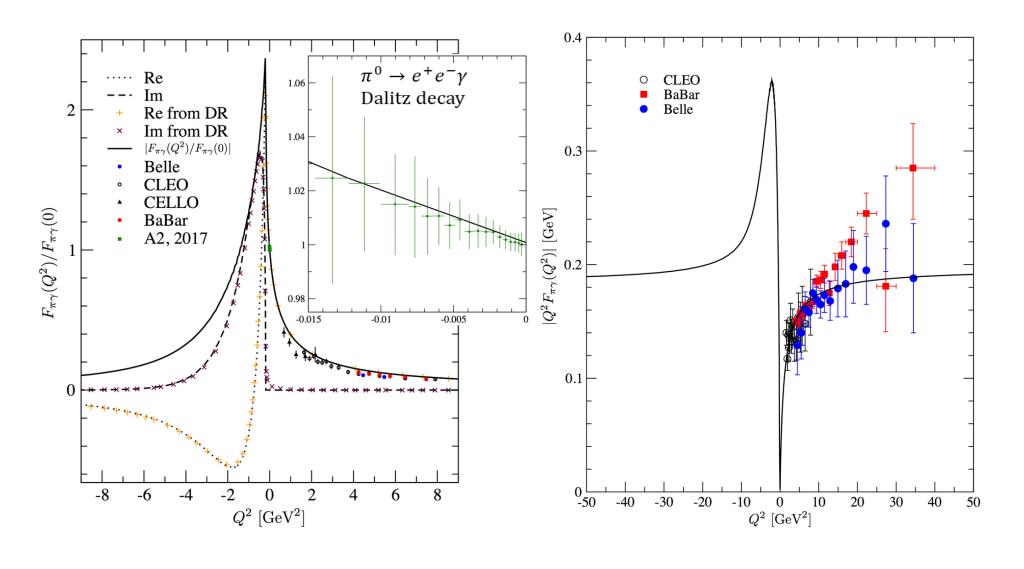
• Quark mass variation effect on $F_{\pi\gamma}(Q^2)$



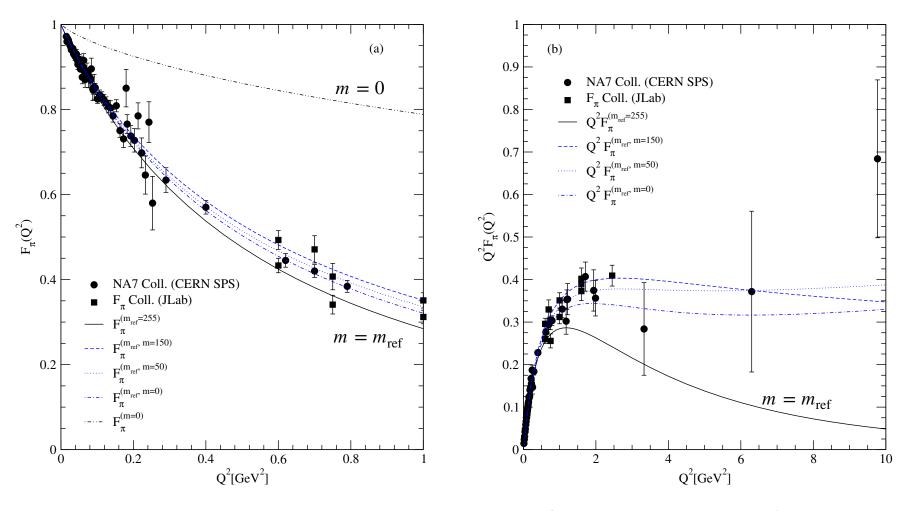
The standard LFQM prediction with the invariant mass scheme.

$$\chi_{\lambda_1\lambda_2}(x, \mathbf{k}_{\perp}) \propto \bar{u}_{\lambda_1}(k_1) \gamma_5 v_{\lambda_2}(k_2)$$

Choi, Ryu, Ji, PRD 96, 056008(17)



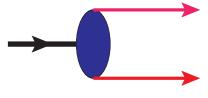
• Quark mass variation effect on $F_{\pi}(Q^2)$



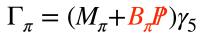
Shows the necessity of the quark mass evolution effect

5. Conclusion

• We explored the link between the chiral sym. of QCD and the numerical results of the LFQM analyzing $f_{\pi}, F_{\pi\gamma}(Q^2), F_{\pi}(Q^2)$.

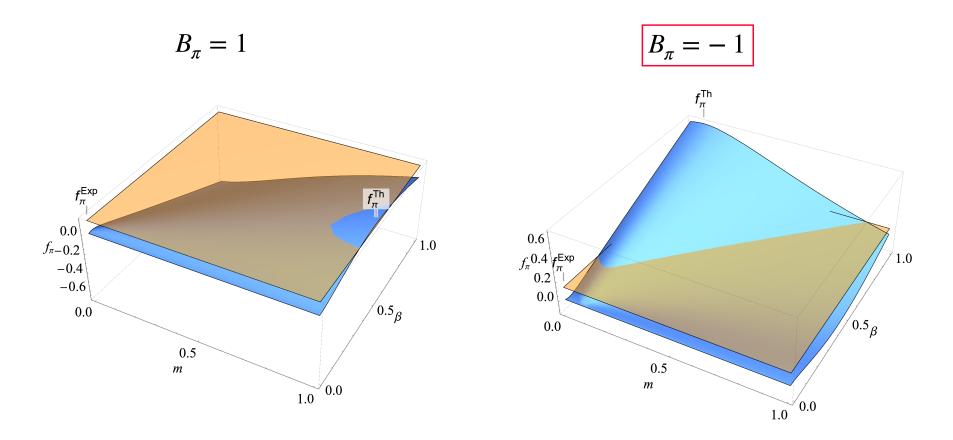


- Axial-vector coupling with $B_\pi < 0$ is essential to describe the correct chiral limit expression in the LFQM.



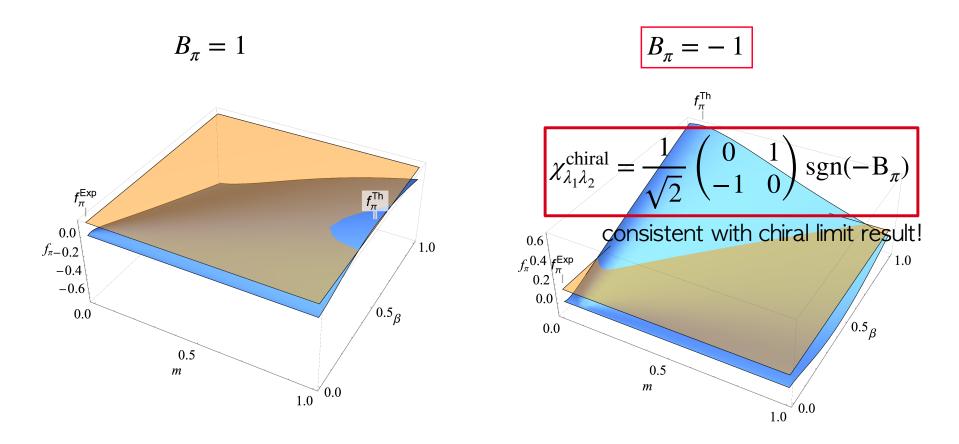
- Our chiral limit results for f_{π} and $\phi_{\pi}(x)$ are exactly the same as AdS/CFT predictions.
- In constraining the model parameters, we found that the chiral anomaly plays a critical role and the analysis of $F_{\pi\gamma}(q^2)$ in timelike region is important.
- Our results indicate that the constituent quark picture is very effective in describing both $F_{\pi\gamma}(Q^2)$, $F_{\pi}(Q^2)$ in the low energy regime, but the quark mass evolution seems inevitable as Q^2 grows.

• Check sign problem of B_{π} in $\Gamma_{\pi} = (M_{\pi} + B_{\pi} P) \gamma_5$



• Possible solution sets for (m, β) satisfying $f_{\pi}^{\text{Th}} = f_{\pi}^{\text{Exp}} = 130.2(2) \text{ MeV}$

• Check sign problem of B_{π} in $\Gamma_{\pi} = (M_{\pi} + B_{\pi} P) \gamma_5$



• Possible solution sets for (m, β) satisfying $f_{\pi}^{\text{Th}} = f_{\pi}^{\text{Exp}} = 130.2(2) \text{ MeV}$