Excited hadrons at Belle (II) experiment

Jin Li KNU

APCTP Workshop on Nuclear Physics 2022 - Li, Jin

KNU member Advertisement: Theoretical work at Kyungpook National University

H. Garcia-Tecocoatzi, A. Giachino, J. Li, A. Ramirez-Morales, E. Santopinto, "Strong decay widths and mass spectra of charmed baryons", *arXiv:2205.07049* (2022)

Calculate masses and widths of charmed baryons up to the D-wave states in a constituent quark model.

Outline

- Hadron production at Belle.
- Observation and subsequent theoretical and experimental development for the new multiple strange Ω(2012)⁻.
- Various theoretical inputs for experimental charmed baryon study.
- Future studies.

Production of baryons at lepton collider

Direct production

Resonance or fragmentation. Possible initial state radiation. Hyprons can produced. 2-phonon process for resonance production

Indirect production from cascade decays

Some of recent (< 1.3 y) hadron results from Belle (total 26)

 $e^+e^- \rightarrow \eta \phi$ via ISR (to be submitted to PRD) $\Lambda_c \rightarrow \Sigma^+ \chi$, $\Xi_c^0 \rightarrow \Xi^0 \chi$ (to be submitted to PRD) Peak structure in $\Lambda_c \rightarrow pK^-\pi^+$ (to be submitted to PRL) $\chi \chi \rightarrow \chi_{c2}(1P) \rightarrow J/\psi \chi$ (to be submitted to JHEP) $\Omega(2012) \rightarrow \Xi(1530) K$ (arXiv:2207.03090) 2-hadron correlation in e⁺e⁻ collisions (arXiv:2206.09440) New baryon $\Lambda_c(2910)$ in B decay (arXiv:2206.08822) $\equiv_c^0 \rightarrow \Lambda_c \pi^-$ (arXiv:2206.08527) Search for X(3872) $\rightarrow \pi^+\pi^-\pi^0$ (arXiv:2206.08592) Exotics in $yy \rightarrow y\psi(2S)$ (PRD 105 (2022) 112011) $\Lambda_c \rightarrow p\eta'$ (JHEP 03 (2022) 090) Search for X_{ccss} in Ds^{(*)+}Ds^{(*)+} (PRD105 (2022) 032002) $\Xi_{c}^{0} \rightarrow \Lambda K_{S}^{0}, \Sigma^{0} K_{S}^{0}, \Sigma^{+} K^{-}$ (PRD105 (2022) L011102) $e^+e^- \rightarrow Y(1,2S)\eta$, $Y(1S)\eta'$ (PRD104 (2021) 112006) $\Lambda_c \rightarrow \rho \omega$ (PRD104 (2021) 072008) Ω(2012) in $Ω_c$ decay (PRD104 (2021) 052005) Mass and width of $\Sigma_{c}^{(*)+}$ (PRD104 (2021) 052003) $\Xi_{c}^{0} \rightarrow \Xi^{-} I^{+} V_{I}, \Xi^{-} \pi^{+} (PRL127 (2021) 121803)$

Search for $\eta_{c2}(1D)$ in $e^+e^- \rightarrow \chi \eta_{c2}(1D)$ (PRD104 (2021) 012012) $Ξ_c^0 → Λ\overline{K}^{*0}, \Sigma^0\overline{K}^{*0}, \Sigma + \overline{K}^{*-}$ (JHEP 06 (2021) 160) Energy dependence of $e^+e^- \rightarrow B^{(*)}\overline{B}^{(*)}$ (JHEP 06 (2021) 137) Spin-parity measurement of $\Xi_c(2970)$ (PRD103 (2021) L111101) $\Xi_c^0 \rightarrow \Xi^0 K^+ K^-$ (PRD103 (2021) 112002) $\Lambda_c \rightarrow p\eta \text{ and } p\pi^0$ (PRD103 (2021) 072004) $\Lambda_c \rightarrow \Lambda \eta \pi^+$ decay and $\Lambda(1670)$ (PRD103 (2021) 052005) Evidence of $\gamma\gamma^* \rightarrow X(3872)$ (PRL126 (2021) 122001) ··· more past and coming ···

I am covering a tiny fraction of them (>20 hadron results per year!), colored in blue, mainly on strange baryon $\Omega(2012)$.

Future Belle II (50 × Belle Lum, better recon.)

Latest peak record: 4.65 ×10³⁴ cm⁻²s⁻¹ on June 22, 2022

Ω(2012) : example to show the importance of direct interplay between theorist and experimentalist.

Predictions of excited Ω before observation (Theory 1)

Quark Model:

K.-T. Chao, N. Isgur, and G. Karl, Phys. Rev. D 23, 155 (1981).- Non-relativistic,SU(6), predicts M(3/2⁻)=2020 MeV, Gamma=3.9 MeV, decay is EK only.
R. N. Faustov and V. O. Galkin, Strange baryon spectroscopy in the relativistic quark model,Phys. Rev. D 92, 054005 (2015). - Relativistic (2038 MeV)

Skyrme model: <u>Yongseok Oh</u>, Ξ and Ω baryons in the Skyrme model, Phys. Rev. D 75, 074002 (2007). M($\Omega(J^P:3/2^-)$)=1978 MeV

Chiral Unitarity Approach: Sourav Sarkar et al., Baryonic resonances from baryon decuplet-meson octet interaction, Nuclear Physics A 750 (2005), 294-323 – mass and width (2141 - i38) MeV Xu Si-Qi, et al., The Ξ^*K and $\Omega\eta$ Interaction Within a Chiral Unitary Approach, Commun. Theor. Phys. 65, (2016) 53 – different subtraction a(μ) in renormalization can affect mass

Observation of an excited Ω^- baryon (Theory 1 \Rightarrow Exp 1)

Narrow width can be explained with d-wave only decay $\Rightarrow J^P = 3/2^-$ preferred.

After the observation (Exp 1 => Theory 2(explanation))

Quark model:

Ming-Sheng Liu, Kai-Lei Wang, Qi-Fang Lü, and Xian-Hui Zhong, Ω baryon spectrum and their decays in a constituent quark model, Phys. Rev. D 101, 016002 (2020). - no 3 body width, $\frac{1}{2}$ – not completely ruled out.

Hadronic molecule:

R.Pavao and E.Oset, Coupled channels dynamics in the generation of the $\Omega(2012)$ resonance, Eur. Phys. J. C78, 857 (2018);arXiv:1808.01950. - $\Gamma(\overline{K}\pi\Xi)$ ~ 3MeV, similar to $\Gamma(\overline{K}\Xi)$.

Y.H.Lin and B.S.Zou,Hadronic molecular assignment for the newly observed Ω^* state,Phys. Rev. D98, 056013 (2018);arXiv:1807.00997. - $\Gamma(\overline{K}\pi\Xi) = 6 \times \Gamma(\overline{K}\Xi)$. (2.4 and 0.4 MeV)

Response of Theory 2. \Rightarrow Exp 2

S. Jia et al. (Belle Collaboration), Search for $\Omega(2012) \rightarrow K \equiv (1530) \rightarrow K \equiv \Xi$ at Belle, Phys. Rev. D 100, 032006 (2019)

$$\mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530)(\to \Xi \pi)K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\%$$

at 90% C.L.

Using theoretical relations between BF ratios:

$$\mathscr{R}^{\Xi^{-}\pi^{+}K^{-}}_{\Xi^{-}\bar{K}^{0}}:\mathscr{R}^{\Xi^{-}\pi^{0}\bar{K}^{0}}_{\Xi^{-}\bar{K}^{0}}:\mathscr{R}^{\Xi^{0}\pi^{-}\bar{K}^{0}}_{\Xi^{0}K^{-}}:\mathscr{R}^{\Xi^{0}\pi^{0}K^{-}}_{\Xi^{0}K^{-}}=1:rac{1}{2}:rac{1}{1.2}:rac{1}{2.4}$$

It seems that $\Omega^*(2012)$ Is not a molecular?

A. J. Arifi, D. Suenaga, A. Hosaka, and Y. Oh, Strong decays of multi-strangeness baryon resonances in the quark model, Phys.Rev.D 105, 094006 (2022). - Relativistic correction, 3-body decay computed, $\Gamma(\Omega \rightarrow \Xi^- K\pi)/\Gamma(\Omega \rightarrow \Xi^- K)=4.5\%$.

Yong-Hui Lin, Fei Wang, and Bing-Song Zou, Reanalysis of the newly observed Ω^* state in a hadronic molecule model, Phys. Rev. D 102, 074025 (2020). - 1/2+ or 3/2+ or $\overline{K}\Xi(1530)$ molecule.

Thomas Gutsche and Valery E Lyubovitskij, Strong decays of the hadronic molecule $\Omega_*(2012)$, J. Phys. G: Nucl. Part. Phys. 48 025001 (2021).- explain the BF ratio if big mixing between ΞK and $\Omega \eta$ component.

Natsumi Ikeno, Genaro Toledo, and Eulogio Oset, Molecular picture for the $\Omega(2012)$ revisited, Phys. Rev. D 101, 094016 (2020). - molecular picture of $\overline{K}\Xi^*$, $\eta\Omega$, $\overline{K}\Xi$ interactions.

Jun-Xu Lu, Chun-Hua Zeng, En Wang, Ju-Jun Xie & Li-Sheng Geng, Revisiting the $\Omega(2012)$ as a hadronic molecule and its strong decays, Eur. Phys. J. C 80, 361 (2020). - from the coupled channels interactions of the $\overline{K\Xi}*(1530)$ and $\eta\Omega$ in s-wave and $\overline{K\Xi}$ in d-wave.

Three couplings Unitarized scattering amplitude Loop function, diagonal $T = V + VGT = [1 - VG]^{-1}V$ Lippmann-Schwinger $ar{K}\Xi^*$ $\bar{K}\Xi$ Close to the pole: $\eta \Omega$ $V = \begin{pmatrix} 0 & 3F & \alpha q_{\text{on}}^2 \\ 3F & 0 & \beta q_{\text{on}}^2 \\ \alpha q_{\text{on}}^2 & \beta q_{\text{on}}^2 & 0 \end{pmatrix} \quad \bar{K} \Xi^*$ $z_R = M_R - i\Gamma_R/2,$ Tree level transition from chiral $T_{ij} = \frac{g_i g_j}{z - z_P}$ Lagrangians $g_i^2 = \lim_{z \to z_R} (z - z_R) T_{ii}$ $g_j = g_i \frac{T_{ij}}{T_{ii}} \Big|_{z = z_R}$ $F = -\frac{1}{4f^2} (k^0 + k'^0); \qquad q_{\rm on} = \frac{\lambda^{1/2} (s, m_{\bar{K}}^2, m_{\Xi}^2)}{2\sqrt{s}},$ Energies of \overline{K} and η

APCTP Workshop on Nuclear Physics 2022 - Li, Jin

Decay calculation

Experimental mass and width \Rightarrow determination of g_{ij} , α , β

Fitted parameters from Exp 1

(1.251, 0.063)

 $R = R_{\bar{K}\Xi}^{\bar{K}\Xi\pi}$

(-0.363, 0.082)

$q_{\rm max}$ (MeV)	$\alpha (10^{-8})$	MeV^{-3})	$\beta (10^{-8} \text{ MeV})$	(M_R, Γ_R) (M_R, Γ_R) (MeV)	R (%)
735	$-6.6\pm$	0.8	16.5 ± 0.8	(2012.3 ± 0)	0.4, 8.3 ± 0.6)	11.88
750	$-9.9\pm$	0.5	18.5 ± 0.5	(2012.2 ± 0)	$0.4, 7.8 \pm 0.8$	10.50
800	$-17.5 \pm$	0.6	20.6 ± 0.5	(2012.4 ± 0)).5, 6.4 ± 1.3)	11.90
850	$-20.2 \pm$	1.0	19.6 ± 0.8	(2012.4 ± 0.012)	$0.5, 6.4 \pm 1.1)$	9.00
900	$-20.8 \pm$	1.7	17.5 ± 1.1	(2012.4 ± 0)	0.5, 6.4 ± 1.3)	7.22
		$g_{\mathbf{G}}$	2* <i>Ř</i> Ξ*	$g_{\Omega^*\eta\Omega}$	g_{Ω^2}	* <i>Ř</i> Ξ
		(1.826	, -0.064)	(3.350, 0.159)	(-0.419,	-0.040)
Useful for furth	er	(1.796	, -0.128)	(3.448, 0.298)	(-0.399,	-0.109)
Sludy of produc		- (1.574	4, 0.188)	(3.590, -0.313)	(-0.307	', 0.201)
and decays.		(1.380	5, 0.090)	(3.777, -0.151)	(-0.353	, 0.109)

(3.853, -0.111)

Theory 3.2 \Rightarrow Theory 3.3 ($\Omega(2012)$ from Ω_c)

Chun-Hua Zeng, Jun-Xu Lu, En Wang, Ju-Jun Xie, and Li-Sheng Geng, Theoretical study of the $\Omega(2012)$ state in the $\Omega_c^0 \rightarrow \pi^+\Omega(2012)^- \rightarrow \pi^+(\overline{K}\Xi)^-$ and $\pi^+(\overline{K}\Xi\pi)^-$ decays, Phys. Rev. D 102, 076009 (2020). arXiv:2006.15547 - Suggest an experimental study of $\Omega(2012)$ in charmed baryon decays.

Decay of $\Omega_c^0 \to \pi^+(\overline{K} \equiv \pi)^-$ is from $\Omega_c^0 \to \pi^+(\overline{K} \equiv (1530)^*)^-$ at tree level from molecular model, which will not contribute to the production of the $\Omega(2012)^-$ from its three body $(\overline{K} \equiv \pi)^-$ channel.

$$R_{\bar{K}\Xi}^{\bar{K}\Xi\pi} = \frac{\Gamma[\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ \bar{K}\Xi\pi]}{\Gamma[\Omega_c^0 \to \pi^+ \Omega(2012)^- \to \pi^+ \bar{K}\Xi]}$$

TABLE II. Predicted ratio $R_{\bar{K}\Xi}^{\bar{K}\Xi\pi}$ for different cutoffs.

$\Lambda = q_{\rm max} ({\rm MeV})$	735	750	800	850	900
$R^{ar{K}\Xi\pi}_{ar{K}\Xi}(\%)$	13.9	13.8	13.5	10.0	7.3

Charmed baryon decay to $\Omega(2012)$

K_E production L=1 $\frac{d\Gamma_{\Omega_c^0 \to \pi^+ \bar{K}\Xi}}{dM_{\bar{K}\Xi}} = \frac{1}{16\pi^3} \frac{M_{\Xi}}{M_{\Omega_c^0}} p_{\pi}^3 p_{\bar{K}} \sum |\mathcal{M}_{\Omega_c^0 \to \pi^+ \bar{K}\Xi}|^2$ Constant coupling \bar{K} Ω_c^0 Coupling constants q's from coupled channel study Eur. Phys. J. C 80, 361 (2020). Ξ $\Xi^{*}(1530), \Omega$ $\mathcal{M}_{\Omega_c^0 \to \pi \bar{K} \Xi} = V_p \left(\sqrt{\frac{2}{3}} G_{\bar{K} \Xi^*}(M_{\rm inv}) t_{\bar{K} \Xi^* \to \bar{K} \Xi}(M_{\rm inv}) \right)$ $g_{\Omega^*\bar{K}\Xi^*}g_{\Omega^*\bar{K}\Xi}$ $M_{
m inv} - M_{\Omega^*} + i\Gamma_{\Omega^*}/2$ $-\sqrt{\frac{1}{3}}G_{\eta\Omega}(M_{\rm inv})t_{\eta\Omega\to\bar{K}\Xi}(M_{\rm inv})\Big),$ $g_{\Omega^*\eta\Omega}g_{\Omega^*\bar{K}\Xi}$ $\overline{M_{\rm inv}-M_{\Omega^*}}+i\Gamma_{\Omega^*}/2$

Three body production of $(K \equiv \pi)^{-}$

Invariant mass of 2 and 3 body $\Omega(2012)$ decay in Ω_c production

TABLE II: Predicted ratio $R_{\bar{K}\Xi}^{\bar{K}\Xi\pi}$ for different cutoffs.

$\Lambda = q_{ m max}({ m MeV})$	735	750	800	850	900
$R^{ar{K}\Xi\pi}_{ar{K}\Xi}(\%)$	13.9	13.8	13.5	10.0	7.3

Small peak over dominant tree level BG

Theory 3.3 \Rightarrow Exp 3: Evidence for $\Omega_c^0 \rightarrow \pi^+[\Omega(2012)^- \rightarrow \pi^+(\overline{K}\Xi)^-]$ from Belle

Phys. Rev. D 104, 052005 (2021)

Theory 4 (lineshape) \Rightarrow Experiment 4 at Belle for $\Omega(2012)$

Experiment should use the accurate lineshape instead of Breit-Wigner like:

- All decay is near-threshold.
- Intermediate b and X has finite width.

The lineshapes of $X[\Omega(2012)]$ and $b[\Xi(1530)]$ are completely distorted from the naive BW !

How to calculate them?

Fortunately, theory 4 came to rescue us.

C. HANHART, YU. S. KALASHNIKOVA, AND A. V. NEFEDIEV, Lineshapes for composite particles with unstable constituents, PHYSICAL REVIEW D 81, 094028 (2010) Much more advanced Flatte distribution.

07/14/2022

For small release energy E

$$\sum_{k \in ff} (E) = \frac{g_l}{2\pi\mu_p} \int_0^{\sqrt{2\mu_p E}} \frac{1}{2\pi\mu_p} \int_0^{\sqrt{2\mu_p E}} \frac{p^2 dp (E - \frac{p^2}{2\mu_p})^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{p^2 dp (E - \frac{p^2}{2\mu_p})^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ = \mathcal{B} \frac{1}{2\pi} \frac{g_{ab} k_{eff}(E)}{|E - E_X + \frac{1}{2}g_{ab}[\kappa_{eff}(E) + ik_{eff}(E)] + \frac{i}{2}\Gamma_0|^2} \\ \sum_{k \in ff} (E) = \kappa_1(E) + \kappa_2(E) - \kappa_1(E_X) - \kappa_2(E_X) \\ \kappa_1(E) = \frac{1}{\pi\mu_p} \int_0^{\infty} p^2 dp \\ \times \frac{E_R - E + \frac{p^2}{2\mu_p}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu_p})^2 + \frac{g_l^2}{4} (E - \frac{p^2}{2\mu_p})^{2l+1}} \\ \times \frac{(\frac{p^2}{2\mu_p} - E)^{(2l+1)/2}}{(E_R - E + \frac{p^2}{2\mu$$

"Correct" lineshapes for $\Xi \pi K$ and $\Xi \pi$ in $\Omega(2012) \rightarrow [\Xi(1530) \rightarrow \Xi \pi] K$

Weird shape with extremely long tail

Peak completely off position.

Experiment 4: Need to Revise selection and fit in Exp. 2! 70 70 Coupling constants g's (a) a 60 60 are also determined. MeV/c² Events/3 MeV/c² 50 50 40 40 Events/2 30 30 20 20 10 10 0 22 2.1 2.15 2.05 .95 2.05 21 2.2 2.15 $M(\Xi^{T}\pi^{+}K^{T})$ (GeV/c²) $M(\Xi^{\pi^+}K) GeV/c^2$ $\mathcal{R}_{\Xi K}^{\Xi \pi K} = \frac{\mathcal{B}(\Omega(2012) \to \Xi(1530) (\to \Xi \pi) K)}{\mathcal{B}(\Omega(2012) \to \Xi K)} < 11.9\%$ $\mathcal{R}^{\Xi\pi\bar{K}}_{\Xi\bar{K}} = 0.97 \pm 0.24 \pm 0.07$ I expect a new round of theory explanation. at 90% C.L.

Λ (1670) in Λ_c decay

Exp: (Belle) Phys. Rev. Lett. 117, 011801

Theory: Jung Keun Ahn, et al., PHYS. REV. D 100, 034027 (2019)

07/14/2022

APCTP Workshop on Nuclear Physics 2022 - Li, Jin

Theoretical interpretation of $\Lambda_c \to p K^- \pi^+$

Effective Lagrangians and corresponding propagators in amplitudes.

Assume same parity conserving and parity violating couplings for the hyperon resonances.

Theory projections

Solid black curve includes interference terms.

Experiment to theory for $\Lambda(1670)$ and $\Sigma(1385)^+$ in $\Lambda c \rightarrow \eta \Lambda \pi^+$?

Angular Distribution of $J^{\mathrm{P}} \rightarrow [3/2^{\scriptscriptstyle +} \rightarrow 1/2^{\scriptscriptstyle +}\pi]~\pi$

APCTP Workshop on Nuclear Physics 2022 - Li, Jin

Radiative transition of charmed baryon

- EM transitions of charmed baryons are observed only for strong decay forbidden states: $\Xi'_c \rightarrow \Xi_c \gamma$ and $\Omega_c(2770) \rightarrow \Omega_c \gamma$.
- Theoretical predictions of observable partial width (~300 keV) for decays from $\Xi_c(2790)$ and $\Xi_c(2815)$ to $\Xi_c \gamma$ (3-10 % level of BR).
- Input of EM decay measurements is crucial for interpretation of λ-ρ modes and theoretical modeling.

		WYZZ [14]	K-L. Wang, Y-X.	Yao, X-H. Zhong, and Q. Zhao, Phys. Rev. D 96, 116016 (2017
Mode	λ excitation	ho excitation	ρ excitation	Actual total width [3] Phys. Rev. D 94, 052011 (2016)
$\overline{\Xi_c(2790)^+ \to \Xi_c^+ \gamma}$	4.65	1.39	0.79	$8900 \pm 600 \pm 800$
$\Xi_c(2790)^0 \rightarrow \Xi_c^0 \gamma$	263	5.57	3.00	$10000 \pm 700 \pm 800$
$\Xi_c(2815)^+ \rightarrow \Xi_c^+ \gamma$	2.8	1.88	2.81	$2430 \pm 200 \pm 170$
$\Xi_c(2815)^0 \to \Xi_c^0 \gamma$	292	7.50	11.2	$2540 \pm 180 \pm 170$

$\Xi_c(2790)$ & $\Xi_c(2815)$ radiative decay results

Typically interpreted as an HQS doublet with orbital L=1 (λ -mode), with expected J^P = $1/2^{-}$ and $3/2^{-}$.

Clear signal for neutral channel, but not charged.

 $\frac{\mathcal{B}(\Xi_{c}(2815)^{0} \rightarrow \Xi_{c}^{0} \gamma)}{\mathcal{B}(\Xi_{c}(2815)^{0} \rightarrow \Xi_{c}(2645)^{+} \pi^{-} \rightarrow \Xi_{c}^{0} \pi^{+} \pi^{-})} = 0.45 \pm 0.05 \pm 0.03$ $\frac{\mathcal{B}(\Xi_{c}(2790)^{0} \rightarrow \Xi_{c}^{0} \gamma)}{\mathcal{B}(\Xi_{c}(2790)^{0} \rightarrow \Xi_{c}^{+} \pi^{-} \rightarrow \Xi_{c}^{+} \gamma \pi^{-})} = 0.13 \pm 0.03 \pm 0.02$

$$\begin{split} &\Gamma(\Xi_c(2815)^0 \rightarrow \Xi_c^0 \gamma) = 320 \pm 45^{+45}_{-80} \text{ keV} \\ &\Gamma(\Xi_c(2790)^0 \rightarrow \Xi_c^0 \gamma) \sim 800 \text{ keV} \text{ (uncertainty } \sim 40\% \text{)} \\ &\Gamma(\Xi_c(2815)^+ \rightarrow \Xi_c^+ \gamma) < 80 \text{ keV} \\ &\Gamma(\Xi_c(2790)^+ \rightarrow \Xi_c^+ \gamma) < 350 \text{ keV} \end{split}$$

Consistent with orbital excitation interpretation.

Phys.Rev. D 96, 116016 (2017)

Summary and Upcoming interplay

We have shown the importance of joint experimental and theoretical effort for studies on $\Omega(2012)$ -, excited hyperons in three body Λc decay,

Need Interplay between theorists and experimentalists.

- Global fits to baryon and meson spectrum. [³P₀ model for charmed baryon; light cone model for mesons]. The common bootstrap and fitting method in experiment is used. Output can guide future experimental search. [arXiv:2205.07049]
- Double charmed baryon production (ex. Λ_cΛ_c*) from e⁺e⁻; spin-parity study of excited baryon– the initial helicity of excited baryon is known, precise and powerful angular distributions.
- Theoretical predictions of masses and decay channels of exotic hadrons ex: $\Lambda_c \overline{D}^0$ and $\Sigma_c D^-$ (hidden charm pentaquark); tetraquark and pentaquark with strangeness; collaboration with Italian group at INFN.

Belle Detector and charmed baryon production.

$\Xi_c(2970)^+$ in baryon family

 ρ_{mm} : Initial spin density of $\Xi_c(2970)^*$

Formula of angular distribution (θ_h and θ_c)

$$W_{\frac{1}{2}} = constant$$

$$W_{\frac{1}{2}} = constant$$

$$W_{\frac{3}{2}} = \rho_{33} \left\{ 1 + T \left(\frac{3}{2} \cos^2 \theta_h - \frac{1}{2} \right) \right\} + \rho_{11} \left\{ 1 + T \left(-\frac{3}{2} \cos^2 \theta_h + \frac{1}{2} \right) \right\}$$

$$W_{\frac{5}{2}} = \frac{3}{32} [\rho_{55}5\{ (-\cos^4 \theta_h - 2\cos^2 \theta_h + 3) + T(-5\cos^4 \theta_h + 6\cos^2 \theta_h - 1) \}$$

$$+ \rho_{33} \{ (15\cos^4 \theta_h - 10\cos^2 \theta_h + 11) + T(75\cos^4 \theta_h - 66\cos^2 \theta_h + 7)) \}$$

$$+ \rho_{11}2\{ (-5\cos^4 \theta_h + 10\cos^2 \theta_h + 3) + T(-25\cos^4 \theta_h + 18\cos^2 \theta_h - 1) \}]$$

 $\theta_h \text{ for } J \rightarrow 3/2(\Xi_c(2645)) + 0$

Relative fraction of 3/2 polarization in $\Xi c(2645)$

	J^P of $\Xi_c(2970)^+$	Partial Wave	Expected Angular Distribution		
	$1/2^+$	Р	$1 + 3\cos\theta_c^2$		
	$1/2^{-}$	D	$1 + 3\cos\theta_c^2$		
$(2^{-}) \rightarrow \Xi_{c}(1/2^{+}) + \pi(0^{-})$	$3/2^+$	Р	$1 + 6\sin\theta_c^2$		
	$3/2^{-}$	S	1		
	$5/2^{+}$	Р	$1 + (1/3)\cos\theta_c^2$		
	$5/2^{-}$	D	$1 + (15/4)\sin\theta_c^2$		

 $\theta_c \operatorname{in} \Xi_c(2645)(3/2^-) \rightarrow \Xi_c(1/2^+) + \sigma$

- HQS doublet with brown-muck (light component) spin j=1: J=3/2 (Ξ_c (2645)) and 1/2(Ξ_c ')
- $R = \frac{\Gamma\left(\Xi_c(2970)^+ \rightarrow \Xi_c(2645)^0 \pi^+\right)}{\Gamma\left(\Xi_c(2970)^+ \rightarrow \Xi_c'^0 \pi^+\right)} \text{ is calculable:}$ • The decay rate ratio PRD 75 (2007) 014006 Parity +Suppressed due to Brown-muck spin s_{ℓ} 0 0 D-wave of $\Xi_{c}(2645)^{0}\pi^{+}$ 1.060.26R ≪1
 - Determination of Parity and s_l

Results of BR

Transitions of charmed baryons

HFLAV

Only $\Xi_c' \rightarrow \Xi_c \gamma$ and $\Omega_c(2770) \rightarrow \Omega_c \gamma$ for electromagnetic decays.