What can we learn on GPDs from lattice QCD twist-2 & twist-3

Martha Constantinou

Temple University

APCTP Focus Program in Nuclear Physics 2022: Hadron Physics Opportunities with JLab Energy and Luminosity Upgrade.

July 21, 2022

Twist-2 GPDs

- **C. Alexandrou** Univ. of Cyprus/Cyprus Institute
- K. Cichy Adam Mickiewicz University
- K. Hadjiyiannakou Cyprus Institute
- K. Jansen DESY, Zeuthen
- A. Scapellato Temple University
- F. Steffens University of Bonn

Collaborators

- S. Bhattacharya Brookhaven National Lab
- K. Cichy Adam Mickiewicz University
- Jack Dodson Temple University
- A. Metz Temple University
- A. Scapellato Temple University
- F. Steffens University of Bonn

Twist-2 GPDs

- **C. Alexandrou** Univ. of Cyprus/Cyprus Institute
- K. Cichy Adam Mickiewicz University
- K. Hadjiyiannakou Cyprus Institute
- K. Jansen DESY, Zeuthen
- A. Scapellato Temple University
- F. Steffens University of Bonn

Relevant publications

Collaborators

Twist-2 GPDs

- Unpolarized and helicity generalized parton distributions of the proton within lattice QCD
 C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens,
 PRL 125 (2020) 26, 262001, [arXiv:2008.10573]
- Transversity GPDs of the proton from lattice QCD
 C. Alexandrou, K. Cichy, M. Constantinou, K. Hadjiyiannakou, K. Jansen, A. Scapellato, F. Steffens, PRD 105 (2022) 3, 034501 [arXiv:2108.10789]

Twist-3 GPDs

• First Lattice QCD Study of Proton Twist-3 GPDs

S. Bhattacharya, K. Cichy, M. Constantinou, A. Metz, A. Scapellato, F. Steffens, PoS (LATTICE2021) 054, [arXiv:2112.05538]

- S. Bhattacharya Brookhaven National Lab
- K. Cichy Adam Mickiewicz University
- Jack Dodson Temple University
- A. Metz Temple University
- A. Scapellato Temple University
- F. Steffens University of Bonn

Generalized Parton Distributions

★ GPDs provide information on spatial distribution of partons inside the hadron, and its mechanical properties (OAM, pressure, etc.)
 [M. Burkardt, PRD62 071503 (2000), hep-ph/0005108] [M. V. Polyakov, PLB555 (2003) 57, hep-ph/0210165]

★ GPDs are not well-constrained experimentally (DVCS, DVMP):

- x-dependence extraction is challenging
- independent measurements to disentangle GPDs
- limited coverage of kinematic region
- data on certain GPDs
- indirectly related to GPDs through the Compton FFs
- GPDs phenomenology more complicated than PDFs (multi-dimensionality)

twist-3 contributions:

- Related to certain spin-orbit correlations

- \widetilde{H} + \widetilde{G}_2 related to tomography of F₁ acting on the active q in DIS off a transversely polarized N right after the virtual photon absorbing

-
$$G_2(x,\xi,t)$$
 related to L_q : $L_q = -\int_{-1}^{1} dx \, x \, G_2^q(x,\xi,t=0)$

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-classification of GPDs

$$f_i = f_i^{(0)} + \frac{f_i^{(1)}}{Q} + \frac{f_i^{(2)}}{Q^2} \cdots$$

Twist-2 $(f_i^{(0)})$									
Quark Nucleon	U (γ ⁺)	L (γ ⁺ γ ⁵)	T (σ^{+j})						
U	$\begin{array}{c} H(x,\xi,t)\\ E(x,\xi,t)\\ \text{unpolarized} \end{array}$								
L		$ \widetilde{H}(x,\xi,t) \\ \widetilde{E}(x,\xi,t) \\ \text{helicity} $							
т			$\begin{array}{c} H_T, E_T\\ \widetilde{H}_T, \widetilde{E}_T\\ \text{transversity} \end{array}$						
Prob	abilistic	interpret	ation						
U	0		Nucleon spin						
L –									
Т									

T

Twist-classification of GPDs

- Lack density interpretation, but not-negligible
- ★ Contain info on quark-gluon-quark correlators
 - Physical interpretation, e.g., transverse force
- Kinematically suppressed
 Difficult to isolate experimentally
- **★** Theoretically: contain $\delta(x)$ singularities

local operators

 $\left\langle N(P') \big| \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} \big| N(P) \right\rangle \sim \sum_{\substack{i=0 \\ \text{even}}}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \big|_{n \text{ even}} \right\}$

★ Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

 $\langle N(P_f) \, | \, \bar{\Psi}(z) \, \Gamma \, \mathcal{W}(z,0) \Psi(0) \, | \, N(P_i) \rangle_{\mu}$

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

★ Matrix elements of non-local operators (quasi-GPDs, pseudo-GPDs, ...)

$$\langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

Wilson line

$$\langle N(P')|O_V^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}H(x,\xi,t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_N}E(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_A^{\mu}(x)|N(P)\rangle = \overline{U}(P') \left\{ \gamma^{\mu}\gamma_5 \widetilde{H}(x,\xi,t) + \frac{\gamma_5\Delta^{\mu}}{2m_N}\widetilde{E}(x,\xi,t) \right\} U(P) + \text{ht},$$

$$\langle N(P')|O_T^{\mu\nu}(x)|N(P)\rangle = \overline{U}(P') \left\{ i\sigma^{\mu\nu}H_T(x,\xi,t) + \frac{\gamma^{[\mu}\Delta^{\nu]}}{2m_N}E_T(x,\xi,t) + \frac{\overline{P}^{[\mu}\Delta^{\nu]}}{m_N^2}\widetilde{H}_T(x,\xi,t) + \frac{\gamma^{[\mu}\overline{P}^{\nu]}}{m_N}\widetilde{E}_T(x,\xi,t) \right\} U(P) + \text{ht},$$

★ Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties

★ Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties
- ★ Disadvantages
 - x dependence is integrated out
 - GFFs are skewness independence
 - Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
 - Signal-to-noise ratio decays with the addition of covariant derivatives
 - Power-divergent mixing for high Mellin moments (derivatives > 3)
 - Number of GFFs increases with order of Mellin moment

★ Advantages

- Frame independence
- Several values of momentum transfer with same computational cost
- Form factors extracted with controlled statistical uncertainties
- ★ Disadvantages
 - x dependence is integrated out
 - GFFs are skewness independence
 - Geometrical twist classification (coincides with dynamical twist of scattering processes only at leading order)
 - Signal-to-noise ratio decays with the addition of covariant derivatives
 - Power-divergent mixing for high Mellin moments (derivatives > 3)
 - Number of GFFs increases with order of Mellin moment

 $\langle N(P') | \mathcal{O}_{V}^{\mu\mu_{1}\cdots\mu_{n-1}} | N(P) \rangle = \overline{U}(P') \left[\sum_{\substack{i=0 \\ \text{even}}}^{n-1} \left\{ \gamma^{\{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} A_{n,i}(t) - i \frac{\Delta_{\alpha} \sigma^{\alpha\{\mu}}{2m_{N}} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{i}} \overline{P}^{\mu_{i+1}} \cdots \overline{P}^{\mu_{n-1}\}} B_{n,i}(t) \right\} + \frac{\Delta^{\mu} \Delta^{\mu_{1}} \cdots \Delta^{\mu_{n-1}}}{m_{N}} C_{n,0}(\Delta^{2}) \Big|_{n \text{ even}} \left[U(P) \right]$

 $\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$ **Ultra-local operators (FFS)** \star $\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$ ★ PNDME19 2+1+1f 0.06fm 1.0 PNDME17 2+1+1f 0.09fm ★ PNDME19 2+1+1f 0.09fm * PNDME17 2+1+1f 0.06fm ▲ ETMC18 2+1+1f PACS18 2+1f 0.8 ▼ PACS18 2+1f HPC17 2+1f LHPC17 2+1f RQCD18 2f ETMC17 2f G_A Mainz17 2f 0.8 0.4 0.6 0.2 0.4 0.1 0.2 0.3 0.4 0.5 0.6 0 0.2 0.4 0.6 0.8 1.0 0 Q^2 (GeV²) Q^2 (GeV²)

T

'זנ'

 $\langle N(P')|\overline{q}(0)\gamma^{\mu}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}F_{1}(t) + \frac{i\sigma^{\mu\nu}\Delta_{\nu}}{2m_{N}}F_{2}(t)\right\}U(P),$ $\langle N(P')|\overline{q}(0)\gamma^{\mu}\gamma_{5}q(0)|N(P)\rangle = \overline{U}(P')\left\{\gamma^{\mu}\gamma_{5}G_{A}(t) + \frac{\gamma_{5}\Delta^{\mu}}{2m_{N}}G_{P}(t)\right\}U(P)$

- Simulations at physical point available by multiple groups
- Precision data era
- Towards control of systematic uncertainties

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

 $\star \quad \mathbf{1-derivative operators (GFFs)} \langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2}) \frac{1}{m_{N}} q^{\{\mu}q^{\nu\}} \Big] u_{N}(p,s) \\ \langle N(p',s') | \mathcal{O}_{A}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{i}{2} \Big[\tilde{A}_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2}) \frac{q^{\{\mu}P^{\nu\}}}{2m_{N}} \gamma^{5} \Big] u_{N}(p,s),$

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

 $\star \quad \mathbf{1-derivative operators (GFFs)} \langle N(p',s') | \mathcal{O}_{V}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{1}{2} \Big[A_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}} + B_{20}(q^{2}) \frac{i\sigma^{\{\mu\alpha}q_{\alpha}P^{\nu\}}}{2m_{N}} + C_{20}(q^{2}) \frac{1}{m_{N}} q^{\{\mu}q^{\nu\}} \Big] u_{N}(p,s) \\ \langle N(p',s') | \mathcal{O}_{A}^{\mu\nu} | N(p,s) \rangle = \bar{u}_{N}(p',s') \frac{i}{2} \Big[\tilde{A}_{20}(q^{2}) \gamma^{\{\mu}P^{\nu\}}\gamma^{5} + \tilde{B}_{20}(q^{2}) \frac{q^{\{\mu}P^{\nu\}}}{2m_{N}} \gamma^{5} \Big] u_{N}(p,s),$

Lesser studied compared to FFs at physical point

Decay of signal-to-noise ratio

[M. Constantinou et al. (2020 PDFLattice Report), Prog.Part.Nucl.Phys. 121 (2021) 103908, arXiv:2006.08636]

Through non-local matrix elements of fast-moving hadrons

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

$$\tilde{q}_{\Gamma}^{\text{GPD}}(x,t,\xi,P_3,\mu) = \int \frac{dz}{4\pi} e^{-ixP_3 z} \langle N(P_f) | \bar{\Psi}(z) \Gamma \mathcal{W}(z,0) \Psi(0) | N(P_i) \rangle_{\mu}$$

$$\Delta = P_f - P_i$$
$$t = \Delta^2 = -Q^2$$
$$\xi = \frac{Q_3}{2P_3}$$

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

[X. Ji, Phys. Rev. Lett. 110 (2013) 262002]

Matrix elements of nonlocal (equal-time) operators with fast moving hadrons

Contact with light-cone distributions (PDFs, GPDs, TMDs):

Contact with light-cone distributions (PDFs, GPDs, TMDs):

Contact with light-cone distributions (PDFs, GPDs, TMDs):

Contact with light-cone distributions (PDFs, GPDs, TMDs):

Contact with light-cone distributions (PDFs, GPDs, TMDs):

Contact with light-cone distributions (PDFs, GPDs, TMDs):

$$C^{2pt} = \langle N | N \rangle \qquad C^{3pt} = \langle N | \overline{\psi}(z) \Gamma \mathscr{A}(z,0) \psi(0) | N \rangle$$

$$R_{\Gamma}(\mathcal{P}_{\kappa}, \mathbf{P_{f}}, \mathbf{P_{i}}; t, \tau) = \frac{C_{\Gamma}^{3pt}(\mathcal{P}_{\kappa}, \mathbf{P_{f}}, \mathbf{P_{i}}; t, \tau)}{C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{f}}; t)} \times \sqrt{\frac{C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{i}}; t - \tau)C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{f}}; \tau)C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{f}}; t)}{C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{f}}; t - \tau)C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{i}}; \tau)C^{2pt}(\mathcal{P}_{0}, \mathbf{P_{i}}; t)}} \xrightarrow{t \to a} h_{\mathcal{O}, \mathcal{P}}(z, t, \xi, P_{3})$$

 $h^{R}_{\mathcal{O},\mathcal{P}}(z,t,\xi,P_{3},\mu) = Z_{\mathcal{O}}(z,\mu) h_{\mathcal{O},\mathcal{P}}(z,t,\xi,P_{3})$

[M. Constantinou, H. Panagopoulos, Phys. Rev. D96, 054506 (2017), arXiv:1705.11193]

$$h_{\gamma^{\mu}\gamma^{5},\mathscr{P}}^{R}(z,t,\xi,P_{3},\mu) = = \langle \langle \gamma_{\mu} \rangle \rangle F_{H}(z,P_{3},t,\xi) - i \frac{\langle \langle \sigma_{\rho\,\mu} \rangle \rangle Q_{\rho}}{2m} F_{E}(z,P_{3},t,\xi)$$

$$h_{\gamma^{\mu}\gamma^{5},\mathscr{P}}^{R}(z,t,\xi,P_{3},\mu) = \langle \langle \gamma_{\mu}\gamma_{5} \rangle \rangle F_{\widetilde{H}}(z,P_{3},t,\xi) - i \langle \langle \gamma_{5} \rangle \rangle \frac{Q_{\mu}}{2m} F_{\widetilde{E}}(z,P_{3},t,\xi)$$

T

$$H_q(x, t, \xi, \mu, P_3) = \int \frac{dz}{4\pi} e^{-ixP_3 z} F_H(z, P_3, t, \xi, \mu)$$

In this work: Backus-Gilbert

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

Proton Momentum:

P_3 [GeV]	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
0.83	$(0,\!2,\!0)$	0.69	0	519	4152
1.25	$(0,\!2,\!0)$	0.69	0	1315	42080
1.67	$(0,\!2,\!0)$	0.69	0	1753	112192
1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
1.25	$(0,\!2,\!-2)$	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star	Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
		0.83	$(0,\!2,\!0)$	0.69	0	519	4152
	zero skewness	1.25	$(0,\!2,\!0)$	0.69	0	1315	42080
		1.67	$(0,\!2,\!0)$	0.69	0	1753	112192
		1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
		1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star	Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
		0.83	(0,2,0)	0.69	0	519	4152
	zero skewness	1.25	(0,2,0)	0.69	0	1315	42080
		1.67	(0,2,0)	0.69	0	1753	112192
		1.25	$(0,\!2,\!2)$	1.39	1/3	417	40032
		1.25	(0,2,-2)	1.39	-1/3	417	40032

★ Nf=2+1+1 twisted mass (TM) fermions & clover term

Pion mass:	260 MeV
Lattice spacing:	0.093 fm
Volume:	32³ x 64
Spatial extent:	3 fm

\star	Proton Momentum:	$P_3 \; [{ m GeV}]$	$ec{Q} imes rac{L}{2\pi}$	$-t \; [{ m GeV}^2]$	ξ	$N_{ m confs}$	$N_{ m meas}$
		0.83	(0,2,0)	0.69	0	519	4152
	zero skewness	1.25	(0,2,0)	0.69	0	1315	42080
		1.67	(0,2,0)	0.69	0	1753	112192
	nonzero	1 .25	$(0,\!2,\!2)$	1.39	1/3	417	40032
	skewness	1.25	$(0,\!2,\!-2)$	1.39	-1/3	417	40032

$$\Pi_{\gamma^{0}}(\mathcal{P}_{0}; P_{f}, P_{i}) = C \left[F_{H}(Q^{2}) \left(\frac{E_{f}E_{i}}{2m^{2}} + \frac{E_{f} + E_{i}}{4m} + \frac{P_{f\rho}P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) + F_{E}(Q^{2}) \left(P_{f\rho}P_{i\rho} \left(\frac{E_{f} + E_{i}}{8m^{3}} + \frac{1}{4m^{2}} \right) - \frac{(E_{f} - E_{i})^{2}}{8m^{2}} + \frac{E_{f} + E_{i}}{8m} + \frac{1}{4} \right) \right],$$

$$\Pi_{\gamma^{0}}(\mathcal{P}_{j}; P_{f}, P_{i}) = i \epsilon_{j \, 0 \, \rho \, \tau} C \left[F_{H}(Q^{2}) \frac{P_{f \, \rho} P_{i \tau}}{4m^{2}} + F_{E}(Q^{2}) \left(\frac{(E_{f} + E_{i}) P_{f \, \rho} P_{i \tau}}{8m^{3}} + \frac{P_{f \, \rho} P_{i \tau} - P_{f \, \tau} P_{i \rho}}{8m^{2}} \right) \right],$$

$$\begin{split} \Pi_{\gamma^{3}\gamma^{5}}(\mathcal{P}_{j};P_{f},P_{i}) &= i C \left[F_{\widetilde{H}}(Q^{2}) \left(\delta_{j3} \left(\frac{E_{f}+E_{i}}{4m} - \frac{P_{f\rho} P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) + \frac{P_{i3} P_{fj} + P_{f3} P_{ij}}{4m^{2}} \right) \\ &- F_{\widetilde{E}}(Q^{2}) \frac{(P_{f3}-P_{i3})(-E_{f}P_{ij} + E_{i}P_{fj} + m(P_{fj} - P_{ij}))}{8m^{3}} \right], \end{split}$$

$$\begin{aligned} \Pi_{\gamma^{0}}(\mathcal{P}_{0};P_{f},P_{i}) \ &= \ C \left[F_{H}(Q^{2}) \left(\frac{E_{f}E_{i}}{2m^{2}} + \frac{E_{f} + E_{i}}{4m} + \frac{P_{f_{\rho}}P_{i_{\rho}}}{4m^{2}} + \frac{1}{4} \right) \\ &+ F_{E}(Q^{2}) \left(P_{f_{\rho}}P_{i_{\rho}} \left(\frac{E_{f} + E_{i}}{8m^{3}} + \frac{1}{4m^{2}} \right) - \frac{(E_{f} - E_{i})^{2}}{8m^{2}} + \frac{E_{f} + E_{i}}{8m} + \frac{1}{4} \right) \right], \\ \Pi_{\gamma^{0}}(\mathcal{P}_{j};P_{f},P_{i}) \ &= \ i \epsilon_{j \ 0 \ \rho \ \tau} C \left[F_{H}(Q^{2}) \frac{P_{f_{\rho}}P_{i_{\tau}}}{4m^{2}} + F_{E}(Q^{2}) \left(\frac{(E_{f} + E_{i})P_{f_{\rho}}P_{i_{\tau}}}{8m^{3}} + \frac{P_{f_{\rho}}P_{i_{\tau}} - P_{f_{\tau}}P_{i_{\rho}}}{8m^{2}} \right) \right], \\ \Pi_{\gamma^{3}\gamma^{5}}(\mathcal{P}_{j};P_{f},P_{i}) \ &= \ i C \left[F_{\overline{H}}(Q^{2}) \left(\delta_{j3} \left(\frac{E_{f} + E_{i}}{4m} - \frac{P_{f_{\rho}}P_{i_{\rho}}}{4m^{2}} + \frac{1}{4} \right) + \frac{P_{i3} \ P_{f_{j}} + P_{f_{3}} \ P_{i_{j}}}{4m^{2}} \right) \\ &- F_{\overline{E}}(Q^{2}) \frac{(P_{f_{3}} - P_{i_{3}})(-E_{f}P_{i_{j}} + E_{i}P_{f_{j}} + m(P_{f_{j}} - P_{i_{j}}))}{8m^{3}} \right], \end{aligned}$$

$$\begin{aligned} \Pi_{\gamma^{0}}(\mathcal{P}_{0};P_{f},P_{i}) &= C \left[F_{H}(Q^{2}) \left(\frac{E_{f}E_{i}}{2m^{2}} + \frac{E_{f} + E_{i}}{4m} + \frac{P_{f\rho}P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) \\ &+ F_{E}(Q^{2}) \left(P_{f\rho}P_{i\rho} \left(\frac{E_{f} + E_{i}}{8m^{3}} + \frac{1}{4m^{2}} \right) - \frac{(E_{f} - E_{i})^{2}}{8m^{2}} + \frac{E_{f} + E_{i}}{8m} + \frac{1}{4} \right) \right], \\ \Pi_{\gamma^{0}}(\mathcal{P}_{j};P_{f},P_{i}) &= i \epsilon_{j \ 0 \ \rho \ \tau} C \left[F_{H}(Q^{2}) \frac{P_{f\rho}P_{i\tau}}{4m^{2}} + F_{E}(Q^{2}) \left(\frac{(E_{f} + E_{i})P_{f\rho}P_{i\tau}}{8m^{3}} + \frac{P_{f\rho}P_{i\tau} - P_{f\tau}P_{i\rho}}{8m^{2}} \right) \right], \\ \Pi_{\gamma^{3}\gamma^{5}}(\mathcal{P}_{j};P_{f},P_{i}) &= i C \left[F_{\overline{H}}(Q^{2}) \left(\delta_{j3} \left(\frac{E_{f} + E_{i}}{4m} - \frac{P_{f\rho}P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) + \frac{P_{i3} P_{fj} + P_{f3} P_{ij}}{4m^{2}} \right) \\ &- F_{\overline{E}}(Q^{2}) \frac{(P_{f3} - P_{i3})(-E_{f}P_{ij} + E_{i}P_{fj} + m(P_{fj} - P_{ij}))}{8m^{3}} \right], \end{aligned}$$

$$\begin{aligned} \Pi_{\gamma^{0}}(\mathcal{P}_{0};P_{f},P_{i}) &= C \bigg[F_{H}(Q^{2}) \left(\frac{E_{f}E_{i}}{2m^{2}} + \frac{E_{f} + E_{i}}{4m} + \frac{P_{f\rho}P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) \\ &+ F_{E}(Q^{2}) \left(P_{f\rho}P_{i\rho} \left(\frac{E_{f} + E_{i}}{8m^{3}} + \frac{1}{4m^{2}} \right) - \frac{(E_{f} - E_{i})^{2}}{8m^{2}} + \frac{E_{f} + E_{i}}{8m} + \frac{1}{4} \right) \bigg], \\ \Pi_{\gamma^{0}}(\mathcal{P}_{j};P_{f},P_{i}) &= i \epsilon_{j \ 0 \ \rho \ \tau} C \bigg[F_{H}(Q^{2}) \frac{P_{f\rho}P_{i\tau}}{4m^{2}} + F_{E}(Q^{2}) \left(\frac{(E_{f} + E_{i})P_{f\rho}P_{i\tau}}{8m^{3}} + \frac{P_{f\rho}P_{i\tau} - P_{f\tau}P_{i\rho}}{8m^{2}} \right) \bigg] \\ \\ \Pi_{\gamma^{3}\gamma^{5}}(\mathcal{P}_{j};P_{f},P_{i}) &= i C \bigg[F_{\tilde{H}}(Q^{2}) \left(\delta_{j3} \left(\frac{E_{f} + E_{i}}{4m} - \frac{P_{f\rho}P_{i\rho}}{4m^{2}} + \frac{1}{4} \right) + \frac{P_{i3} P_{fj} + P_{f3} P_{ij}}{4m^{2}} \right) \\ &- F_{\tilde{E}}(Q^{2}) \frac{(P_{f_{3}} - P_{i3})(-E_{f}P_{ij} + E_{i}P_{fj} + m(P_{fj} - P_{ij})))}{8m^{3}} \bigg], \end{aligned}$$

- Kinematic factors defined by calculation setup
- Decomposition similar to the decomposition of form factors
- Zero skewness: $F_{\tilde{E}}(Q^2)$ inaccessible

Example: Matrix elements for unpolarized GPDs

★ Statistics compared to 0.83 GeV: x10 (1.25 GeV), x30 (1.78 GeV)
 ★ P₃ = 1.78 GeV : similar contributions from both matrix elements
 ★ P₃ - dependence non-negligible and can propagate to GPDs

"כן

- **★** ERBL/DGLAP: Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*
 - H(x,0) asymptotically equal to $f_1(x)$

- **★** ERBL/DGLAP: Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*

•
$$H(x,0)$$
 asymptotically equal to $f_1(x)$

"כר

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*

•
$$H(x,0)$$
 asymptotically equal to $f_1(x)$

"כר

- **ERBL/DGLAP:** Qualitative differences
- $\star \ \xi = \pm x \text{ inaccessible}$ (formalism breaks down)
- ★ $x \rightarrow 1$ region: qualitatively comparison with power counting analysis [F. Yuan, PRD69 (2004) 051501, hep-ph/0311288]
 - *t*-dependence vanishes at large-*x*

•
$$H(x,0)$$
 asymptotically equal to $f_1(x)$

What can we currently learn from lattice results?

What can we currently learn from lattice results?

★ Qualitative understanding of GPDs and their relations

★ Qualitative understanding of ERBL and DGLAP regions

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

 Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

Sum rules exist
for quasi-GPDs

[S. Bhattacharya et al., PRD 102, 054021 (2020)]

17

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t)$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

,

★ Sum rules exist for quasi-GPDs $\int_{-1}^{1} dx \hat{B}$ [S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5),$$

$$\int_{-1}^{1} dx \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx \, x \, H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx \, x \, H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

 $A_{T10}(-0.69 \,\mathrm{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\},\$

$$A_{T10}(-1.02\,\mathrm{GeV}^2) = 0.49(5)$$

 ★ Understanding of systematic effects through sum rules

$$\int_{-1}^{1} dx \, H_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, H_{Tq}(x,\xi,t,P_3) = A_{T10}(t)$$

$$\int_{-1}^{1} dx \, E_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, E_{Tq}(x,\xi,t,P_3) = B_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{H}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{H}_{Tq}(x,\xi,t,P_3) = \widetilde{A}_{T10}(t) \,,$$

$$\int_{-1}^{1} dx \, \widetilde{E}_T(x,\xi,t) = \int_{-\infty}^{\infty} dx \, \widetilde{E}_{Tq}(x,\xi,t,P_3) = 0 \, .$$

$$\int_{-1}^{1} dx \, x \, H_T(x,\xi,t) = A_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, E_T(x,\xi,t) = B_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{H}_T(x,\xi,t) = \widetilde{A}_{T20}(t) \,,$$
$$\int_{-1}^{1} dx \, x \, \widetilde{E}_T(x,\xi,t) = 2\xi \widetilde{B}_{T21}(t) \,.$$

★ Sum rules exist for quasi-GPDs [S. Bhattacharya et al., PRD 102, 054021 (2020)]

★ Lattice data on transversity GPDs

$$\int_{-2}^{2} dx H_{Tq}(x, 0, -0.69 \,\text{GeV}^2, P_3) = \{0.65(4), 0.64(6), 0.81(10)\}, \quad \int_{-2}^{2} dx H_{Tq}(x, \frac{1}{3}, -1.02 \,\text{GeV}^2, 1.25 \,\text{GeV}) = 0.49(5)$$

$$\int_{-1}^{1} dx H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.69(4), 0.67(6), 0.84(10)\}, \quad \int_{-1}^{1} dx H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.45(4),$$

$$\int_{-1}^{1} dx x H_T(x, 0, -0.69 \,\text{GeV}^2) = \{0.20(2), 0.21(2), 0.24(3)\}, \quad \int_{-1}^{1} dx x H_T(x, \frac{1}{3}, -1.02 \,\text{GeV}^2) = 0.15(2).$$

$$A_{T10}(-0.69 \,\text{GeV}^2) = \{0.65(4), 0.65(6), 0.82(10)\}, \quad A_{T10}(-1.02 \,\text{GeV}^2) = 0.49(5)$$

lowest moments the same between quasi-GPDs and GPDs
Values of moments decrease as *t* increases

- Higher moments suppressed compared to the lowest

Twist-3 GPDs

Twist-3 GPDs ($\gamma^{\mu}\gamma^{5}$ **)**

Transverse matrix element of axial operator

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372]

[F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Twist-3 GPDs ($\gamma^{\mu}\gamma^{5}$ **)**

★ Transverse matrix element of axial operator

$$\begin{split} \widetilde{F}^{\mu} &= P^{\mu} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{H} + P^{\mu} \frac{\widetilde{e}^{+}}{P^{+}} \widetilde{E} \\ &+ \Delta^{\mu}_{\perp} \frac{\widetilde{b}}{2m} \left(\widetilde{E} + \widetilde{G}_{1} \right) + \widetilde{h}^{\mu}_{\perp} \left(\widetilde{H} + \widetilde{G}_{2} \right) + \Delta^{\mu}_{\perp} \frac{\widetilde{h}^{+}}{P^{+}} \widetilde{G}_{3} + \widetilde{\Delta}^{\mu}_{\perp} \frac{h^{+}}{P^{+}} \widetilde{G}_{4} \end{split} \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') u(p), \qquad b = \overline{u}(p') v_{5} u(p), \qquad \widetilde{u} = \overline{u}(p') \gamma^{\mu} v_{5} u(p), \qquad \widetilde{u} = \overline{u}(p') \gamma^{\mu} v_{5} u(p), \qquad \widetilde{u} = \overline{u}(p') v_{5} u(p), \qquad \widetilde{u} = \overline{u}(p')$$

[D. Kiptily and M. Polyakov, Eur. Phys. J. C37 (2004) 105, arXiv:hep-ph/0212372] [F. Aslan et a., Phys. Rev. D 98, 014038 (2018), arXiv:1802.06243]

Sum Rules (generalization of Burkhardt-Cottingham)

$$\int_{-1}^{1} dx \ \widetilde{G}_{i}(x,\xi,t) = 0$$

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997), hep-ph/9603249]

Sum Rules (generalization of Efremov-Leader-Teryaev)

[A. Efremov, O. Teryaev , E. Leader, PRD 55 (1997) 4307, hep-ph/9607217]

$$\int_{-1}^{1} dx \, x \, \widetilde{G}_{1}(x,0,t) = \frac{1}{2} \left[F_{2}(t) - \int_{-1}^{1} dx \, x \, \widetilde{E}(x,0,t) \right], \qquad \int_{-1}^{1} dx \, x \, \widetilde{G}_{2}(x,0,t) = \frac{1}{2} \left[-\frac{t}{4m^{2}} F_{2}(t) - \widetilde{A}_{20}(t) \right],$$

$$\int_{-1}^{1} dx \, x \, \widetilde{G}_{3}(x,0,t) = 0 \qquad \int_{-1}^{1} dx \, x \, \widetilde{G}_{4}(x,0,t) = \frac{1}{4} G_{E}(t) \qquad \boxed{F_{2}: \text{Pauli FF}}_{\begin{array}{c} G_{E}: \text{ electric FF} \\ \widetilde{A}_{20}, \ \widetilde{B}_{20}: \text{ axial GFFs} \end{array}$$

Bare matrix elements (ME)

- $\bigstar \Pi(\gamma^2 \gamma^5, \Gamma_0) \& \Pi(\gamma^2 \gamma^5, \Gamma_2):$ disentangle $\widetilde{H} + \widetilde{G}_2, \ \widetilde{G}_4$
- $\bigstar \quad \Pi(\gamma^1 \gamma^5, \Gamma_1) \text{ and } \widetilde{H} + \widetilde{G}_2:$ disentangle $\widetilde{E} + \widetilde{G}_1$
- $\bigstar \Pi(\gamma^1\gamma^5,\Gamma_3)$ gives \widetilde{G}_3

- **\star** Similar picture for P₃ = 1.25 GeV
- **★** Real part of ME: dominant
- \bigstar \widetilde{G}_3 is kinematically suppressed

x-dependence of twist-3 GPDs

Concluding Remarks

- ★ Computationally expensive calculation multi-dimensionality
- ★ Promising results on *x*-dependence of proton GPDs signal comparable to PDFs
- ★ Sources of systematic uncertainties need to be addressed volume effects, continuum limit, pion mass dependence, ...
- ★ Exploration beyond leading twist is feasible
- ★ Synergy with phenomenology is anticipated

Concluding Remarks

- ★ Computationally expensive calculation multi-dimensionality
- ★ Promising results on *x*-dependence of proton GPDs signal comparable to PDFs
- ★ Sources of systematic uncertainties need to be addressed volume effects, continuum limit, pion mass dependence, ...
- ★ Exploration beyond leading twist is feasible
- ★ Synergy with phenomenology is anticipated

DOE Early Career Award (NP) Grant No. DE-SC0020405