Transverse-Momentum-Dependent Proton Structures from Lattice QCD

APCTP Focus Program in Nuclear Physics 2022: Hadron Physics Opportunities with JLab Energy and Luminosity Upgrade APCTP, Korea, Jul. 18-23, 2022

> YONG ZHAO JUL 19, 2022

Outline

TMDs in the non-perturbative region

Quasi-TMDs in Large-Momentum Effective Theory

Lattice calculations

Outlook

Outline

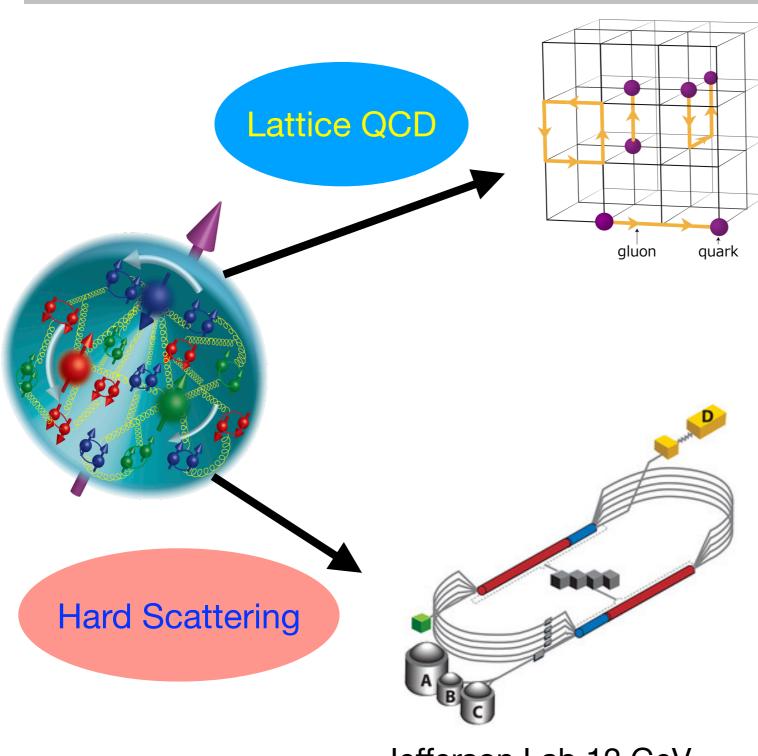
TMDs in the non-perturbative region

Quasi-TMDs in Large-Momentum Effective Theory

Lattice calculations

Outlook

3D Tomography of the Proton

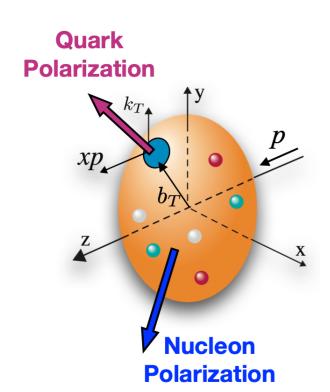




The Electron-Ion Collider

3D Tomography of the Proton

Leading Quark TMDPDFs

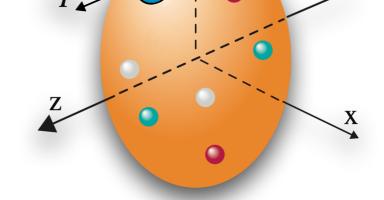


			Quark Polarization				
			Un-Polarized (U)	Longitudinally Polarized (L)	Transversely Polarized (T)		
2	lion	U	f_1 = • Unpolarized		$h_1^{\perp} = \bigcirc - \bigcirc \bigcirc$ Boer-Mulders		
	Polarization	L		$g_1 = \longrightarrow - \longrightarrow$ Helicity	$h_{1L}^{\perp} = \longrightarrow - \longrightarrow$ Worm-gear		
	Nucieon	т	$f_{1T}^{\perp} = \bullet - \bullet$ Sivers	$g_{1T}^{\perp} = -$ Worm-gear	$h_1 = \begin{array}{c} \uparrow \\ \hline h_{1T} = \begin{array}{c} \uparrow \\ \hline \end{array}$		

From TMD Handbook, TMD Topical Collaboration, to appear soon.

Nucleon Polarization

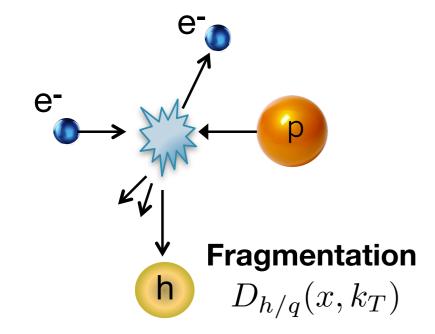
TMDs from experiments)



TMD processes:

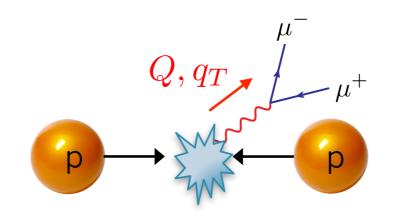
Semi-Inclusive DIS

$$\sigma \sim f_{q/P}(x, k_T) D_{h/q}(x, k_T) \quad \sigma \sim f_{q/P}(x, k_T) f_{q/P}(x, k_T)$$



Drell-Yan

$$\sigma \sim f_{q/P}(x, k_T) f_{q/P}(x, k_T)$$



$$q_T \ll Q$$

- There are eight TMD distributions in leading twist
- TMD distributions p $^{D_{h_2/q}(x,k_T)}D_{h_2/q}(x,k_T)$ more detailed picture the many body parton s....ure of the hadron
- Interplay with the transverse momentum

HERMES, COMPASS, JLab, EIC, ...

Fermilab, RHIC, LHC, ...

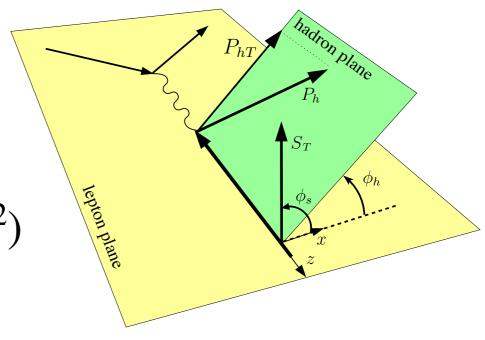
Babar, Belle, BESIII, ...

TMDs from global analyses

Semi-inclusive deep inelastic scattering: $l + p \longrightarrow l + h(P_h) + X$

$$\frac{d\sigma^W}{dxdydz_hd^2\mathbf{P}_{hT}} \sim \int d^2\mathbf{b}_T \ e^{i\mathbf{b}_T \cdot \mathbf{P}_{hT}/z}$$

$$\times f_{i/p}(x, \mathbf{b}_T, Q, Q^2) D_{h/i}(z_h, \mathbf{b}_T, Q, Q^2)$$



Kang, Prokudin, Sun and Yuan, PRD 93, 014009 (2016)

$$f_{i/p}(x, \mathbf{b}_T, \mu, \zeta) = f_{i/p}^{\text{pert}}(x, b^*(b_T), \mu, \zeta)$$

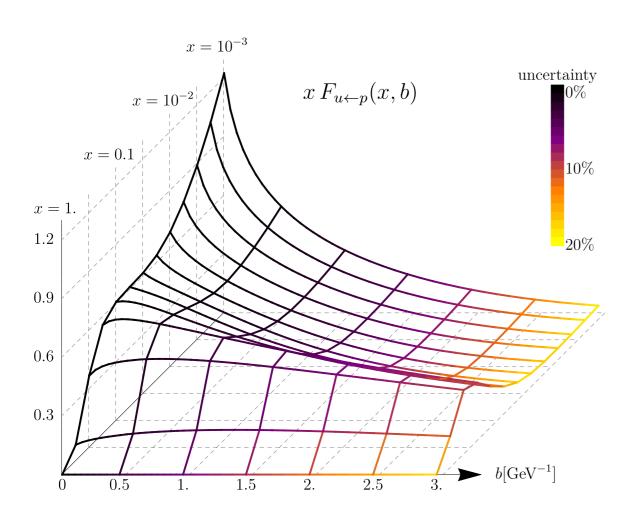
$$\times \left(\frac{\zeta}{Q_0^2}\right)^{g_K(b_T)/2} \xrightarrow{\qquad} \text{Collins-Soper kernel (NP part)} \\ f_{i/p}^{\text{NP}}(x,b_T) \xrightarrow{\qquad} \text{Intrinsic TMD}$$

 $Q_0 \sim 1 \text{ GeV}$

Non-perturbative when $b_T \sim 1/\Lambda_{\rm QCD}$!

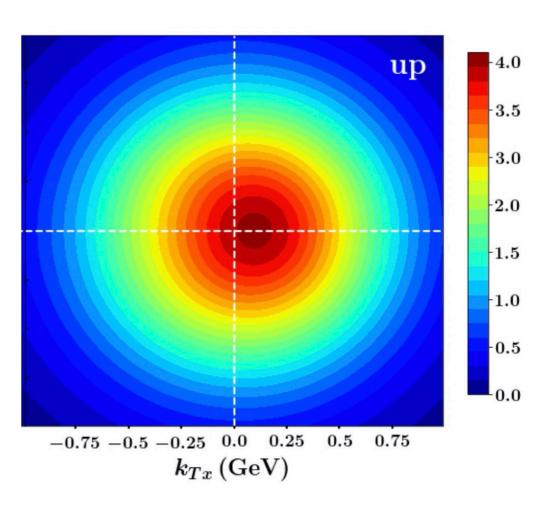
TMDs from global analyses

Unpolarized quark TMD



Scimemi and Vladimirov, JHEP 06 (2020).

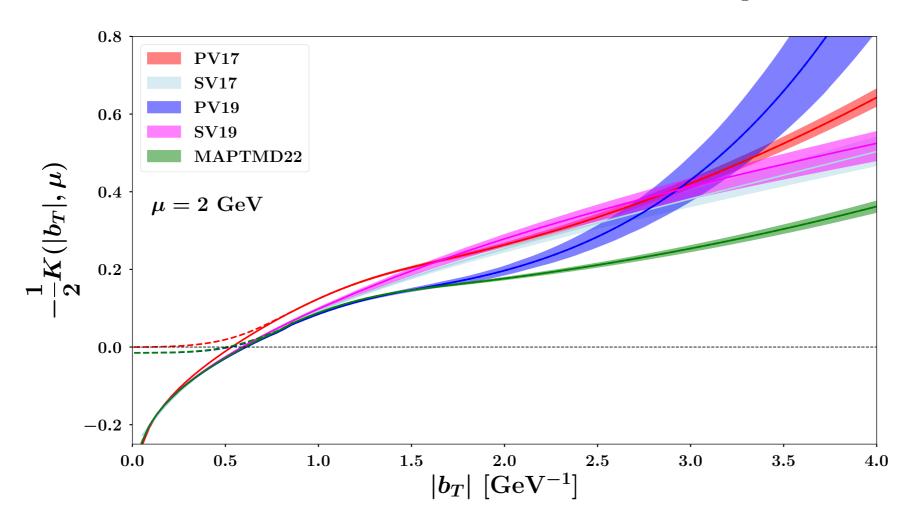
Quark Sivers function



Cammarota, Gamberg, Kang et al. (JAM Collaboration), PRD 102 (2020).

TMDs from global analyses

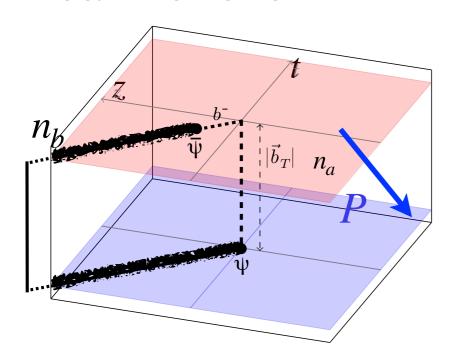
Collins-Soper Kernel $K(b_T, \mu) = K^{\text{pert}}(b_T, \mu) + g_K(b_T)$



Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

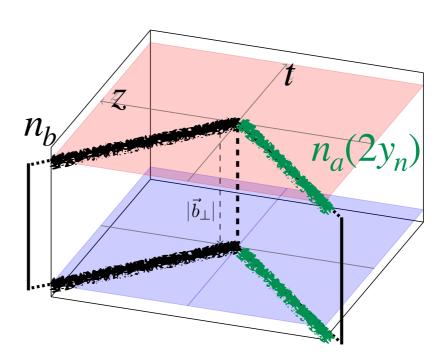
TMD definition

Beam function:



Hadronic matrix element

Soft function :



Vacuum matrix element

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$

 $n_b^2 = 0$

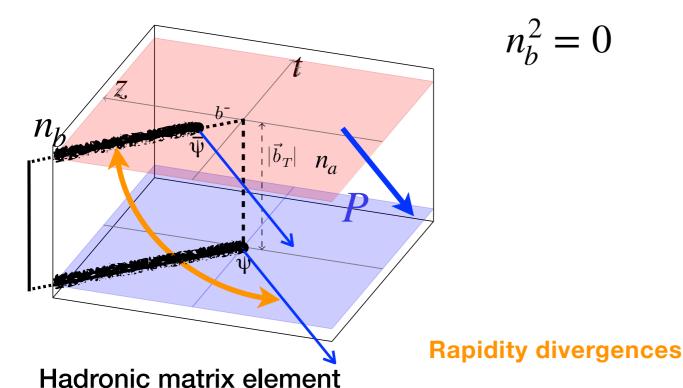
Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$

Rapidity divergence regulator

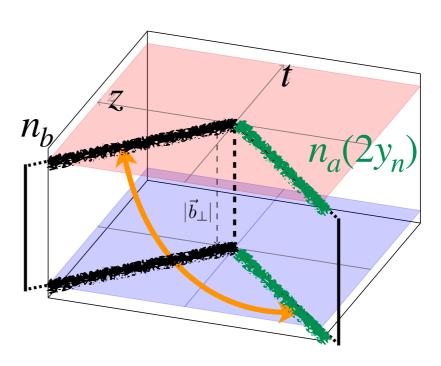
First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

TMD definition

Beam function:



Soft function :



Vacuum matrix element

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\tau \to 0} \frac{B_i}{\sqrt{S^q}}$$

 $n_b^2 = 0$

Collins-Soper scale: $\zeta = 2(xP^+e^{-y_n})^2$

Rapidity divergence regulator

First principles calculation of TMDs from the above matrix elements would greatly complement global analyses!

Outline

TMDs in the non-perturbative region

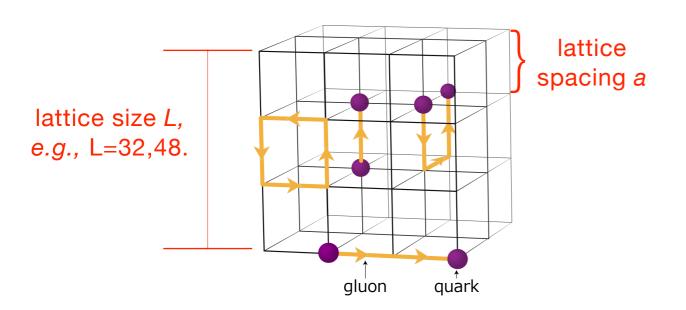
Quasi-TMDs in Large-Momentum Effective Theory

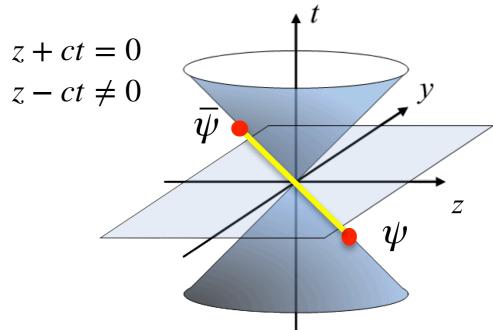
Lattice calculations

Outlook

Lattice QCD

Lattice gauge theory: a systematically improvable approach to solve non-perturbative QCD.





Imaginary time: $t \to i\tau$ $O(i\tau) \stackrel{?}{\to} O(t)$

Simulating real-time dynamics has been extremely difficult due to the issue of analytical continuation.

Progress in the lattice study of TMDs

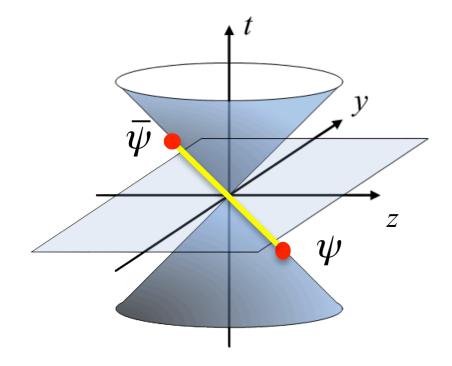
Lorentz invariant method

- Musch, Hägler, Engelhardt, Negele and Schäfer et al.
- Primary efforts focused on ratios of TMD x-moments (2009—)

Quasi-TMDs

- Large-momentum effective theory (Ji, 2013)
- One-loop studies of quasi beam and soft functions (Ji, Yuan, Scäfer, Liu, Liu, Ebert, Stewart, YZ, Vladimirov, Wang, ..., 2015-2022)
- Method to calculate the Collins-Soper kernel (Ji, Yuan et al., 2015; Ebert, Stewart and YZ, 2018)
- Method to calculate the soft function, and thus the x and b_T dependence of TMDs (Ji, Liu and Liu, 2019)
- Derivation of factorization formula (Ebert, Schindler, Stewart and YZ, 2022)
- First lattice results (SWZ, LPC, ETMC/PKU, SVZES, 2020—)

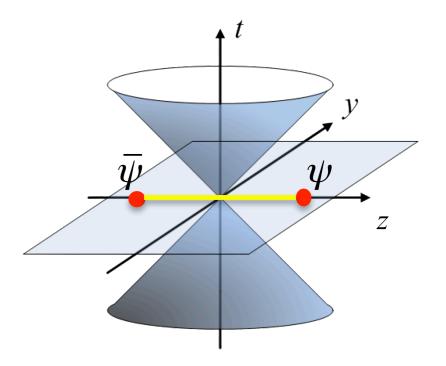
$$z + ct = 0$$
, $z - ct \neq 0$



PDF f(x): Cannot be calculated on the lattice

X. Ji, PRL 110 (2013)

$$t = 0, z \neq 0$$

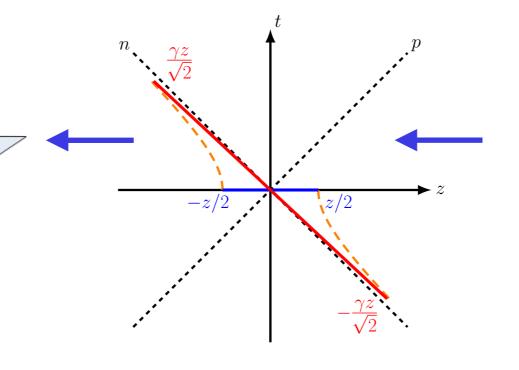


Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

z + ct = 0, $z - ct \neq 0$

Related by Lorentz boost

X. Ji, PRL 110 (2013)

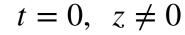


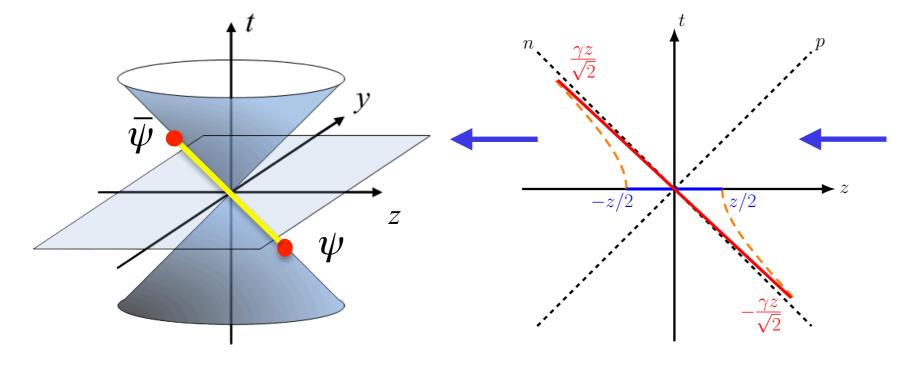
 $\overline{\psi}$

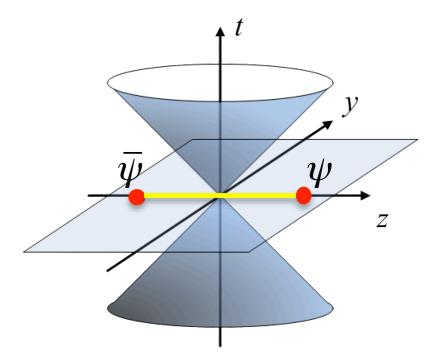
PDF f(x): Cannot be calculated on the lattice Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

Related by Lorentz boost

X. Ji, PRL 110 (2013)







PDF f(x): Cannot be calculated on the lattice

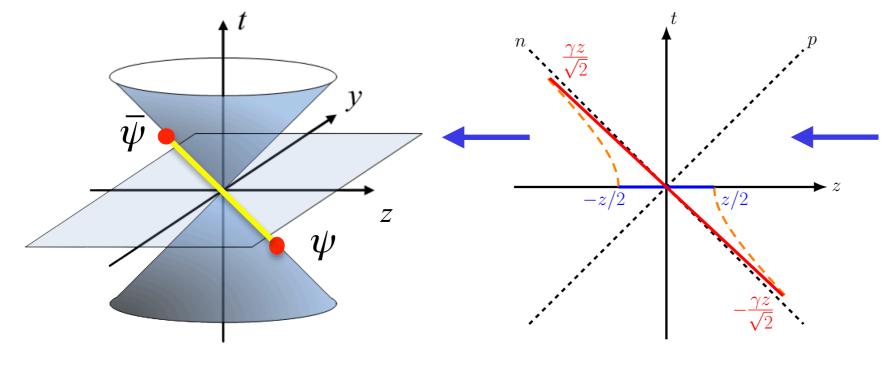
$$\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$$

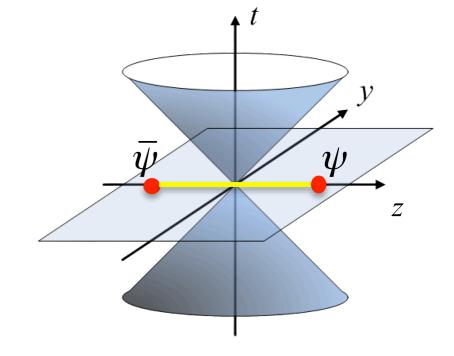
Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

Related by Lorentz boost

X. Ji, PRL 110 (2013)

$$t = 0, z \neq 0$$





PDF f(x): Cannot be calculated on the lattice

$$\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$$

Quasi-PDF $\tilde{f}(x, P^z)$: Directly calculable on the lattice

• Quasi-PDF: $P^z \ll \Lambda$;

- Λ : the ultraviolet lattice cutoff, $\sim 1/a$
- PDF: $P^z = \infty$, implying $P^z \gg \Lambda$.
 - The limits $P^z \ll \Lambda$ and $P^z \gg \Lambda$ are not usually exchangeable;
 - For $P^z \gg \Lambda_{\rm QCD}$, the infrared (nonperturbative) physics is not affected, which allows for an effective field theory matching.

$$\tilde{f}(x, P^z, \Lambda) = \underbrace{C\left(x, P^z/\mu, \Lambda/P^z\right)}_{\text{Centurbative matching}} \otimes f(x, \mu) + O\left(\frac{\Lambda_{\text{QCD}}^2}{P_z^2}\right)$$
Perturbative matching

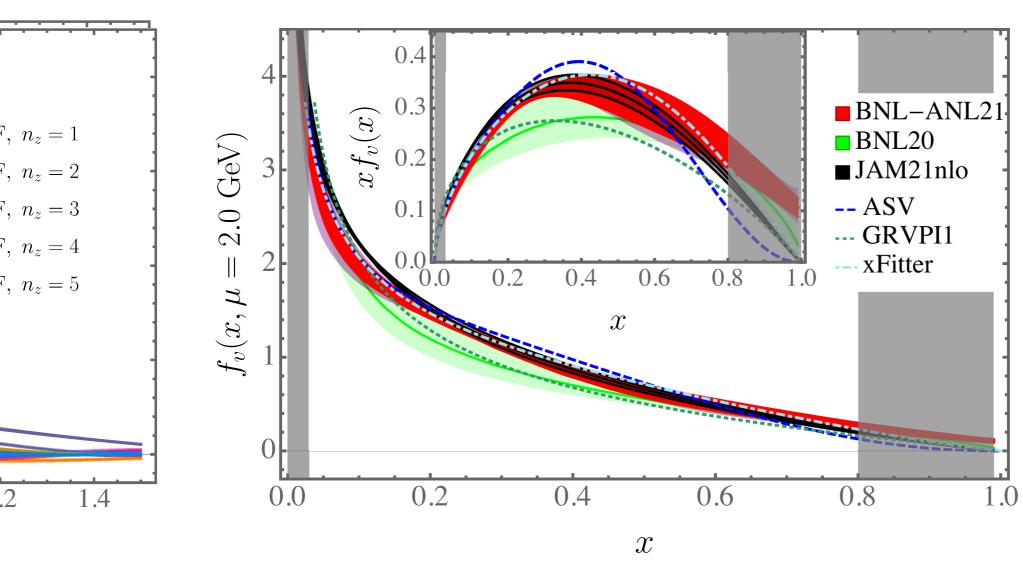
• X. Ji, PRL 110 (2013); SCPMA57 (2014).

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);

X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, RMP 93 (2021).

LaMET calculation of the collinear PDFs

A state-of-the-art calculation of the pion valence quark PDF with fine lattices, large momentum and NNLO matching:

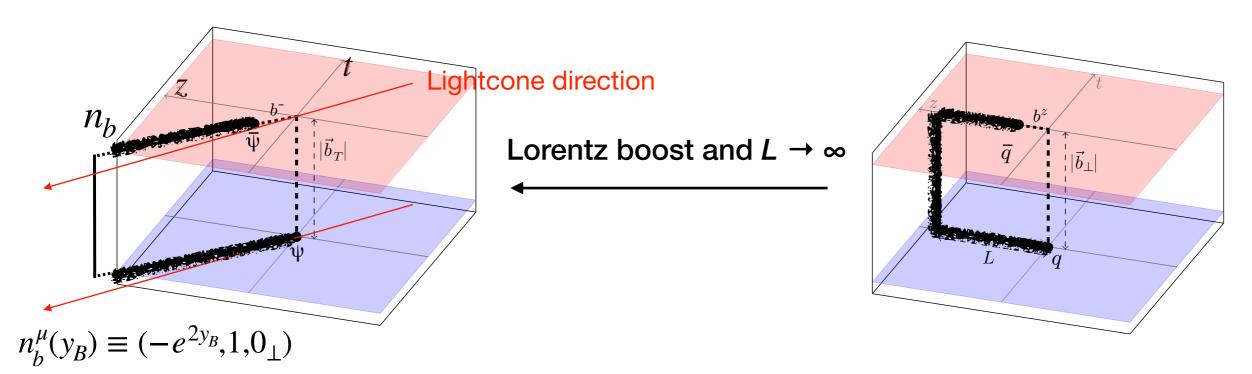


Gao, Hanlon, Mukherjee, Petreczky, Scior, Syritsyn and YZ, PRL 128, 142003 (2022).

Quasi TMD in the LaMET formalism

 Beam function in Collins scheme:

Quasi beam function :



Spacelike but close-to-lightcone

$$(y_B \to -\infty)$$
 Wilson lines, not

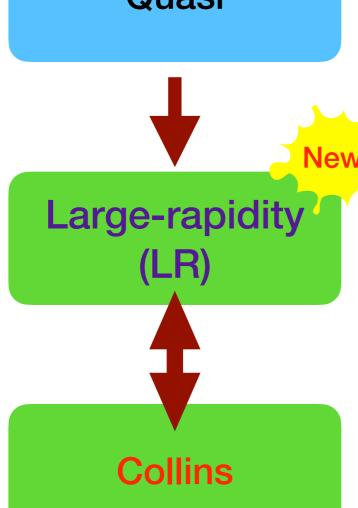
calculable on the lattice

Equal-time Wilson lines, directly calculable on the lattice

Related by Lorentz invariance $(y_{\tilde{P}} = y_P - y_B)$, equivalent in the large \tilde{P}^z or $(-y_B)$ expansion.

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Factorization relation with the TMDs



$$\tilde{f}_i(x, \mathbf{b}_T, \mu, \tilde{\zeta}, \tilde{P}^z) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} \tilde{Z}_{\text{UV}} \frac{B_i}{\sqrt{S^q}}$$

Lorentz invariance
$$y_{\tilde{P}} = y_P - y_B$$

$$f_i^{LR}(x, \mathbf{b}_T, \mu, \zeta, y_P - y_B) = \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^{LR} \frac{B_i}{\sqrt{Sq}}$$

Same matrix elements, but Perturbative matching in different orders of UV limits

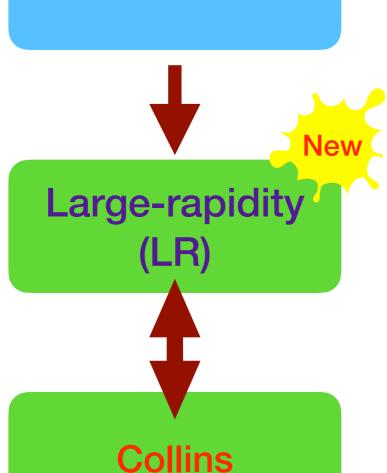
LaMET!

$$f_i(x, \mathbf{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{\mathbf{y}_B \to -\infty} \frac{B_i}{\sqrt{Sq}}$$

Continuum

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Factorization relation with the TMDs



$$\tilde{f}_i(x, \mathbf{b}_T, \mu, \tilde{\zeta}, \tilde{P}^z) = \lim_{\tilde{P}^z \gg m_N} \lim_{a \to 0} \tilde{Z}_{\text{UV}} \frac{B_i}{\sqrt{Sq}}$$

Lorentz invariance

$$f_i^{\text{LR}}(x, \mathbf{b}_T, \mu, \zeta, y_P - y_B) = \lim_{-y_B \gg 1} \lim_{\epsilon \to 0} Z_{\text{UV}}^{\text{LR}} \frac{B_i}{\sqrt{Sq}}$$

Same matrix elements, but different orders of UV limits

 $f_i(x, \mathbf{b}_T, \mu, \zeta) \neq \lim_{\epsilon \to 0} Z_{\text{UV}} \lim_{y_B \to -\infty} \frac{B_i}{\sqrt{S^q}}$

Perturbative matching in

LaMET!

 $y_{\tilde{P}} = y_P - y_R$

Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

Factorization relation with the TMDs

Factorization of quasi-TMD:

$$\tilde{f}_{q/h}(x, \mathbf{b}_T, \mu, \tilde{\zeta}, x\tilde{P}^z) = C(x\tilde{P}^z, \mu) \exp\left[\frac{1}{2}K^q(\mu, b_T)\ln\frac{\tilde{\zeta}}{\zeta}\right] f_{i/h}(x, \mathbf{b}_T, \mu, \zeta) + \mathcal{O}(y_{\tilde{P}}^{-k}e^{-y_{\tilde{P}}})$$

$$\tilde{\zeta} = x^2 m_N^2 e^{2\tilde{y}_P + 2y_B - 2y_n}$$

Matching coefficient

Warning:

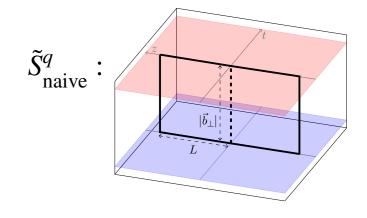
soft function still not calculable on the lattice

Factorization of naive quasi-TMD:

$$\frac{\tilde{f}_{i/h}^{\text{naive}}}{\sqrt{S_r^q(b_T, \mu)}} = C(x\tilde{P}^z, \mu) \exp\left[\frac{1}{2}K^q(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right]$$

$$\times f_{i/h} \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^zb_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

 $\tilde{f}_{i/h}^{\text{naive}} = \lim_{a \to 0} \tilde{Z}_{\text{uv}} \tilde{B}_{i/h} / \sqrt{\tilde{S}_{\text{naive}}^q}$



Directly calculable on the lattice!

Reduced soft function ✓

Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and YZ, PRD99 (2019);
- Ebert, Stewart, YZ, PRD99 (2019), JHEP09 (2019) 037;
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 04, 178 (2022).

TMDs from lattice QCD

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r^q(b_T, \mu)}} = C(\mu, x\tilde{P}^z) \exp\left[\frac{1}{2}K(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

Matching coefficient:

Independent of spin;

- Vladimirov and Schäfer, PRD 101 (2020);
- Ebert, Schindler, Stewart and YZ, JHEP 09 (2020);
- Ji, Liu, Schäfer and Yuan, PRD 103 (2021).
- No quark-gluon or flavor mixing, which makes gluon calculation much easier.

One-loop matching for gluon TMDs:

Ebert, Schindler, Stewart and YZ, 2205.12369.

TMDs from lattice QCD

$$\frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{\sqrt{S_r^q(b_T, \mu)}} = C(\mu, x\tilde{P}^z) \exp\left[\frac{1}{2}K(\mu, b_T)\ln\frac{(2x\tilde{P}^z)^2}{\zeta}\right] \times f_{i/p}^{[s]}(x, \mathbf{b}_T, \mu, \zeta) \left\{1 + \mathcal{O}\left[\frac{1}{(x\tilde{P}^z b_T)^2}, \frac{\Lambda_{\text{QCD}}^2}{(x\tilde{P}^z)^2}\right]\right\}$$

* Collins-Soper kernel;
$$K(\mu, b_T) = \frac{d}{d \ln \tilde{P}^z} \ln \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T, \mu, \tilde{P}^z)}{C(\mu, x\tilde{P}^z)}$$

* Flavor separation;

$$\frac{f_{i/p}^{[s]}(x, \mathbf{b}_T)}{f_{i/p}^{[s']}(x, \mathbf{b}_T)} = \frac{\tilde{f}_{i/p}^{\text{naive}[s]}(x, \mathbf{b}_T)}{\tilde{f}_{i/p}^{\text{naive}[s']}(x, \mathbf{b}_T)}$$

* Spin-dependence, e.g., Sivers function;

* Full TMD kinematic dependence.

Ji, Liu, Schäfer and Yuan, PRD 103 (2021).

* Twist-3 PDFs from small b₇ expansion of TMDs.

Outline

TMDs in the non-perturbative region

Quasi-TMDs in Large-Momentum Effective Theory

Lattice calculations

Outlook

Collins-Soper kernel from lattice QCD

$$K^{q}(\mu, b_T) = \frac{1}{\ln(P_1^z/P_2^z)} \ln \frac{C_{\text{ns}}(\mu, xP_2^z) \tilde{B}_{\text{ns}}(x, \mathbf{b}_T, \mu, P_1^z)}{C_{\text{ns}}(\mu, xP_1^z) \tilde{B}_{\text{ns}}(x, \mathbf{b}_T, \mu, P_2^z)} + \text{power corrections}$$

Studying CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

• Ebert, Stewart and YZ, PRD 99 (2019).

Does not depend on the external hadron state, could be calculated with pion TMD or wave function (vacuum to pion amplitude) for simplicity;

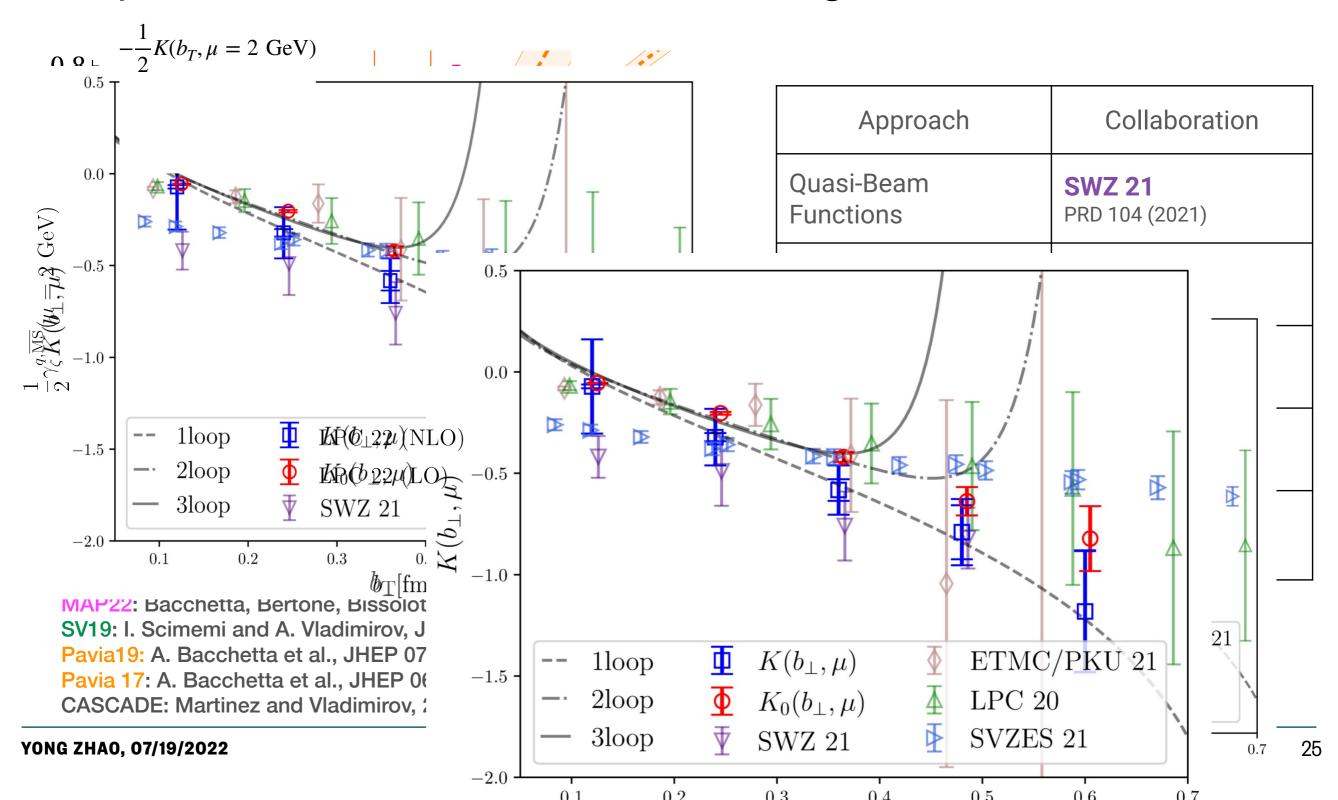
- Shanahan, Wagman and YZ, PRD 102 (2020);
- Ebert, Stewart and YZ, PRD 99 (2019);
- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020).

Current status for the Collins-Soper kernel

	Lattice setup	Renormalization	Operator mixing	Fourier transform	Matching	x-plateau search
SWZ20 PRD 102 (2020) Quenched	a = 0.06 fm, $m_{\pi} = 1.2 \text{ GeV},$ $P_{\text{max}}^{z} = 2.6 \text{ GeV}$	Yes	Yes	Yes	LO	Yes
LPC20 PRL 125 (2020)	a = 0.10 fm, $m_{\pi} = 547 \text{ MeV},$ $P_{\text{max}}^{z} = 2.11 \text{ GeV}$	N/A	No (small)	N/A	LO	N/A
SVZES 21 JHEP 08 (2021)	a = 0.09 fm, $m_{\pi} = 422 \text{ MeV},$ $P_{\text{max}}^{+} = 2.27 \text{ GeV}$	N/A	No	N/A	NLO	N/A
PKU/ETMC 21 PRL 128 (2022)	a = 0.09 fm, $m_{\pi} = 827 \text{ MeV},$ $P_{\text{max}}^{z} = 3.3 \text{ GeV}$	N/A	No	N/A	LO	N/A
SWZ21 PRD 104 (2021)	a = 0.12 fm, $m_{\pi} = 580 \text{ MeV},$ $P_{\text{max}}^{z} = 1.5 \text{ GeV}$	Yes	Yes	Yes	NLO	Yes
LPC22 2204.00200	a = 0.12 fm, $m_{\pi} = 670 \text{ MeV},$ $P_{\text{max}}^{z} = 2.58 \text{ GeV}$	Yes	No (small)	Yes	NLO	Yes

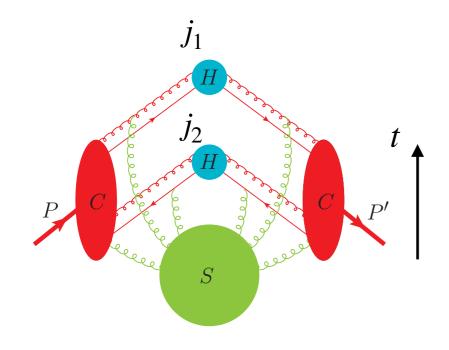
Collins Soper kernel

Comparison between lattice results and global fits



Reduced soft function from LaMET

Light-meson form factor:



$$F(b_T, P^z) = \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$$

$$\stackrel{P^z \gg m_N}{=} S_q^r(b_T, \mu) \int dx dx' \ H(x, x', \mu)$$
$$\times \Phi^{\dagger}(x, b_T, P^z) \Phi(x', b_T, P^z)$$

 Φ : Quasi-TMD wave function

$$\tilde{\Phi} = \frac{\langle 0 \, | \, \mathcal{O}(b^{\mu}) \, | \, \pi(P) \rangle}{\sqrt{\tilde{S}_{\text{naive}}^q}}$$

- Ji, Liu and Liu, NPB 955 (2020), PLB 811 (2020);
- Ji and Liu, PRD 105, 076014 (2022);
- Deng, Wang and Zeng, 2207.07280.

Tree-level approximation:

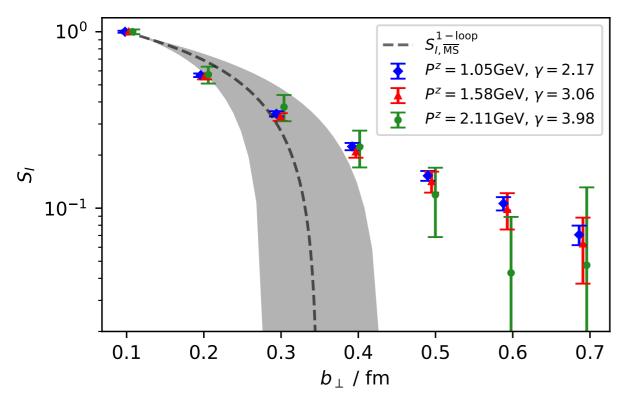
$$H(x, x', \mu) = 1 + \mathcal{O}(\alpha_s)$$

$$\Rightarrow S_q^r(b_T) = \frac{F(b_T, P^z)}{[\tilde{\Phi}(b^z = 0, b_T, P^z)]^2}$$

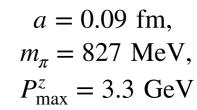
First lattice results with tree-level matching

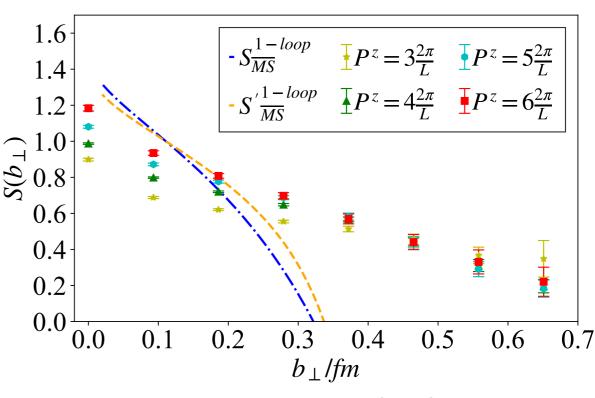
$$a = 0.10 \text{ fm},$$

 $m_{\pi} = 547 \text{ MeV},$
 $P_{\text{max}}^{z} = 2.11 \text{ GeV}$



Q.-A. Zhang, et al. (LPC), PRL 125 (2020).





Y. Li et al., PRL 128 (2022).

Beyond tree-level, it is necessary to obtain the *x*-dependence to carry out the convolution.

Conclusion

- The quark and gluon quasi TMDs can be related to the new LR scheme, which can be factorized into the physical TMDs;
- There is no mixing between quarks of different flavors, quark and gluon channels, or different spin structures.
- The method for calculating all the leading-power TMDs is complete;
- Lattice results for the Collins-Soper kernel and soft function are promising, but systematics need to be under control.

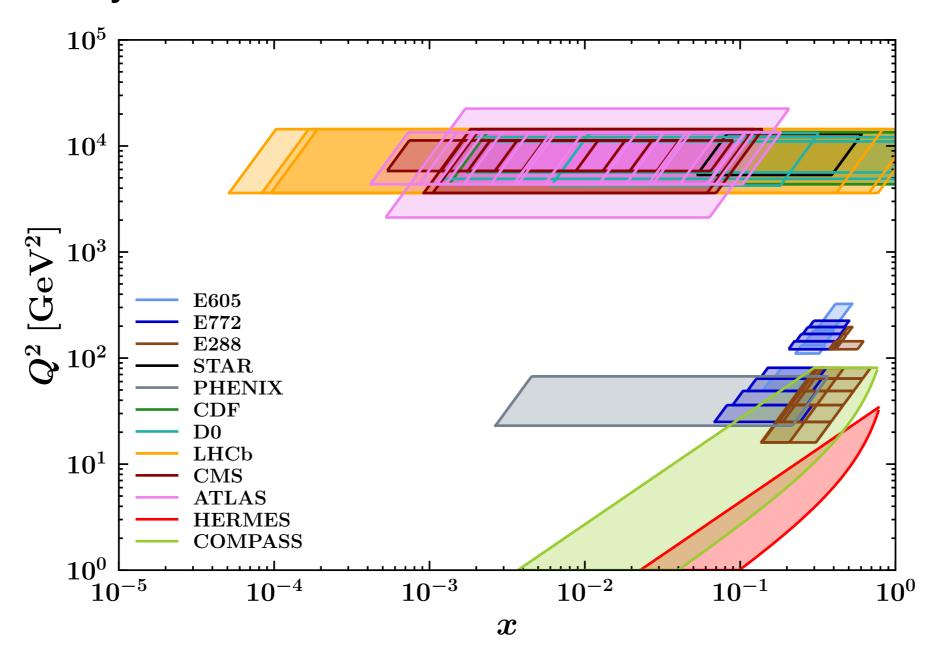
Outlook

Targets for lattice QCD studies:

Observables	Status		
Non-perturbative Collins-Soper kernel	✓, improving the systematics		
Soft factor	✓, to be under systematic control		
Info on spin-dependent TMDs (in ratios)	In progress		
Proton v.s. pion TMDs, (x, b_T) (in ratios)	In progress		
Flavor dependence of TMDs, (x, b_T) (in ratios)	to be studied		
TMDs and TMD wave functions, (x, b_T)	In progress		
Gluon TMDs (x, b_T)	to be studied		
Wigner distributions/GTMDs (x, b_T)	to be studied		

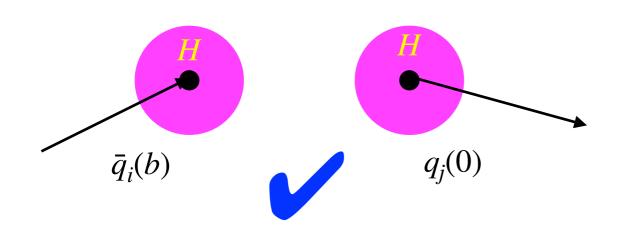
Backup slides

Data used by the MAP collaboration in 2206.07598

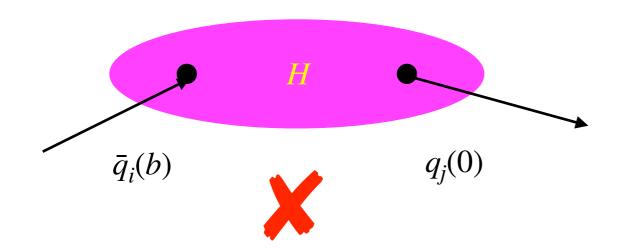


Bacchetta, Bertone, Bissolotti, et al., MAP Collaboration, 2206.07598

Backup slides



i, j (including spinor indices) remain intact



 $\propto \delta_{ij}$ Can mix with singlet channel and with gluons

$$b^2 = -b_z^2 - b_T^2 < b_T^2 \sim 1/\Lambda_{\text{QCD}}^2$$

Hard particles cannot propagate that far!