JLab Upgrade Opportunities for SIDIS Dihadrons at CLAS

APCTP Focus Program July 2022

Research supported by the

Office of Science

Outline

- Introduction to SIDIS dihadrons at CLAS
- Dihadron Cross Section
- Depolarization
- Comparison of kinematics: 10.6 GeV vs. 22 GeV

SIDIS Dihadrons

 $eN \to e + \pi^+(P_1) + \pi^-(P_2) + X$

Dihadron Kinematics

$$eN \to e + \pi^+(P_1) + \pi^-(P_2) + X$$

dihadron momentum: $P_h = P_1 + P_2$ kinematics: M_h , z, p_T angles: ϕ_h , ϕ_R , θ

Twist-3 Collinear PDFs

- Twist-3 TMDs are expressible in terms of multi-parton correlators
- Fundamental to understanding TMDs in general
- Physical interpretation through *x-moments*

e(x) accessible in Beam Spin Asymmetry A_{LU}

- Physical interpretation via moments:
 - Pion-nucleon σ term: $m_{_{q}} \rightarrow m_{_{N}}$
 - "Boer-Mulders Force": Transverse force exerted by color field on q↑ after scattering, in an unpolarized nucleon

Phys.Rev.D 88 (2013) 114502

Target Spin Asymmetry A_{UL}

Ongoing measurement in Run Group C

Dihadron A_{LU} Measurements – Proton Target

CLAS12 $\pi^+\pi^- A_{LU}^{\sin\phi_R}$

Х

Phys.Rev.Lett. 126 (2021) 152501

New e(x) Extraction – Proton Flavor Combination

7

Different targets \rightarrow **flavor dependence**

2 equations and 2 unknowns: decouple flavor dependence of $e(x) \rightarrow e^{-x}$

CLAS12 data taken 2018–2020

C. Dilks

Twist-3 Collinear PDF $h_{L}(x)$

Accessible in Target Spin Asymmetries

→ Experiment <u>currently</u> running!

 $\mathcal{L}_{\mathrm{JM}}^q - L_{\mathrm{Ji}}^q = \Delta L_{\mathrm{FSI}}^q$ Expressible in terms of the change in quark OAM as it leaves the target

- Phys.Rev.D 94 (2016) 9, 094040
- Phys.Rev.D 66 (2002) 114005
- Nucl.Phys.B 461 (1996) 197-237

9

Dihadron Fragmentation Functions (DiFFs)

(notation): $G_1 = G_1^{\perp}$ $H_1 = \left\{ H_1^{\perp}, H_1^{\triangleleft} \right\}$

<u>Twist 3</u>

 \tilde{H} \tilde{E}

small ? see, for example,

PoS DIS2014 (2014) 231

Phys.Rev.D 99 (2019) 5, 054003

arXiv: 1405.7659 [hep-ph]

Accessing Flavor Dependence of DiFFs

$$D_{1}^{u/\pi^{+}\pi^{-}} = D_{1}^{\bar{d}/\pi^{+}\pi^{-}} = D_{1}^{u/\pi^{+}\pi^{-}} = D_{1}^{\bar{u}/\pi^{+}\pi^{-}}$$

$$G_{1}^{u/\pi^{+}\pi^{-}} = G_{1}^{\bar{d}/\pi^{+}\pi^{-}} = G_{1}^{u/\pi^{+}\pi^{-}} = G_{1}^{\bar{u}/\pi^{+}\pi^{-}}$$

$$H_{1}^{u/\pi^{+}\pi^{-}} = H_{1}^{\bar{d}/\pi^{+}\pi^{-}} = -H_{1}^{d/\pi^{+}\pi^{-}} = -H_{1}^{\bar{u}/\pi^{+}\pi^{-}}$$

$$P \xrightarrow{\rho} P \xrightarrow{k} \stackrel{k'}{\downarrow} \stackrel{\mu}{\downarrow} \stackrel{\mu}{$$

, $D_1^{q/\pi^{\pm}\pi^0}$ - $G_1^{q/\pi^{\pm}\pi^0}$ $H_1^{q/\pi^{\pm}\pi^0}$

 $\pi^+\pi^ \pi^+\pi^0$

 $\pi^-\pi^0$

11

Partial Wave Expansion

- DiFFs expand on a basis of spherical harmonics
- Angular momentum eigenvalues | &, m >
- Explore dihadron fragmentation depending on relative angular momentum

$$H_1^{\perp} = \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m}(\cos\vartheta) e^{im(\phi_{R_{\perp}} - \phi_p)} H_1^{\perp|\ell,m\rangle}$$

C. Dilks

e-Print: 2107.12965 [hep-ex]

Outline

- Introduction to SIDIS dihadrons at CLAS
- Dihadron Cross Section
- Depolarization
- Comparison of kinematics: 10.6 GeV vs. 22 GeV

Full Dihadron Cross Section

$$\begin{split} d\sigma_{UU} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \\ &\times \sum_{\ell=0}^{\ell_{\max}} \left\{ A(x,y) \sum_{m=0}^{\ell} \left[P_{\ell,m} \cos(m(\phi_h - \phi_{R_{\perp}})) \left(F_{UU,T}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_{\perp}})) + \epsilon F_{UU,L}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_{\perp}})) \right) \right] \\ &+ B(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((2-m)\phi_h + m\phi_{R_{\perp}}) F_{UU}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_{\perp}}) \\ &+ V(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_{\perp}}) F_{UU}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_{\perp}}) \right\}. \end{split}$$

$$\begin{aligned} d\sigma_{LU} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e \\ &\times \sum_{\ell=0}^{\ell_{max}} \left\{ C(x, y) \sum_{m=1}^{\ell} \left[P_{\ell, m} \sin(m(\phi_h - \phi_{R_{\perp}})) 2 \left(F_{LU, T}^{P_{\ell, m} \cos(m(\phi_h - \phi_{R_{\perp}}))} + \epsilon F_{LU, L}^{P_{\ell, m} \cos(m(\phi_h - \phi_{R_{\perp}}))} \right) \right] \\ &+ W(x, y) \sum_{m=-\ell}^{\ell} P_{\ell, m} \sin((1 - m)\phi_h + m\phi_{R_{\perp}}) F_{LU}^{P_{\ell, m} \sin((1 - m)\phi_h + m\phi_{R_{\perp}})} \right\}. \end{aligned}$$

$$\begin{split} d\sigma_{UL} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) S_L \\ &\times \left\{ A(x,y) \sum_{\ell=1}^{\ell_{\max}} \sum_{m=1}^{\ell} P_{\ell,m} \sin(-m\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin(-m\phi_h + m\phi_{R_\perp}) \right. \\ &+ B(x,y) \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((2-m)\phi_h + m\phi_{R_\perp}) \\ &+ V(x,y) \sum_{\ell=0}^{\ell_{\max}} \sum_{m=-\ell}^{\ell} P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_\perp}) F_{UL}^{P_{\ell,m}} \sin((1-m)\phi_h + m\phi_{R_\perp}) \right\}. \end{split}$$

$$\begin{split} d\sigma_{LL} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e S_L \\ &\times \sum_{\ell=0}^{\ell_{max}} \left\{ C(x,y) \sum_{m=0}^{\ell} 2^{2-\delta_{m0}} P_{\ell,m} \cos(m(\phi_h - \phi_{R_\perp})) F_{LL}^{P_{\ell,m}} \cos(m(\phi_h - \phi_{R_\perp})) \right. \\ &+ W(x,y) \sum_{m=-\ell}^{\ell} P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_\perp}) F_{LL}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_\perp}) \right\}. \end{split}$$

$$\begin{split} d\sigma_{UT} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) |\mathbf{S}_{\perp}| \\ &\times \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} \left\{ A(x,y) \left[P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S)) \right. \\ &\times \left(F_{UT,T}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S)} + \epsilon F_{UT,L}^{P_{\ell,m} \sin((m+1)\phi_h - m\phi_{R_{\perp}} - \phi_S)} \right) \right] \\ &+ B(x,y) \left[P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{UT}^{P_{\ell,m} \sin((1-m)\phi_h + m\phi_{R_{\perp}} + \phi_S)} \right. \\ &+ P_{\ell,m} \sin((3-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_{R_{\perp}} - \phi_S)} \right] \\ &+ V(x,y) \left[P_{\ell,m} \sin(-m\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{UT}^{P_{\ell,m} \sin((-m\phi_h + m\phi_{R_{\perp}} - \phi_S)} \right] \\ &+ P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{UT}^{P_{\ell,m} \sin((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)} \right] \right\}. \end{split}$$

$$\begin{aligned} d\sigma_{LT} &= \frac{\alpha^2}{4\pi x y Q^2} \left(1 + \frac{\gamma^2}{2x} \right) \lambda_e |\mathbf{S}_{\perp}| \sum_{\ell=0}^{\ell_{max}} \sum_{m=-\ell}^{\ell} \left\{ \\ & C(x,y) \, 2 \, P_{\ell,m} \cos((1-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)) F_{LT}^{P_{\ell,m}} \cos((1-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)) \\ & + W(x,y) \left[P_{\ell,m} \cos(-m\phi_h + m\phi_{R_{\perp}} + \phi_S) F_{LT}^{P_{\ell,m}} \cos((m\phi_h + m\phi_{R_{\perp}} + \phi_S) + P_{\ell,m} \cos((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S)) F_{LT}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) F_{LT}^{P_{\ell,m}} \cos((2-m)\phi_h + m\phi_{R_{\perp}} - \phi_S) \right] \right\}. \end{aligned}$$

Phys.Rev.D 90 (2014) 11, 114027

<u>Twist 2</u>

Twist 3

Target Polarization

		U	L	Т
n Polarization	U	$\begin{array}{c} f_1 D_1 \\ h_1^\perp H_1 \end{array}$	$\begin{array}{c} h_{1L}^{\perp}H_1\\ g_{1L}G_1 \end{array}$	$\begin{array}{c} f_{1T}^{\perp}D_{1}\\\\ g_{1T}G_{1}\\\\ h_{1}H_{1}\\\\ h_{1T}^{\perp}H_{1}\end{array}$
Beal	L	f_1G_1	$g_{1L}D_1$	$g_{1T}D_1$ $f_{1T}^{\perp}G_1$

Beam Polarization

		Τά	า	
		U	\mathbf{L}	Т
	J	$\begin{array}{ccc} hH_1 & f_1\tilde{D} \\ f^{\perp}D_1 & h_1^{\perp}\tilde{H} \end{array}$	$\begin{array}{ccc} h_L H_1 & g_{1L} \tilde{G} \\ f_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{H} \end{array}$	$ \begin{array}{ccc} f_T D_1 & h_1 \tilde{H} \\ h_T H_1 & g_{1T} \tilde{G} \\ h_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{D} \\ f_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{H} \end{array} $
I		$eH_1 f_1 \tilde{G}$ $g^\perp D_1 h_1^\perp \tilde{E}$	$\begin{array}{ccc} e_L H_1 & g_{1L} \tilde{D} \\ g_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{E} \end{array}$	$\begin{array}{ccc} g_T D_1 & h_1 \tilde{E} \\ e_T H_1 & g_{1T} \tilde{D} \\ e_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{G} \\ g_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{E} \end{array}$

<u>Twist 2</u>

Twist 3

Helicity DiFF

		Τέ	arget Polarization	า
		U	\mathbf{L}	Т
Polarization	U	$\begin{array}{ccc} hH_1 & f_1\tilde{D} \\ f^{\perp}D_1 & h_1^{\perp}\tilde{H} \end{array}$	$\begin{array}{ccc} h_L H_1 & g_{1L} \tilde{G} \\ f_L^{\perp} D_1 & h_{1L}^{\perp} \tilde{H} \end{array}$	$ \begin{array}{ccc} f_T D_1 & h_1 \tilde{H} \\ h_T H_1 & g_{1T} \tilde{G} \\ h_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{D} \\ f_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{H} \end{array} $
Beam	L	$\begin{array}{ccc} eH_1 & f_1\tilde{G} \\ g^{\perp}D_1 & h_1^{\perp}\tilde{E} \end{array}$	$e_L H_1 g_{1L} \tilde{D}$ $g_L^{\perp} D_1 h_{1L}^{\perp} \tilde{E}$	$\begin{array}{ccc} g_T D_1 & h_1 \tilde{E} \\ e_T H_1 & g_{1T} \tilde{D} \\ e_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{G} \\ g_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{E} \end{array}$

Twist 3

Constrain twist-3 DiFFs

٠

Outline

- Introduction to SIDIS dihadrons at CLAS
- Dihadron Cross Section
- Depolarization
- Comparison of kinematics: 10.6 GeV vs. 22 GeV

- Depolarization factors (and ε) depend on (x,y,Q²)
- Asymmetry denominator:

 $\int d\sigma_{\rm UU} \sim A$

Depolarization Factors

	Twist 2	Twist 3
Unpolarized Beam	A, B	V
Longitudinal Beam	С	W

		Polarization	Depolarization
<u>Twist 2</u>	Boer-Mulders	UU	В
	Sivers	UT	1
	Transversity	UT	B/A
	Kotzinian-Mulders	UL	B/A
	Wormgear (LT)	LT	C/A
	Helicity DiFE G $^{\perp}$	LU	C/A
		UL	1
<u>Twist 3</u>	e(x)	LU	W/A
	h _L (x)	UL	V/A
	g _T (x)	LT	W/A

		Polarization	Depolarization	
<u>Twist 2</u>	Boer-Mulders	UU	В	
	Sivers	UT	1	
	Transversity	UT	B/A	
	Kotzinian-Mulders	UL	B/A	
	Wormgear (LT)	LT	C/A	
	Helicity DiFF G [⊥]	LU	C/A	
	$Helicity Diff G_1$	UL	1	More accessible at JLab
Twist 3	e(x)	LU	W/A	
	h _L (x)	UL	V/A	
	g _T (x)	LT	W/A	

Outline

- Introduction to SIDIS dihadrons at CLAS
- Dihadron Cross Section
- Depolarization
- Comparison of kinematics: 10.6 GeV vs. 22 GeV

General Cuts

- ♦ Q² > 1 GeV²
- ♦ W > 2 GeV
- ♦ y < 0.8</p>
- 5° < θ < 35° (applied to e^{-}, π^{\pm})

Pion and Dihadron Cuts

$$x_F(\pi^{\pm}) > 0$$
 $p(\pi^{\pm}) > 1.25 \text{ GeV}$
 $z_{pair} < 0.95$
 $M_{miss} > 1.5 \text{ GeV}$

Additional Cuts

- PID Refinement
- Vertex
- Fiducial volume

Data Sets

- Proton Target, Longitudinally Polarized (Run Group C configuration)
- Inbending Torus
- Beam Energies: 10.6 GeV vs. 22 GeV

Similar x-range (<x> is slightly higher)

- Electrons and pions more forward at 22 GeV
- Distributions normalized by electron yield
- **Note that** θ_{lab} >5° cut is applied

C. Dilks

■ Higher missing mass → less impact from radiative effects from exclusive production?

- Similar invariant mass
- Consider the parent particles

Two types of dihadrons:

- Siblings: same parent, e.g., $\rho \rightarrow \pi_1 \pi_2$
- Cousins: different parents, e.g. π_1, π_3

Dihadron Invariant Mass Comparison

- Only siblings in component (colored) distributions; cousins are instead combined in their own distribution
- Besides ρ mesons, we also see pions from ω decays
- Relatively more ω decays at 22 GeV?

C. Dilks

Dihadron Invariant Mass Comparison

data

o⁰

ω

 K_{S}^{0}

n

η

0

string

cluster

undef. parent

- Both siblings and cousins in component (colored) distributions
- One histogram entry per hadron
- Broad distribution of cousin dihadrons from ρ and/or ω decays
- Many pions from ρ decays at low M_h

Dihadron Invariant Mass Comparison

z and $p_{_{\rm T}}$ Comparisons

- Access DiFFs at lower z at 22 GeV
- \blacksquare H₁ large at low z around M_o?
- Slightly higher p_{T} at 22 GeV

39

$q_{_{T}}$ and $q_{_{T}}/Q$ Comparison

class

Higher q_⊤ at 22 GeV
 Similar q_⊤/Q

- Similar ϕ_h and ϕ_R
- **Β**roader θ
- Any impact on partial wave correlations and sensitivity?

Smaller $< x_{F} >$ at 22 GeV

Careful about TFR/CFR separation...

$\Lambda \ \rightarrow \ p\pi^{-} \ Comparisons$

- 📕 Outbending data
- Similar BG and feed-down contributions for 10.6 and 22 GeV
- i Similar 10.6 → 22 GeV kinematic trends as ππ dihadrons, e.g., lower z and x_{F}

Figure from Matthew McEneaney

- SIDIS dihadrons access a wide range of PDFs and DiFFs, at leading and subleading twist
- Asymmetries with a longitudinally polarized electron beam are less suppressed by depolarization pre-factors at JLab kinematics than at EIC kinematics
- Dihadrons JLab 20+ will help constrain twist-3 PDFs and their Q² evolution, along with comparisons to COMPASS and HERMES
- Higher beam energy \rightarrow lower z and x_{F}
 - Access DiFFs at lower z
 - More target fragmentation?
- Similar contributions from meson decays
- **Trends seen in** Λ production are similar

backup

Twist 2

Twist 3

Target Delarization

		10	1	
		U	L	Т
PUIALIZALIULI	U	$\mathbf{V}_{f^{\perp}D_{1}}^{hH_{1}} \begin{array}{c} f_{1}\tilde{D} \\ h_{1}^{\perp}\tilde{H} \end{array}$	$\mathbf{V}_{f_L^{\perp}D_1 h_{1L}^{\perp}\tilde{H}}^{h_LH_1 g_{1L}\tilde{G}}$	$ \begin{array}{ccc} f_T D_1 & h_1 \tilde{H} \\ h_T H_1 & g_{1T} \tilde{G} \\ h_T^{\perp} H_1 & f_{1T}^{\perp} \tilde{D} \\ f_T^{\perp} D_1 & h_{1T}^{\perp} \tilde{H} \end{array} $
DEALL	L	$\mathbf{W}_{g^{\perp}D_{1}}^{eH_{1}} \begin{array}{c} f_{1}\tilde{G} \\ h_{1}^{\perp}\tilde{E} \end{array}$	$\mathbf{W}_{g_L^{\perp}D_1}^{e_LH_1} \begin{array}{c} g_{1L}\tilde{D} \\ h_{1L}^{\perp}\tilde{E} \end{array}$	