The SoLID Science Program at 12 GeV and Beyond

With thanks to the SoLID team

OUTLINE

1. Introduction

- Why a **Solenoidal Large Intensity Device** (SoLID)?
- 2. Parity Violation in Deep Inelastic Scattering (PVDIS):
 - Test of Standard Model and Precision Hadron Structure
- 3. Semi-Inclusive Deep Inelastic Program (SIDIS):
 - Transversity and Transverse Momentum Dependent Distributions (TMDs)
- 4. J/ ψ Program: Near threshold Electro- & Photoproduction and GFFs
 - Gravitational Form Factors, Mass and Scalar radii
- 5. Beyond 12 GeV: Example of ψ^{\prime} threshold Electron- & photoproduction
- 6. Summary

Why SoLID in Hall A?

SoLID@12-GeV JLab Enables QCD at the Intensity Frontier

- Nucleon spin, proton mass, beyond standard model experiments require precision measurements of small cross sections and asymmetries, combined with multiple particle detection
- There is a critical need for high luminosity (10³⁶-10³⁹ cm⁻²s⁻¹) and large acceptance working in tandem

 10^{2}

SoLID@12-GeV Enables QCD at the Intensity Frontier. This should extend to 20+ GeV

LC2021, Seoul S. Korea, November 29, 2021

12 GeV experimental capabilities at Jefferson Lab

Solenoidal Large Intensity Device (SoLID)

Maximize scientific outcome of JLab 12 GeV upgrade QCD Intensity frontier (high luminosity 10³⁷⁻³⁹/cm²/s) Large detector acceptance with full azimuthal coverage

Rich physics programs Precision test of SM and search of new physics 3D momentum imaging of nucleon spin Precision J/ ψ production near the threshold

Complementary and synergistic with the EIC science

Proton spin and mass

Spin: valence quark tomography in momentum space Mass: precision J/ ψ production near threshold

SoLID Apparatus

Requirements are Challenging

- High Luminosity (10³⁷-10³⁹)
- High data rate
- High background
- Low systematics
- High Radiation
- Large scale
- Modern Technologies
 - GEM's
 - Shashlik ECal
 - Pipeline DAQ
 - Rapidly Advancing Computational Capabilities
- High Performance Cherenkovs
- Baffles

Polarized ³He (``neutron") @ SoLID

SoLID (PVDIS)

Progress since Approval of SoLID Experiments

- Since 2010: Five SoLID experiments approved by PAC with high rating
 - 3 SIDIS (E12-10-006, E12-11-007, E12-11-108), 1 PVDIS(E12-10-007), 1 threshold J/ ψ (E12-12-006)
 - 6 run group experiments
- CLEO-II magnet arrived at JLab in 2016, cold test on-going
- 2014: pCDR submitted to JLab with cost estimation, updated in 2017 and 2019
- Director's Reviews in 2015, 2019 and 2021
- 02/2020: SoLID MIE (with updated pCDR/estimated cost) submitted to DOE
- DOE funded Pre-R&D on Cherenkov/GEM and DAQ tests started 02/2020 and mostly completed
- 03/2021: SoLID Science Review, went successfully
- 07/14/2022: All experiments re-approved by PAC50 with previous A rating but J/psi upgraded from A- to A.
- Consistent effort on pre-conceptual design and pre-R&D with the support of JLab and DOE.
- New beam test to verify high luminosity (high rate/high radiation) capability of the detectors and DAQ.

CLEO II coil at JLab

PVDIS:Test of Standard Model and Hadron Structure

Parity Violating DIS on Deuteron

Simplest isoscalar nucleus and at high Bjorken x

SoLID-PVDIS: Experiment E12-10-007

Spokesperson and contact: Paul Souder Co-spokespeople: Xiaochao Zheng and Paul Reimer

12 GeV CEBAF: Opportunity to do the ultimate PVDIS measurement

sub-1% precision over broad kinematic range: sensitive Standard Model test and detailed study of hadronic structure contributions

Projected Results on Coupling constants

SoLID makes a unique contribution

to the SMEFT program.

• d/u at high-x

SoLID-SIDIS: Transversity/Tensor Charge and TMDs

TMDs – confined motion inside the nucleon

→ Nucleon Spin → Quark Spin

<u>Sivers</u>

 Nucleon spin - quark orbital angular momentum (OAM) correlation – zero if no OAM (model dependence)

- h_{1T} (h₁) = g₁ (no relativity)
- h_{1T} tensor charge (lattice QCD calculations)
- Connected to nucleon beta decay and EDM

Kinematic	TMD
Function	
1	f_1
${\bf S_L}\cdot{\bf s_q}$	g_1
${f S_T}\cdot{f s_q}$	h_1
${f S}_{f L}\cdot{f k}_{ot} imes{f s}_q$	h_{1L}^{\perp}
${f S_T} \cdot {f k_\perp} imes {f s}_q$	g_{1T}
${f S_T} \cdot {f k_\perp} imes {f P}$	f_{1T}^{\perp}
$\mathbf{k}_{\perp} imes \mathbf{P} \cdot \mathbf{s}_q$	h_1^\perp
${f S_T} \cdot [{f k}_{\perp} {f k}_{\perp}] \cdot {f s}_{qT}$	h_{1T}^{\perp}

Structure Function Spin-Structure Function Transversity Worm Gear Worm Gear Sivers Boer-Mulder Pretzelocity

Name

Relevant Vectors

- **S**_T: Nucleon Spin
- s_q: Quark Spin
- **k**₁: Quark Transverse Momentum
- P: Virtual photon 3-momentum (defines z-direction)

Pretzelosity

- Interference between components with OAM difference of 2 units (i.e., s-d, p-p) (model dependence)
- Signature for relativistic effect

Jefferson Lab Sollid Argonne

SoLID-SIDIS: Large-Acceptance & High Luminosity

Quantum leap: 4-D binning for the first time!

SoLID-SIDIS program: Large acceptance, Full azimuthal coverage + High luminosity

- 4-D mapping of asymmetries with precision
 - $\Delta z = 0.05$, $\Delta P_T = 0.2$ GeV, $\Delta Q^2 = 1$ GeV2, x bin sizes vary with median bin size 0.02 (typical stat. uncertainty for each bin: $\delta A \le 0.005$)
- Constrain models and forms of TMDs, Tensor charge, ...
- Lattice QCD, QCD dynamics

JLab 6-GeV experiment on SSA using A transversely polarized ³He X. Qian et al., PRL107, 072003(2011)

17

SIDIS with Polarized "Neutron" and Proton @ SoLID

Run group experiments approved for TMDs, GPDs, and Spin

18

SoLID-SIDIS Projection

Impact of SoLID on World Data

- Fit Collins and Sivers asymmetries in SIDIS and e⁺e⁻ annihilation
- World data from HERMES, COMPASS
- e⁺e⁻ data from BELLE, BABAR, and BESIII
- Monte Carlo method is applied
- Including both systematic and statistical uncertainties

World data according to SoLID preCDR (2019)<u>https://solid.jlab.org/experiments.html</u>

D'Alesio et al., Phys. Lett. B 803 (2020)135347 Anselmino et al., JHEP 04 (2017) 046

Transversity

Sivers

TMDs – confined motion inside the nucleon

Transversity and Tensor Charge

$$h_1$$
 $(Collinear & TMD)$

- · Chiral-odd, unique for the quarks
- No mixing with gluons, simpler evolution effect
- Tensor charge:

$$\begin{split} \left< \mathbf{P}, \mathbf{S} | \overline{\psi}_q i \sigma^{\mu\nu} \psi_q | \mathbf{P}, \mathbf{S} \right> &= g_T^q \overline{u} (\mathbf{P}, \mathbf{S}) i \sigma^{\mu\nu} u (\mathbf{P}, \mathbf{S}) \\ g_T^q &= \int_0^1 \left[h_1^q(x) - h_1^{\overline{q}}(x) \right] dx \end{split}$$

- A fundamental QCD quantity dominated by valence quarks
- Precisely calculated on the lattice
- Difference from nucleon axial charge is due to relativity
- SoLID measurements allows for highprecision test of LQCD predictions
- Global analysis including LQCD (PRL 120 (2018) 15, 152502

Combining E12-10-006 & E12-11-108

SoLID projection: statistical and systematic uncertainties included (shifted for visibility)

- J. Cammarota et al, PRD 102, 054002 (2020) (JAM20+)
- L. Gamberg et al., arXiv:2205.00999 (JAM22)

TMDs – confined motion inside the nucleon

22

SoLID $J/\psi \& (\psi')$: -Near Threshold Production -Gluonic Gravitational Form Factors -Proton Mass and Scalar Radius

Gluonic Gravitational Form Factors

The standard decomposition of the energy-momentum tensor form factor in a nucleon state X.-D. Ji, Phys. Rev. Lett. 78, 610 (1997)

From Cross Section to the Trace Anomaly

D. Kharzeev (1995); Kharzeev, Satz, Syamtomov, and Zinovjev EPJC,9, 459, (1999); Gryniuk and Vanderhaeghen, PRD94, 074001 (2016)

A measurement near threshold could allow access to the trace anomaly

Proton Mass and Quantum Anomalous Energy

and

pi-N sigma term.

First three contributions can be determined from PDFs

Last term from lattice QCD→

• Nucleon mass is the total QCD energy in the rest frame (QED contribution small)

$H_{QCD} = H_q + I_q$	$H_m + Hg + H_a$
$H_q = Quark energy$	$\int d^3x \psi^\dagger \left(-i{f D}\cdotlpha ight)\psi$
$H_m = Quark mass$	$\int d^3x \; ar{\psi} m \psi$
$H_g = Gluon energy$	$\int d^3x \frac{1}{2} \left(\mathbf{E}^2 + \mathbf{B}^2 \right)$
$H_a = \begin{array}{c} ext{Quantum} \\ ext{Anomalous energy} \end{array}$	$\int d^3x \frac{9\alpha_s}{16\pi} \left(\mathbf{E}^2 - \mathbf{B}^2 \right)$

Sets the scale for the hadron mass!

X. Ji PRL 74 1071 (1995), X. Ji & Y. Liu, arXiv: 2101.04483 C. Alexandrou et al., (ETMC), PRL 119, 142002 (2017) Y.-B. Yang *et al.*, (χQCD), PRL 121, 212001 (2018)

40⁺02⁺01 16.76(2.4) %

 M_m

47.73(12.34)

Μ_α

20.03(0.9) %

 M_{σ}

120

100

80

60

 $\% \ M_p$

• Measuring quantum anomalous energy contribution in experiments is an important goal in the future

Can be accessed through heavy quarkonium threshold (J/psi & Upsilon) production,

- D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996)
- R. Wang et al, Eur.Phys.J.C 80 (2020) 6, 507

Jefferson Lab Sollid Argonne 4 26

105.33(12.62)

M_a Total

20.81(0.6) %

Results currently under peer-review •e-Print: 2207.05212 [nucl-ex] Preliminary 2D J/ψ cross section results

- Unfolded 2D cross section results compared to various model predictions informed by the 1D GlueX results
- All models work reasonably well at higher energies but deviate at lower energies

•e-Print: <u>2207.05212</u> [nucl-ex]

Extracting GFFs from the 2D profiles

First ever extraction of gluonic GFFs from purely experimental data!

- **Model dependent extractions** using the available approaches in the literature
 - Holographic QCD approach: K. Mamo & I. Zahed, PRD 103, 094010 (2021) and 2204.08857 (2022)
 - GPD+VMD approach: Y. Guo, X. Ji, Y. Liu, PRD 103, 096010 (2021)
 - In both cases assume $B_g(t)$ contributes little (supported by lattice)
- Use tripole form for $A_g(t)$ and $C_g(t)$ (differences with dipole negligible)
- Use $A_g(0) = \langle x_g \rangle$ from the CT18 global fit, fit remaining 3 parameters $(m_A, C_g(0), m_C)$ to 2D cross section results.

Jefferson Lab Sol D Argonne

•e-Print: 2207.05212 [nucl-ex]

GLUONIC GFF RESULTS

Good agreement between Holographic QCD and Lattice results!

- Results from the 2D gluonic GFF fits
- ${\scriptstyle \blacksquare}$ Gluonic $A_g(t)$ and $D_g(t)=4C_g(t)$ form factors
- χ^2 /n.d.f. in both cases very close to 1
- M-Z (holographic QCD) approach fit to only experimental data gives results very close to the latest lattice results of the same quantities!

M-Z: K. Mamo & I. Zahed, PRD 103, 094010 (2021) and 2204.08857 (2022)
 G-J-L: Y. Guo, X. Ji, Y. Liu, PRD 103, 096010 (2021)
 Lattice: D. Pefkou, D, Hackett, P. Shanahan, Phys. Rev. D 105, 054509 (2022).

SoLID-J/ ψ : Experiment E12-12-006

Event Counts @ 1x1037 in 50 days

J/Psi Experiment E12-12-006 @ SoLID

Sensitivity at threshold at about 10⁻³ nb!

Solid

Impact on the mass radius

D. E. Kharzeev, ``The mass radius of the proton," arXiv:2102.00110 [hep-ph]

$\psi(2S)$ triple coincidence phase space for 17 GeV

P_{decay} (GeV)

Jeffersor

Decay lepton

20

 $\boldsymbol{\theta}_{\text{decay}} \text{ (deg)}$

25

- NATIONAL LABORATORY

15

10

10² stunoo

10

30

The gap on the right-hand side is due to recoil protons being lost at small angles. This makes going to higher beam energies (E>17GeV) not optimal with the current target position.

Bottom line: SoLID J/ψ configuration can be used without modifications to detect ψ (2s) with beam energies up to 17 GeV

$\psi(2S)$ production with a 17 GeV incident Electron beam

SOLID: A Science Program at the Intensity Frontier

- □ SoLID is a **large acceptance** device which can handle **very high luminosity** to allow full exploitation of JLab 12 GeV scientific potential by pushing the limit of the intensity frontier
- SoLID has rich and vibrant science programs complementary and synergistic to the proposed EIC science program.
 Three pillars include SIDIS, PVDIS and J/Psi threshold production
- □ After a decade of hard work, we have a mature pre-conceptual design with expected performance to meet the challenging requirements for the three major science pillars
- □ Completed the DOE science review (March 8-10, 2021)
- □ There are unique opportunities with 20+ GeV upgrade and enhancement of the present science program

270+ collaborators, 70+ institutions from 13 countries New collaborators are welcome!

https://solid.jlab.org/