Hadron Physics with CLAS12 at 24 GeV

V.D. Burkert, L. Elouadrhiri, et al., Nuclear Inst. and Methods in Physics Research, A 959 (2020) 163419 CLAS24

Volker Burkert, Jefferson Lab

Based on talk at workshop "J-FUTURE" 28-30 March 2022, Jefferson Lab / Messina University

Why another detector upgrade?

- Optimize running the 12 GeV science program by improvements in tracking, photon detection, and charged particle identification
- Preparing for a 20+ GeV energy upgrade of JLab that expands on achievements from the 12 GeV science program (<u>https://arxiv.org/pdf/2112.00060.pdf</u>)
 - Entering new kinematics domains, sea-quarks, gluons.
 - Passing mass thresholds (J/ ψ , ψ '(3700), exotic states) with sufficient phase space to explore new avenues, e.g. gluon structure of nucleons & nuclei
- Bridging the energy gap between 12 GeV and future Precision Studies of QCD at low center mass energy EIC operation. (CEBAF-24: W_{max} = 6.5 GeV; EIC: W = 20 -140 GeV)

https://indico.bnl.gov/event/10677

https://indico.bnl.gov/event/11669

Science Program Highlights

Elements of a high impact program that drive detector and instrumentation requirements and specifications.

1) Systematic studies of the protons mechanical properties, through measurements of its gravitational form factors $M_2(t)$, J(t), $d_1(t)$ in a large t-range.

- Use DVCS (with electrons and positrons) as a probe of GPDs (CFF) in the valence quarks and sea-quark domain.
- Use time-like Compton Scattering (TCS) as a probe of $\operatorname{Re}(\mathcal{H})$ and $d^{q}_{1}(t)$.

2) Use J/ ψ production as a tool to probe the gluon structure (GPDs) of the nucleon.

- Measure J/ ψ production off proton at threshold to study gluon content in mass, angular momentum, pressure; large t-range needed.

3) Search for new exotic mesons with heavy quarks to discover new states and the underlying systematics and production mechanism.

• Photoproduction cross sections are small O(1nb), widths O(100MeV) – require large acceptance, high luminosity, good momentum resolution, good vertex resolution. (Example is series of $Z_c(3900)$, $Z_c(4020)$, $Z_c(4200)$, ... all ccbar-qqbar states, decaying into J/ψ + pions)

4) Hard processes in backward meson production u-channel processes and TDA & 2– γ physics (new)

Systematic study of mechanical properties of the proton

Quick Science background

ENERGY Office of Science

• Mechanical properties appear as gravitational form factors (GFF) in the proton matrix element of the EMT.

$$\langle p_2 | \hat{T}^q_{\mu\nu} | p_1 \rangle = \bar{u}(p_2) \left[M_2^{q,g}(t) \frac{P_\mu P_\nu}{M} + J^{q,g}(t) \frac{i(P_\mu \sigma_{\mu\rho} + P_\nu \sigma_{\mu\rho})\Delta^{\rho}}{2M} + d_1^{q,g}(t) \frac{\Delta_\mu \Delta_\nu - g_{\mu\nu}\Delta^2}{5M} \right] u(p_1)$$

Example of the GFF $d_1^q(t)$:

Appears in 2nd x-moment of GPD H^q : $\int dx \, x H^q(x,\xi,t) = M_2^q(t) + \frac{4}{5}\xi^2 d_1^q(t)$

$$\mathcal{F}(\xi,t;Q^2) = \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\epsilon} - \frac{1}{\xi + x - i\epsilon} \right] F(x,\xi,t;Q^2)$$

$$\operatorname{Re}\mathcal{H}^{q}(\xi,t) = \underbrace{\Delta^{q}(t)}_{\pi} + \frac{1}{\pi}\mathcal{P}\int_{0}^{1} \mathrm{d}x \ \left[\frac{1}{\xi-x} - \frac{1}{\xi+x}\right]\operatorname{Im}\mathcal{H}^{q}(x,t),$$

- **Dispersion relation** for CFF \mathcal{H} contains subtraction term $\Delta^q(t)$ that relates to $d_1^q(t)$
- Fourier transform of $d_1^q(t)$ into coordinate space gives shear and pressure distribution.

DVCS on Proton @ 24 GeV - GEMC and reconstruction

Office of

Science

ENERGY

Time-like Compton Scattering at 10.6 GeV

In addition to the BSA from the polarized beam, TCS has a forwardbackward asymmetry, which **directly** relates to the CFF Re $\mathcal{H}(\xi, t)$ through the interference term with BH.

$$A_{FB}(\theta,\phi) = \frac{d\sigma(\theta,\phi) - d\sigma(180^{\circ} - \theta, 180^{\circ} + \phi)}{d\sigma(\theta,\phi) + d\sigma(180^{\circ} - \theta, 180^{\circ} + \phi)},$$
$$\frac{d^4\sigma_{INT}}{dQ'^2 dt d\Omega} = A \frac{1 + \cos^2\theta}{\sin\theta} [\cos\phi \operatorname{Re}\tilde{M}^{--} - \nu \cdot \sin\phi \operatorname{Im}\tilde{M}^{--}]$$
$$\tilde{M}^{--} = \left[F_1 \mathcal{H} - \xi(F_1 + F_2)\tilde{\mathcal{H}} - \frac{t}{4m_p^2} F_2 \mathcal{E} \right]$$

JSA

ENERGY

Office of

Science

P. Chatagnon et al., Phys.Rev.Lett. 127 (2021) 26, 262501

Conclusions from DVCS/TCS

- DVCS @ 24 GeV is suitable to be measured in standard CLAS12 configuration
 - Most scattered electrons at Q² > 2 GeV² are measured at polar angles 5° 30°
 - Nearly all protons are detected at $\Theta_p > 40^\circ$ in CVT
 - The DVCS photons reach in polar angle from 2.5° to 25° and should be reconstructed in ECAL & FTCal
 - The DVCS process is reconstructed with full coverage in azimuthal angle $\boldsymbol{\varphi}$
 - Well reconstructed missing mass for exclusive DVCS production with fully exclusive process.
- Caveats
 - Electrons id at >5GeV/c and photons relies exclusively on ECAL information. Both calorimeters, ECAL and FTCAL will have some energy leakage at highest energies, but should be sufficient for exclusive DVCS.
 - Protons have momenta below 2 GeV/c at Θ > 40°, and should be easily separated from π^+ , not from K⁺ though. Improved PID would be helpful.
 - DVCS photon separation from π^0 at energy > 12 GeV may see 2-photon merging.
- TCS @ 24 GeV would benefit from improved acceptance for e⁻ and e⁺ at forward angles for forward-backward asymmetry.

Proton's gluon structure – GEMC & reconstruction

- Quasi-real photoproduction of J/ψ near threshold is sensitive to gluon structure. In leading twist the process is described by the handbag diagram.
- The heavy J/ ψ mass of 3.1 GeV/c² ensures short distance scattering.
- Determination of the GFF and partial gluon contribution to the pressure and shear force distribution in coordinate space?
- Determination the mechanical gluon radius?

Office of Science -JSA

CLAS12 @ 24 GeV

Reconstruction efficiency from simulations in CLAS12 configuration at 24 GeV is about 7%.

Can this be improved by extending acceptance for e^+ e^- and improving vertexing? Extending to include $\mu^+\mu^$ decay desirable.

J/ψ MC events reconstructed in CLAS12 at 24 GeV

9

SJSA

U.S. THEFARTMENT OF Office of Science

U-channel short distance exclusive processes

For π^0 channel requires CLAS12 upgrade with backward angle e.m. calorimeter.

< JSA

2-γ science in elastic e⁺p/e⁻p scattering

JSA

- Polar angle range θ = 35 125°
- Azimuthal angle range $\Delta \Phi$ = 360°
- Particle ID by TOF for p < 1.5 GeV/c
- No direct electron/positron ID

U.S. DEPARTMENT OF Office of Science

- Forward Detector:
- Charged particle tracking in Torus field
- Polar angle range $\theta = 6 35^{\circ}$
- Azimuthal angle range $(0.6 0.9)x2\pi$ - Particle ID by TOF for p < 6 GeV/c
- $-e^{-}/e^{+}$ rejection in HTCC

Energy upgrade is not needed.

11

Exotic heavy flavor spectroscopy (X,Y,Z)

See: Talk be Derek Glazier at Messina J-FUTURE for further motivation.

At 24 GeV electron beam energy many states with charmonium content are well within kinematic reach.

A series of them have been found in e⁺e⁻ collisions (e.g. Belle, BESIII).

In electron-proton scattering all I, J^{PC} quantum numbers can be generated.

"It is clearly a great help to detect (tag) the scattered electrons with momentum in the range **0-14 GeV below 1 degree**." (Derek Glazier)

< JSA

Is this a realistic possibility?

ENERGY Science

Office of

Constraints for X, Y, Z studies at 24 GeV

- Electrons: Most beam electrons are scattered at Θ_e < 0.5° with momenta up to 14 GeV/c.
 - Requires close to 0-degree electron tagging to be viable.
- Pion kinematics covers range from ~0.5 to 8 GeV in momentum, angle range from ~5° 40°.
 - CLAS12 tracking should be improved and extended with vertexing for heavy quark tagging
 - PID in 6 sectors with RICH (currently available in 2 sectors)
- Neutron charge exchange process requires neutron detection with momenta 0.5 to 2.5 GeV, and angle range from ~5° to 40°, achievable in CLAS12 ECAL.
 Credit: Derek Glazier

HIRGY

CLAS12 improvements to meet science requirements

- Increase CLAS12 luminosity by repositioning R1 drift chambers (x 2)
- Improve the tracking and vertexing in the CLAS12 forward detector region to accommodate requirements for resolution in spectroscopy and heavy quarks science
- Develop a robust 0-degree electron spectrometer for the energy range 1 14 GeV for exotic heavy quark spectroscopy. Could also be useful for TCS
- Provide π^0 , γ , e⁺/e⁻ detection in backward hemisphere (TDAs, 2 γ -physics)
- Upgrade CLAS12 for charged particle ID in full momentum range & all forward sectors (RICH 3-6)
- Improve the PID in the Central Detector for K/ π separation

< JSA

ENERGY Office of Science

The CLAS12 Spectrometer at Jefferson Lab

Nuclear Inst. and Methods in Physics Research, A 959 (2020) 163419 + 17 NIM articles on all subsystems.

ENERGY Office of Science

From CLAS to CLAS12 has been a major upgrade to accommodate science requirements from doubling the CEBAF beam energy.

- Focus on electron scattering and more forward particle production
- Replaced Torus magnet with shorter magnet for $5^{\circ} < \theta_{e} < 40^{\circ}$ coverage
- Improved PID and coverage at forward angles
- Added 5T Solenoid magnet for large angle tracking, PID, Moller trap, polarizing field for target

CLAS12 achieved design luminosity (for the nominal configuration)

Can CLAS12 @ 24GeV operate at 11 GeV luminosities?

• CLAS12 luminosity limited by accidental occupancy of DC R1.

16

ENERGY

SJSA

Office of

Reducing Drift Chamber Occupancy in R1

- CLAS12 will see <10% increase in occupancy in all drift chambers at 24GeV at same luminosity.
- Current operation of CLAS12 limited by accidental occupancy of the **R1** drift chambers

JSA

ENERGY Office of Science

Occupancy (%)

RI	Shift	R1	R2	R3	
CLAS12 @ 11		2.6	0.76	1.18	
CLAS12 @ 24		2.8	0.77	1.23	
CLAS12 @ 24	+20 cm	2.2	0.74	1.13	
CLAS12 @ 24	+40 cm	1.5	0.75	1.13	
CLAS12 @ 24	+60 cm	0.83	0.77	1.14	

Shift R1 horizontally by ~ 50cm downstream for occupancy similar to R3. This should allow running CLAS12 at **twice luminosity** from current status.

Courtesy: Z. Meador, L. Elouadrhiri

Improving forward tracking & vertexing (concept)

U.S. DEFARTMENT OF Office of Science

Office of

SJSA

CLAS12 + Silicon pixel tracker

	ost estima le)	ite	Y. Gotra				
	CLAS24 - Si Pixel	Disk 1	Disk 2	Disk 3	Disk 4	Disk 5	total
	Radius (mm)	63	83	103	123	143	
	Area (mm²)	12,500	21,600	33,300	47,500	64,300	179,200
	Pixel 0.01mm ²						
	#channels (10 ³)	1,250	2,160	3,330	4,750	6,430	17,920
	Cost SF (1 ch = 0.3SF)						5,376,000+ inflation
		30°	Pixel	size : 10	<mark>0 x 100 j</mark>	um	
24GeV target	Silicon Pixel Trac	cker					

U.S. DEPARTMENT OF Office of Science

6

< JSA

π^{o} and γ detection in ECAL

• At 24 GeV beam energy most π^0 events will be reconstructed in ECAL.

ENERGY

Office of

CLAS12 + γ **/**e^{+/-} **detection** at large angles

ENERGY

Electron detection at ~0 degrees?

- We need to deal with several sources of electrons scattered at ~0 degrees.
 - Non-interacting beam electrons undergoing multiple scattering in target ~5x10¹¹sec⁻¹
 - Moller scattered electrons with energy range from E₀/2 E₀. This rate is orders of magnitude higher than electrons from hadronic interactions.
 - Electron bremsstrahlung in hydrogen target $E = E_0 E_{\gamma}$
 - Hadronic interaction rate at luminosity 10³⁵ cm⁻²s⁻¹ this rate is 5x10⁶sec⁻¹
 - The events of interest hadronic events with cross sections of ~ 0.5nb. Scattered electron energy range: 2 to 14 GeV, to produce states above 4 GeV cc-bar + meson. For Z_c(3900) ~ 50sec⁻¹.

The electron rates are much too high to consider detecting all electrons at 0 degree. What are remedies that we may apply?

0-degree events are in 2 categories

- Non-interacting electrons, Moller electrons, bremsstrahlung; electrons leave only accidental energy in CLAS12 detectors.
- Hadronically interacting electrons leave significant amount of energy and tracks in CLAS24, O(10GeV).
- The strategy would be to trigger on the event measured in CLAS24 detectors and tag those events with electrons measured in a 0-degree spectrometer in the range 1-14GeV.
- This should be studied in simulations to determine what magnitude in instantaneous luminosity can be achieved.
- Note that the Torus magnet open bore of ~ 6 cm accommodates ~0.75° scattering angle without interfering materials.
 Courtesy: H. Avakian, Z. Meador, L. Elouadrhiri

0-degree energy tagging system (schematic)

Summary

- An energy upgrade of JLab to 20+ GeV would open up high impact science not reachable at the currently available 10.6 GeV beam energy. They include:
 - A program related to quark and gluon GPDs and mechanical properties
 - DVCS at small x_B and in a large t-range
 - J/ ψ production at threshold in a wide range of x_B and t
 - Time-like Compton scattering in wide kinematic range
 - Science with positron beam and u-channel processes
 - Both require CLAS12 upgrade with e.m. large angle calorimeter.
 - Spectroscopy involving heavy quarks (c-cbar)

ENERGY Office of Science

- Systematics of X, Y, Z states and pentaquarks, discussed on example of Z_c(3900)
- The first program would be an extension of the program with CLAS12 with improvements in tracking, vertexing and particle ID.
- The positron program and u-channel physics both require a new large angle e.m. calorimeter
- The exotic spectroscopy would require a near 0-degree electron tagging spectrometer in the energy range from about 1 to 14 GeV. The concept has been described, but it requires detailed simulations and a realistic layout of the spectrometer magnet and detectors to make a statement about achievable luminosity.
- No thorough cost estimate has been attempted for the 0-degree spectrometer. The Si-pixel tracking detector was estimated at < \$10M for 100µm squared pixels (prototypes are been developed for EIC).

