Fixed targets at LHC

Pasquale Di Nezza

Collisions provided by a TeV-scale beam (LHC) on fixed target will exploit a unique kinematic region poorly probed. Advanced detectors make available probes never accessed before

Collisions provided by a TeV-scale beam (LHC) on fixed target will exploit a unique kinematic region poorly probed. Advanced detectors make available probes never accessed before

Solid (unpolarised) target

SMOG2

unpolarised gas target

polarised (+unpolarised) gas target

Acceptance in center-of-mass rapidity

gaseous targets @

LHCb

pp or pA collisions: 0.45-7 TeV beam on fix target

$$
\begin{aligned}
& \sqrt{s}=\sqrt{2 m_{N} E_{p}} \simeq 41-115 \mathrm{GeV} \\
& y_{C M S}=0 \rightarrow y_{l a b}=4.8
\end{aligned}
$$

AA collisions: 2.76 TeV beam on fix target

$$
\sqrt{s_{N N}} \simeq 72 \mathrm{GeV}
$$

1: beam; 2: target

Large CM boost, large x_{2} values ($\mathrm{x}_{\mathrm{F}}<0$) and small x_{1}

$$
y_{C M S}=0 \rightarrow y_{l a b}=4.3
$$

$$
\gamma=\frac{\sqrt{s_{N N}}}{2 m_{p}} \simeq 60
$$

Broad and poorly explored
kinematic range

SMOG2 an unpolarised target at LHCh

$\rho_{0} \frac{L}{2}=\frac{\Phi}{C} \frac{L}{2}$

$$
C=3.81 \sqrt{\frac{T}{M}} \frac{D^{3}}{L+\frac{4}{2} D}
$$

Storage cell concept

Forward acceptance: $2<\eta<5$ Tracking system momentum resolution $\Delta p / p=0.5 \%-1.0 \%(5 \mathrm{GeV} / \mathrm{c}-100 \mathrm{GeV} / \mathrm{c})$
beam-beam collisions

UNpolarised target (beam-gas)

The storage cell advantage

SMOG2 example pAr @115 GeV in lyr of data taking

Very high statistics with a low gas flow

	$\theta_{\operatorname{sim}} \times 10^{12}\left[\mathrm{~cm}^{-2}\right]$	$\theta_{t h} \times 10^{12}\left[\mathrm{~cm}^{-2}\right]$	C_{θ}
Hydrogen	1.627	1.592	1.022
Argon	7.274	7.120	1.022

SMOG2

- The system is completely installed (storage cell + GFS + triggers + reconstruction)
- Negligible impact on the beam lifetime ($\tau_{\text {beam }- \text { gas }}^{\mathrm{p}-\mathrm{H}_{2}} \sim 2000$ days ,

$\left.\tau_{\text {beam-gas }}^{\mathrm{Pb}-\mathrm{Ar}} \sim 500 \mathrm{~h}\right)$
- Injectable gases: $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar} \ldots \mathrm{H}_{2}, \mathrm{D}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}, \mathrm{Kr}, \mathrm{Xe}$

LHCh UPGRADE SMOC2

SMOG2 gas injection at LHC Run3 started a couple of weeks ago

Pressure increase into the primary vacuum

Vacuum recovery after the gas injection stop


```
            0.23029
```


Luminosity increase seen by the LHCb luminometer (Plume)

LHC official statement

No negative feedback when there is gas injection. Green light to inject when needed

SMOG2 ... few highlights

estimation with $10 \mathrm{fb}-$

Heavy-lon and QCD phase space

nPDF (gluon)

Intrinsic charm
Astroparticle (DM and CR)

Special Runs

> polarised target (beam-gas)
beam-beam collisions

SMOG2 is not only a unique project itself, but also a great playground for $L \underset{d_{\text {spin }}}{f} \mathrm{C}$

LHCspin experimental setup

- Start from the well established HERMES setup @ DESY...
- ... to create the next generation of fixed target polarisation techniques!

[^0]

Space available in front of LHCb

PGT implementation into LHCb

- Cylindrical target cell with SMOG2 dimensions: $L=20 \mathrm{~cm}$ and $D=1 \mathrm{~cm}$
- Full LHCb simulations show broader kinematic acceptance \& higher efficiency in the same position of the SMOG2 cell
- Work ongoing to develop dedicated trigger lines and to improve reconstruction algorithms for Run 3

PGT implementation into LHCb

- Inject both polarised and unpolarised gases via ABS and UGFS

- Compact dipole magnet \rightarrow static transverse field
- Superconductive coils + iron yoke configuration fits the space constraints
- $B=300 \mathrm{mT}$ with polarity inversion, $\Delta B / B \simeq 10 \%$, suitable to avoid beam-induced depolarisation [PoS (SPIN2018)]

Possibility to switch to a solenoid and provide longitudinal polarisation (e.g. in Run 5)

ABS \& BRP implementation into LHCb

- Reduce the size of both $A B S$ and BRP to fit into the available space in the LHCb cavern: a challenging R\&D!
- No need for additional detectors in LHCb: only a modification of the VELO flange is needed
- $P \simeq 85 \%$ achieved at HERMES

Injected intensity of H -atoms:

$$
\phi=6.5 \times 10^{16} \mathrm{~s}^{-1}
$$

Achievable Luminosity (HL-LHC):
$\sim 8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

- Backup solution is being investigated: a jet target provides lower density but higher polarisation degree

SMOG2/LHCspin performances

- beam-beam and beam-gas interaction regions are well detached
- Negligible increase of multiplicity: $1-3 \%$ throughput decrease when adding beam-gas to the LHCb event reconstruction sequence
- Full reconstruction efficiency (PV \& tracks) retained in the beam-gas region

LHCb is the only experiment able to run in collider and fixed-target mode simultaneously!

The physics goals of $L+\underset{\text { spin }}{C}$

- Multi-dimensional nucleon structure in a poorly explored kinematic domain
- Measure experimental observables sensitive to both quarks and gluons TMDs
- Make use of new probes (charmed and beauty mesons)
- Complement present and future SIDIS results
- Test non-trivial process dependence of quarks and (especially) gluons TMDs

quark pol.

Unpolarized Drell-Yan

Theoretically cleanest hard h-h scattering process:

- LHCb has excellent $\mu-I D$ \& reconstruction for $\mu^{+} \mu^{-}$

$$
\begin{array}{ll}
\text { dominant: } & \bar{q}\left(x_{\text {beam }}\right)+q\left(x_{\text {target }}\right) \rightarrow \mu^{+} \mu^{-} \\
\text {suppressed: } & q\left(x_{\text {beam }}\right)+\bar{q}\left(x_{\text {target }}\right) \rightarrow \mu^{+} \mu^{-}
\end{array}
$$

- Sensitive to unpol. and BM TMDs for $q_{T} \ll M_{T}$

$$
d \sigma_{U U}^{D Y} \propto f_{1}^{\bar{q}} \otimes f_{1}^{q}+\cos 2 \phi h_{1}^{\perp, \bar{q}} \otimes h_{1}^{\perp, q}
$$

- H \& D targets allow to study the antiquark content of the nucleon
- SeaQuest (E906): $\bar{d}(x)>\bar{u}(x) \rightarrow$ proton sea is not flavour symmetric
- intrinsic heavy quarks?

Quark TMDs

Transv. polarized Drell-Yan

- Sensitive to quark TMDs through TSSAs

$$
A_{N}^{D Y}=\frac{1}{P} \frac{\sigma_{D Y}^{\uparrow}-\sigma_{D Y}^{\downarrow}}{\sigma_{D Y}^{\uparrow}+\sigma_{D Y}^{\downarrow}} \Rightarrow \quad A_{U T}^{\sin \phi_{S}} \sim \frac{f_{1}^{q} \otimes f_{1 T}^{\perp q}}{f_{1}^{q} \otimes f_{1}^{q}}, A_{U T}^{\sin \left(2 \phi-\phi_{S}\right)} \sim \frac{h_{1}^{\perp q} \otimes h_{1}^{q}}{f_{1}^{q} \otimes f_{1}^{q}}, \ldots
$$

(ϕ : azimuthal orientation of lepton pair in dilepton CM)

- Extraction of qTMDs from DY does not require knowledge of FF
- Verify sign change of Sivers function wrt SIDIS

$$
\left.f_{1 T}^{\perp}\right|_{D Y}=-\left.f_{1 T}^{\perp}\right|_{\text {SIDIS }}
$$

- Test flavour sensitivity using both H and D targets

Probing the gTMDs

gluon pol.				
$\begin{aligned} & 0 \\ & 0 . \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		U	Circularly	Linearly
	U	f_{1}^{g}		$h_{1}^{\perp g}$
	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

Theory framework well consolidated ...but experimental access still extremely limited!
In high-energy hadron collisions, heavy quarks are dominantly produced by gg fusion:

The most efficient way to access the gluon dynamics inside the proton at LHC is to measure heavy-quark observables

- Inclusive quarkonia production in (un)polarized pp interaction $\left(p p^{(\uparrow)} \rightarrow[Q \bar{Q}] X\right)$ turns out to be an ideal observable to access gTMDs (assuming TMD factorization)

- TMD factorization requires $q_{T}(Q) \ll M_{Q}$. Can look at associate quarkonia production, where only the relative q_{T} needs to be small:

$$
\text { E.g.: } p p^{(\uparrow)} \rightarrow J / \psi+J / \psi+X
$$

-Due the larger masses this condition is more easily matched in the case of bottomonium, where TMD factorization can hold at larger q_T (although very challenging for experiments!)

Probing the gTMDs

$$
\frac{\mathrm{d} \sigma}{\mathrm{~d} M_{\mathcal{Q Q}} \mathrm{d} Y_{\mathcal{Q Q}} \mathrm{d}^{2} \boldsymbol{P}_{\mathcal{Q Q} T} \mathrm{~d} \Omega}=\frac{\sqrt{M_{\mathcal{Q Q}}^{2}-4 M_{\mathcal{Q}}^{2}}}{(2 \pi)^{2} 8 s M_{\mathcal{Q Q}}^{2}}
$$

$$
\left\{F_{1}\left(M_{\mathcal{Q Q}}, \theta_{\mathrm{CS}}\right) \mathcal{C}\left[f_{1}^{g} f_{1}^{g}\right]\left(x_{1,2}, \boldsymbol{P}_{\mathcal{Q Q} T}\right)\right.
$$

 $+F_{2}\left(M_{\mathcal{Q Q}}, \theta_{\mathrm{CS}}\right) \mathcal{C}\left[w_{2} h_{1}^{\perp g} h_{1}^{\perp g}\right]\left(x_{1,2}, \boldsymbol{P}_{\mathcal{Q Q}_{T}}\right)$
$\left.\left.+F_{3}\left(M_{\mathcal{Q Q}}, \theta_{\mathrm{CS}}\right) \mathcal{C}\left[w_{3} f_{1}^{g} h_{1}^{\perp g}\right]\left(x_{1,2}, \boldsymbol{P}_{\mathcal{Q Q}_{T}}\right)+F_{3}^{\prime}\left(M_{\mathcal{Q Q}}, \theta_{\mathrm{CS}}\right) \mathcal{C}\left[w_{3}^{\prime} h_{1}^{\perp g} f_{1}^{g}\right]\left(x_{1,2}, \boldsymbol{P}_{\mathcal{Q Q}_{T}}\right)\right) \cos 2 \phi_{\mathrm{CS}}+F_{4}\left(M_{\mathcal{Q Q}}, \theta_{\mathrm{CS}}\right) \mathcal{C}\left[w_{4} h_{1}^{\perp g} h_{1}^{\perp g}\right]\left(x_{1,2}, P_{\mathcal{Q Q}_{T}}\right) \cos 4 \phi_{\mathrm{CS}}\right\}$

Predictions based on CSM + TMD evolution for $\boldsymbol{x}_{\mathbf{1}} \sim \boldsymbol{x}_{\mathbf{2}} \sim \mathbf{1 0}^{\mathbf{- 3}}$ at forward rapidity [EPJ C 80, 87 (2020)]

Azimuthal amplitudes
~5\%!

Probing the gluon Sivers function

gluon pol.

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & z \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		U	Circularly	Linearly
	U	f_{1}^{g}		$h_{1}^{\perp g}$
	L		$g_{1 L}^{g}$	$h_{1 L}^{\perp g}$
	T	$f_{1 T}^{\perp g}$	$g_{1 T}^{g}$	$h_{1}^{g}, h_{1 T}^{\perp g}$

- Sheds light on spin-orbit correlations of unpol. gluons inside a transv. pol. proton
- sensitive to color exchange among IS and FS and gluon OAM
- expected to be small (quasi-saturation of Burkardt sum rule by $f_{1 T}^{\perp q}$ and QCD predictions in large- N_{c} limit)
- can be accessed through the Fourier decomposition of the TSSAs for inclusive heavy meson production

$$
A_{N}=\frac{1}{P} \frac{\sigma^{\uparrow}-\sigma^{\downarrow}}{\sigma^{\uparrow}+\sigma^{\downarrow}} \propto\left[f_{1 T}^{\perp g}\left(x_{a}, k_{\perp a}\right) \otimes f_{g}\left(x_{b}, k_{\perp b}\right) \otimes d \sigma_{g g \rightarrow Q Q g}\right] \sin \phi_{S}+\cdots
$$

- Predictions for pol. FT meas. at LHC (LHCspin-like)
- Phys. Rev. D 102, 094011 (2020)
- $\boldsymbol{p} \boldsymbol{p}^{\uparrow} \rightarrow \boldsymbol{J} / \boldsymbol{\psi}+\boldsymbol{X}$
- based on GPM \& CGI-GPM
- Expected amplitudes could reach 5-10\% in the $\boldsymbol{x}_{\boldsymbol{F}}<\mathbf{0}$ region

A TSSA analysis at LHCspin with $J / \Psi \rightarrow \mu^{+} \mu^{-}$events

Knowledge of the polarisation degree

- To estimate the systematic error due to the measurement of the polarisation degree, the analysis is repeated with different ΔP
- Very relevant for the R\&D (e.g. cell vs jet target). With the shown analysis*:
- 5% error (realistic value) \rightarrow negligible effect
- 20% error $\rightarrow 30-40 \%$ of the stat. error

$$
\Delta P=5 \%
$$

$p_{T}(\mathrm{MeV})$	x_{F}	a_{1}
$[0,1500]$	$[-0.70,-0.09]$	0.089 ± 0.013
$[0,1500]$	$[-0.09,-0.06]$	0.104 ± 0.012
$[0,1500]$	$[-0.06,-0.04]$	0.098 ± 0.013
$[0,1500]$	$[-0.04,0.05]$	0.117 ± 0.014
$[1500,6000]$	$[-0.70,-0.09]$	0.092 ± 0.010
$[1500,6000]$	$[-0.09,-0.06]$	0.108 ± 0.011
$[1500,6000]$	$[-0.06,-0.04]$	0.105 ± 0.012
$[1500,6000]$	$[-0.04,0.05]$	0.105 ± 0.012

$\Delta P=20 \%$

$p_{T}(\mathrm{MeV})$	x_{F}	a_{1}
$[0,1500]$	$[-0.70,-0.09]$	0.087 ± 0.014
$[0,1500]$	$[-0.09,-0.06]$	0.103 ± 0.016
$[0,1500]$	$[-0.06,-0.04]$	0.097 ± 0.016
$[0,1500]$	$[-0.04,0.05]$	0.114 ± 0.017
$[1500,6000]$	$[-0.70,-0.09]$	0.090 ± 0.013
$[1500,6000]$	$[-0.09,-0.06]$	0.108 ± 0.015
$[1500,6000]$	$[-0.06,-0.04]$	0.104 ± 0.015
$[1500,6000]$	$[-0.04,0.05]$	0.102 ± 0.015

- 50\% error \rightarrow syst. dominated

LHCspin event rates

Precise spin asymmetry on $J / \Psi \rightarrow \mu^{+} \mu^{-}$and $D^{0} \rightarrow K^{-} \pi^{+}$for $p H^{\uparrow}$ collisions in just few weeks with Run3 luminosity! Statistics further enhanced by a factor 3-5 in LHCb upgrade II

Spin physics in heavy-ion collisions

- probe collective phenomena in heavy-light systems through ultrarelativistic collisions of heavy nuclei with trasv. pol. deuterons
- polarized light target nuclei offer a unique opportunity to control the orientation of the formed fireball by measuring the elliptic flow relative to the polarization axis (ellipticity).

International framework and feedback

Several experiments dedicated to spin physics, but with many limitations:
very low energy, no rare probes, no ion beam, ... LHCspin is unique in this respect

LHCspin is complementary to EIC

linearly polarized gluon TMD

	$p p \rightarrow \gamma \gamma X$	$p A \rightarrow \gamma^{*}$ jet X	$e p \rightarrow e^{\prime} Q \bar{Q} X$ $e p \rightarrow e^{\prime} j_{1} j_{2} X$	$p p \rightarrow \eta_{c, b} X$ $p p \rightarrow H X$	$p p \rightarrow J / \psi \gamma X$ $p p \rightarrow \Upsilon \gamma X$

TMDs (Sivers)				[D. Boer: arXiv:1611.06089, D. Boer et al. HEPJ 082016 001]		
	DY	SIDIS	$p^{\dagger} A \rightarrow h X$	$p^{\dagger} A \rightarrow \gamma^{(*)}$ jet X	$\begin{aligned} & p^{\dagger} p \rightarrow \gamma \gamma X \\ & p^{\dagger} p \rightarrow J / \psi \gamma X \\ & p^{\dagger} p \rightarrow J / \psi J / \psi X \\ & \hline \end{aligned}$	$\begin{aligned} & e p^{\dagger} \rightarrow e^{\prime} Q \bar{Q} X \\ & e p^{\dagger} \rightarrow e^{\prime} j_{1} j_{2} X \end{aligned}$
$\mathrm{f}_{1 T}^{\perp g[+,+]}$ (WW)	\times	\times	\times	\times	\checkmark	$\sqrt{ }$
$f_{1 T}^{\perp g[+,-1}(\mathrm{DP})$	\checkmark	\checkmark	\checkmark	\checkmark	\times	\times

$f_{1 T}^{\perp g[+,+]}$ (Weizsacker-Williams type or "f-type") \rightarrow antisymmetric colour structures
$f_{1 T}^{\perp g[+,-]}$ (Dipole s type or "d-type") \rightarrow symmetric colour structures
\square Can be measured at the Electron Ion-Collider (EIC) \square Can be measured at LHCspin
"Ambitious and long term LHC-Fixed Target research program. The efforts of the existing LHC experiments to implement such a programme, including specific R\&D actions on the collider, deserve support" (European Strategy for Particle Physics)
"This would be unique and highly complementary to existing and future measurements in lepton-proton collisions, because the asymmetries in question have a process dependence between pp and lp that is predicted by theorkisfern Physics Beyond Collider)

The ALICE unpolarised solid targe \dagger

Two main physics goals:

- Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon and nucleus (structure of nucleon and nuclei at large-x, gluon EMC effect in nuclei, intrinsic charm in nucleon)
- Study heavy-ion collisions between SPS and RHIC energies towards large rapidities (longitudinal expansion of QGP formation, collectivity in small systems with heavy quarks, factorisation of CNM effects)
- Proton beam halo channelled with a bent crystal on a retractable solid target (C,W, Ti...)
- Backward cms rapidity coverage with forward detectors in the lab thanks to the boost

retractable solid target

Some of the performances

Some of the results achieved

Proton beam collimation studies performed: loss maps, positioning of the crystal system and of the absorbers

LOI in ALICE (2022) —> aim for installation during LS3 (2026-2028)
Λ : efficiency and p_{T} resolution sufficient for analysis (without extra vertex detector)
Do: TPC vertex resolution not sufficient to use secondary vertex method for analysis. Investigating combinatorial background method, reduced target size and constraints on beam spot position for tracking
Integration solutions to comply with FOCAL and ITS motion constraints during EYETS
Physics performance with realistic detector conditions

Conclusions

Fixed target physics at LHC is an exiting reality

has potentialities in the unpolarised case showing complementarity to LHCb

already operative and taking unpolarised data
is an innovative and unique project conceived to bring polarized physics at the LHC. It is extremely ambitious in terms of both physics reach and technical complexity. It could be installed in a realistic time schedule and costs

[^0]: [NIMA 540 (2005) 68-101]

