Extraction of TMD distributions from the SIDIS data: looking towards JLab22

Alexey Vladimirov

APCTP Focus Program July 20, 2022

- ▶ how modern TMD phenomenology works.
- ▶ how impact studies for future colliders are done.
- Also I will present some superficial (due to lack of time) studies of pseudo-data from JLab22.

Hope to have live-full discussion afterwards!

Outline

- ▶ Present state-of-the-art in TMD phenomenology
- ▶ Features and problems of TMD phenomenology
- ▶ TMDs at JLab22 (first look)

・ロト ・日 ・ ・ ヨ ・ ・

$$\frac{d\sigma}{dp_{T}} = \sigma_{0} \int \frac{d^{2}b}{(2\pi)^{2}} e^{i(bp_{T})} C\left(\frac{Q}{\mu}\right) F_{1}(x_{1}, b; \mu, \zeta) F_{2}(x_{2}, b; \mu, \zeta)$$

イロト イロト イヨト イヨ

Main scales: The invariant mass of photon: $|q^2| = Q^2$ Transverse component of photon momentum: q_T

Present state-of-the-art (unpolarized)

Alexey Vladimirov

July 20, 2022 4 / 22

イロト イヨト イヨト イヨト

July 20, 2022 5/22

イロト イヨト イヨト イヨト

▶ Perturbative elements

5/22

æ

July 20, 2022

- Perturbative elements
- Models/parametrization

5/22

July 20, 2022

- Perturbative elements
- Models/parametrization
- External input (PDF, α_s , ...)

イロト イヨト イヨト イヨト

- Perturbative elements
- Models/parametrization
- External input (PDF, α_s , ...)

・ロト ・回ト ・ヨト ・ヨト

July 20, 2022

▶ Phase-space, cuts, etc.

5/22

- Perturbative elements
- Models/parametrization
- External input (PDF, α_s , ...)

・ロト ・回ト ・ヨト ・ヨト

July 20, 2022

- ▶ Phase-space, cuts, etc.
- Non-trivial numerics

5/22

- Perturbative elements
- Models/parametrization
- External input (PDF, α_s , ...)
- ▶ Phase-space, cuts, etc.
- Non-trivial numerics

 Each element is a product of hundreds of investigations/papers and could not be simply changed.
 A tiny modification in any of elements could lead to significant difference in the output.
 You are free to modify only models/parametrizatons but also within certain limitations

イロト イヨト イヨト イヨト

æ

・ロト ・回 ト ・ヨト ・ヨト

æ

・ロト ・回 ト ・ヨト ・ヨト

イロト イロト イヨト イヨト

イロト イヨト イヨト イヨト

・ロト ・回ト ・ヨト ・ヨト

All the structure is rather shaky. Modification in any element (**could**) lead to significant modification in the output

All the structure is rather shaky. Modification in any element (**could**) lead to significant modification in the output

\odot

No single group can explain SIDIS-data plainly

- ▶ TMD factorization is valid in a small corner of phase space
- Many sources of uncertainty which accumulate fast
- Many hidden problems, which we are not aware yet
- Data are imperfect
- Cannot confirm sing-change (need better DY data)

\odot

- Perturbative parts are very well known (most simple problem)
- ▶ There is some agreement in-between extraction in the unpolarized sector

イロト イヨト イヨト イヨ

 Predictions of TMD factorization work quite well (in the range of applicability)

Still I am very optimistic regarding the future of TMDs

EIC:

- \blacktriangleright SIDIS (!)
- Large number of data-points in totally unexplored region.
- High precision.
- ▶ Extreme pt-resolution

æ

・ロト ・日ト ・ヨト ・ヨト

Alexey Vladimirov

July 20, 2022 10 / 22

æ

・ロト ・日ト ・ヨト ・ヨト

Alexey Vladimirov

July 20, 2022 11/22

æ

(日) (四) (三) (三)

イロト イヨト イヨト イヨト 二日

This is a minimal study. What must be included

- ▶ Variation of other parameters (so far only 4 parameters of TMDFF)
- ▶ Extra terms to be sensitive for different regions
- ▶ More systematics (correlated uncertainties...)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The modern TMD phenomenology is cumbersome and indirect. Is there a way to directly probe TMDs?

> Direct extraction of Collins-Soper kernel and direct tests of TMD factorization

CASCADE does not have CS-kernel. It is build on different principles, but nicely predicts TMD cross-sections. Still one can extract CS-kernel and text agreement with TMD factorization.

- No parametrization
- \blacktriangleright No need for large coverage in Q
- ▶ Ultimate test of universality

イロト イヨト イヨト イヨト

 Works with SIDIS better than with DY

$$\begin{array}{c} \textbf{How does it work? (theory)} \\ \hline \textbf{TMD fac.} & \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2} = \frac{\pi \alpha_{\rm em}^2(Q)}{Q^4} \frac{y^2}{1-\varepsilon} W(Q,x,z,k_{\perp}) \\ W(Q,x,z,k_{\perp}) = \int_0^\infty \frac{b db}{(2\pi)^2} J_0\left(\frac{k_{\perp}b}{z}\right) R[b,Q \to \mu] |C_V(Q)|^2 \sum_f e_f^2 f_1(x,b;\mu) d_1(z,b;\mu) \\ \hline \textbf{Evol.factor} \\ \textbf{our goal!} \end{array}$$

$$\begin{array}{c} \text{How does it work? (theory)} \\ \hline \text{TMD fac.} & \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2} = \frac{\pi \alpha_{\text{em}}^2(Q)}{Q^4} \frac{y^2}{1-\varepsilon} W(Q,x,z,k_{\perp}) \\ W(Q,x,z,k_{\perp}) = \int_0^\infty \frac{bdb}{(2\pi)^2} J_0\left(\frac{k_{\perp}b}{z}\right) R[b,Q \rightarrow \mu] |C_V(Q)|^2 \sum_f e_f^2 f_1(x,b;\mu) d_1(z,b;\mu) \\ \hline \text{Evol.factor} \\ \text{our goal!} \end{array}$$
1) inv. Fourier
$$\Sigma(Q,x,z,b) = \int dq_T q_T J_0(q_T b) \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2}, \qquad q_T = \frac{k_{\perp}}{z} \end{array}$$

July 20, 2022 15 / 22

How does it work? (theory)

$$\begin{array}{c} \underline{\text{TMD fac.}} & \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2} = \frac{\pi \alpha_{\text{em}}^2(Q)}{Q^4} \frac{y^2}{1-\varepsilon} W(Q, x, z, k_{\perp}) \\ W(Q, x, z, k_{\perp}) = \int_0^\infty \frac{bdb}{(2\pi)^2} J_0\left(\frac{k_{\perp}b}{z}\right) R[b, Q \rightarrow \mu] |C_V(Q)|^2 \sum_f e_f^2 f_1(x, b; \mu) d_1(z, b; \mu) \\ \hline \text{Evol.factor} \\ \text{our goal!} \end{array}$$
1) inv. Fourier
$$\Sigma(Q, x, z, b) = \int dq_T q_T J_0(q_T b) \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2}, \qquad q_T = \frac{k_{\perp}}{z} \\ 2) \text{ ratio} \quad \frac{\Sigma(Q_1, x, z, b)}{\Sigma(Q_2, x, z, b)} = \left(\frac{Q_2}{Q_1}\right)^4 \frac{\alpha_{\text{em}}^2 |C_V(Q_1)|^2}{\alpha_{\text{em}}^2 |C_V(Q_2)|^2} \frac{R[b, Q_1 \rightarrow \mu] \sum_f f_1(x, b, \mu) d_1(x, b, \mu)}{R[b, Q_2 \rightarrow \mu] \sum_f f_1(x, b, \mu) d_1(x, b, \mu)} d_1(x, b, \mu)} \\ \end{array}$$

How does it work? (theory)

$$\begin{array}{c} \hline \text{TMD fac.} & \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2} = \frac{\pi \alpha_{\text{em}}^2(Q)}{Q^4} \frac{y^2}{1-\varepsilon} W(Q,x,z,k_{\perp}) \\ W(Q,x,z,k_{\perp}) = \int_0^{\infty} \frac{bdb}{(2\pi)^2} J_0\left(\frac{k_{\perp}b}{z}\right) R[b,Q \rightarrow \mu] |C_V(Q)|^2 \sum_f e_f^2 f_1(x,b;\mu) d_1(z,b;\mu) \\ \hline \text{Evol.factor} \\ \text{our goal!} \end{array}$$
1) inv. Fourier
$$\Sigma(Q,x,z,b) = \int dq_T q_T J_0(q_T b) \frac{d\sigma}{dQ^2 dx dz dk_{\perp}^2}, \qquad q_T = \frac{k_{\perp}}{z} \\ 2) \text{ ratio} \quad \frac{\Sigma(Q_1,x,z,b)}{\Sigma(Q_2,x,z,b)} = \left(\frac{Q_2}{Q_1}\right)^4 \frac{\alpha_{\text{em}}^2 |C_V(Q_1)|^2}{\alpha_{\text{em}}^2 |C_V(Q_2)|^2} \frac{R[b,Q_1 \rightarrow \mu] \sum_f f_1(x,b,\mu) d_1(x,b,\mu)}{R[b,Q_2 \rightarrow \mu] \sum_f f_1(x,b,\mu) d_1(x,b,\mu)} \\ 3) \text{ recall that} \quad R[b,Q_1 \rightarrow \mu] = \exp\left(2\int_{P(Q_1 \rightarrow \mu)} \left(\gamma_F(\mu,\zeta) \frac{d\mu}{\mu} - \mathcal{D}(b,\mu) \frac{d\zeta}{\zeta}\right)\right) \end{array}$$

How does it work? (practice)

(must have!)	
▶ Cross-section in the photon frame	$q_T = p_\perp/z$
▶ Fine binning in q_T	smaller bins larger-b
▶ As small as possible uncertanties	Fourier is uncertainty-hungry
\blacktriangleright (At least) two narrow bins in Q	Large Q-bin $=$ large systematic

(what helps)

- \blacktriangleright Integrate over x
- \blacktriangleright Integrate over z
- ▶ Large- q_T tail is not interesting

such that ranges for Q_1 and Q_2 coincides in photon frame no TMD-fac.

イロト イヨト イヨト イヨト

Why is it interesting?

- Direct extraction of Collins-Soper kernel
 - ▶ CS kernel is one of the most fundamental QCD functions

▶ Ultimate test of factorization hypothesis

- ▶ Different (Q, x, z) <u>MUST</u> result into the same curve
- ▶ Different final states (π^{\pm}, K^{\pm}) <u>MUST</u> result into the same curve

It is a very precise test!

イロト イヨト イヨト イヨ

How does it works? (JLab22)

Alexey Vladimirov

TMD phenomenology

July 20, 2022 18 / 22

How does it works? (JLab22)

How does it works? (JLab22)

Comparison with EIC

In the EIC case I included (estimation) of systematics, which is larger than statistics

 $\mathrm{EIC} \rightarrow \mathrm{Much}$ better small-b

JLab \rightarrow Much better large-b

definite complementarity

WARNING!

This estimation uses exact TMD factorization In reality it will look VERY different (the most interesting part)

・ロト ・日下 ・ヨト

More realistic picture

Alexey Vladimirov

TMD phenomenology

July 20, 2022 20 / 22

æ

イロト イヨト イヨト イヨト

More realistic picture

æ

Alexey Vladimirov

July 20, 2022 21 / 22

æ

・ロト ・四ト ・モト ・モン

Alexey Vladimirov

July 20, 2022 21 / 22

æ

(日) (四) (三) (三)

- ▶ TMD factorization for SIDIS and/or low-energy is in a very badly shape
 - ▶ All extractions (MAP22, SV19, ...) contains some explicit/implicit feature which make them suspicious
 - ▶ The problem is (most probably) due to power corrections
- ▶ Impact studies (for SIDIS and/or low-energies) are schematic
 - ▶ They estimate the uncertainty on the ideal theory.
 - ▶ Miss many elements (also because they are time consuming, but not interesting)
- ▶ JLab22 looks very good
 - ▶ It will zoom-in different regions in comparison to EIC Example: small-b vs. large-b in Collins-Soper
 - If we will tame power corrections

イロト イヨト イヨト イヨト