φ meson polarization in pA collisions- expectations from theory -

Philipp Gubler (JAEA)

H.J. Kim and P. Gubler, Phys. Lett. B **805**, 135412 (2020). I.W. Park, H. Sako, K. Aoki, P. Gubler and S.H. Lee, in preparation.

Talk at ExHIC 2022, APCTP, Pohang, South Korea/online, September 30, 2022 Work done in collaboration with HyungJoo Kim (Yonsei U.) InWoo Park (Yonsei U.) Hiroyuki Sako (JAEA) Kazuya Aoki (KEK) Su Houng Lee (Yonsei U.)

Interest

Case 1: ϕ meson at rest in nuclear matter

The ϕ meson mass in nuclear matter probes the strange quark condensate at finite density!

 $|\langle \overline{ss} \rangle_{\rho}|$

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

?

TILd

Case 1: ϕ meson **at rest** in nuclear matter

The ϕ meson mass in nuclear matter probes the strange quark condensate at finite density!

Case 2: φ meson **moving** in nuclear matter

φ meson properties depend on the spin polarization (longitudinal or transverse)

> Broken Lorentz symmetry

Non-trivial polarization dependent dispersion relations

Motivation for considering **moving** φ meson

In an actual experiment, the ϕ is (almost) always moving with non-zero velocity

Non-negligible effect on the spectral function? On mass?

On width?

E325 (KEK) E16 (J-PARC)

Possible measurement of the non-trivial dispersion relation at the J-PARC E16 experiment

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979).

QCD sum rules

 $\langle ST \overline{s} \gamma^{\alpha} i D^{\beta} i D^{\gamma} i D^{\delta} s \rangle_{\rho}$

q²

Makes use of the analytic properties of the correlation function:

$$\Pi^{\mu\nu}(q^2) = i \int d^4x e^{iqx} \langle T[j^{\mu}(x)j^{\nu}(0)] \rangle_{\rho}$$

spectral function

$$\rightarrow \prod^{\mu\nu}(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} ds \frac{\operatorname{Im} \Pi^{\mu\nu}(s)}{s - q^{2} - i\epsilon} \langle \overline{s}s \rangle_{\rho}, \langle G^{a}_{\mu\nu} G^{a\mu\nu} \rangle_{\rho}, \langle \overline{s}\sigma_{\mu\nu} \frac{\lambda^{a}}{2} G^{a\mu\nu} s \rangle_{\rho}, \langle \overline{s}r \overline{s}\gamma^{\alpha} i D^{\beta} s \rangle_{\rho}, \langle ST \overline{s}\gamma^{\alpha} i D^{\beta} s \rangle_{\rho}, \\ \langle ST G^{a\alpha}_{\mu} G^{a\mu\beta} \rangle_{\rho}, \end{cases}$$
 non-scalar condensates:

non-trivial dispersion relation

The non-zero momentum case:

Disentangling longitudinal and transverse components

 $\Pi^{\mu\nu}(\omega^2,\vec{q}^{\,2})$

 $\Pi_L(\omega^2, \vec{q}^{\,2}) = \frac{1}{\vec{q}^{\,2}} \Pi_{00}$

 $\Pi_T(\omega^2, \vec{q}^{\,2}) = -\frac{1}{2} \left(\frac{1}{\vec{q}^{\,2}} \Pi_{00} + \frac{1}{q^2} \Pi^{\mu}_{\mu} \right)$

The ϕ meson with non-zero momentum

$$\frac{1}{\omega^2 - \vec{q}^2 - m_{\phi,L}^2(\vec{q}^2)} \quad \begin{array}{l} \text{longitudinal} \\ \text{part} \end{array}$$

$$\frac{1}{\omega^2 - m_{\phi}^2(0)} \quad \begin{array}{l} \frac{1}{\omega^2 - \vec{q}^2 - m_{\phi,T}^2(\vec{q}^2)} \quad \begin{array}{l} \text{transverse} \\ \text{part} \end{array}$$

zero momentum

non-zero momentum \vec{q}

Results for the ϕ meson mass with non-zero momentum

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

1.2 |q|=2.0 GeV ····· ho_{vac} Γ=15. MeV Γ=40. MeV 0.8 Γ=65. MeV A double peak? 0.4 1.06 0.98 1.02 1.04 0.96 \sqrt{s} [GeV]

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

Even without a double peak, momentum effects can be observed

Can the two polarizations be disentangled?

Look at the angular distributions of various decay channels

To be measured soon at the J-PARC E16 experiment

New proposal P88 submitted to J-PARC PAC A simple example of dilepton decay of a longitudinally polarized $\boldsymbol{\phi}$

after decay

other ϕ -dependent terms

A simple example of K^+K^- decay of a transeversely polarized ϕ

Full angular distribution of K⁺K⁻ decay

Summary of φ meson dilepton and K⁺K⁻ decays

Discussions with J-PARC E16 members on how to distinguish the transverse and longitudinal modes are ongoing.

I.W. Park, H. Sako, K. Aoki, P. Gubler and S.H. Lee, in preparation.

A further task for theory

Have a good understanding of the production mechanisms of the ϕ mesons in nuclei from pA reactions.

Where (and at what densities) is the ϕ meson produced and where does it decay?

How do the final state interactions of the decay particles influence the decay spectrum (especially for K^+K^-)?

Realistic transport simulations using a transport approach (calculations using the PHSD code are ongoing)

Summary and conclusions

★ Dispersion relations of hadrons can be non-trivially modified in nuclear matter.

★ For the φ meson, the longitudinal and transverse modes are shifted in opposite directions with increasing momentum.

May be observed as a **double peak** in the angle averaged di-lepton spectrum or a small **positive mass shift + width increase** at the E16 experiment at J-PARC

Making use of the angular dependences of the dilepton and K⁺K⁻ decay channels, it is possible to **disentangle the longitudinal and transverse polarization modes**

Announcement/Advertisement

		💮 Public -	🕚 Asla/Seoul 👻	🔔 P. Gubler 👻
Reimei Workshop: Polarization phenomena and Lorentz symmetry violation in dense matter				
6–8 Oct 2022 Yonsei University Asia/Seoul timezone	Enter your search term	۹		
Overview Timetable Contribution List My Conference L My Contributions Registration Participant List	The second Reimei Workshop "Polarization phenomena and Lorentz symmetry violation in den matter" will be held on October 6-8, 2022 at Yonsei University in an online format with limited o participants. The workshop will focus on topics involving experimental and theoretical studies hadronic polarization observables in a dense environment, modifications of hadrons and their relations in nuclear matter, the relation of these phenomena to QCD and chiral symmetry, relate experimental measurements at facilities around the world and especially the ongoing E16 experi at J-PARC. The goal of the workshop is to stimulate discussions between theorists and experin in order to exchange new ideas. This is a sequel of the previous Reimei workshop "Hadrons in o matter at J-PARC", held at Tokai on February, 2022. Topics to be discussed: -Hadronic polarization observables in nuclear and heavy-ion collisions -In-medium effects of Lorentz symmetry breaking -Modified hadronic dispersion relations in nuclear matter -Hadronic final state measurements -Dilepton measurements -Dilepton measurements -Related topics	se nsite of dispersion ed eriment nentalists dense		

More information can be found here: https://indico.knu.ac.kr/event/594/

Backup slides

R. Muto et al. (E325 Collaboration), Phys. Rev. Lett. 98, 042501 (2007).

Experimental di-lepton spectrum

Our tool: transport simulation HSD (Hadron String Dynamics)

E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).W. Cassing and E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

Off-shell dynamics of vector mesons and kaons is included (dynamical modification of the mesonic spectral function during the simulated reaction)

off-shell terms

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} \operatorname{Re} \Sigma_{(i)}^{\text{ret}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{P_{i}} \vec{\Gamma}_{(i)} \bigg] \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[\vec{\nabla}_{X_{i}} \operatorname{Re} \Sigma_{i}^{\text{ret}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{X_{i}} \tilde{\Gamma}_{(i)} \bigg], \\ \frac{d\varepsilon_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[\frac{\partial \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\partial t} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \frac{\partial \tilde{\Gamma}_{(i)}}{\partial t} \bigg], \end{split}$$

Testparticle approach:

The importance of off-shell contributions

Taken from: E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).

Our tool: a transport code PHSD (Parton Hadron String Dynamics)

W. Cassing and E. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

What density does the φ feel in the reaction (p+Cu at 12 GeV)?

produced at densities around ρ_0

Majority of φ mesons decay in free space (note the log-scale!)

How do experimental rescattering and QED effects modify the dilepton spectrum?

