Exotics and Exotic Phenomena in Heavy Ion Collisions

Spin Polarization in Heavy Ion Collisions

Xu-Guang Huang Fudan University, Shanghai

October 01, 2022 APCTP Pohang, Korea & Online

ExHIC and spin polarization

• From Su Houng's talk:

Origin of Exotics from Heavy Ion Collision (ExHIC): Theory Collaboration

- 2007.12-3 -12-14: APCTP Focus program on Hadron Physics at RHIC
- 2010.5.17-30: Yukawa Institute (YITP) workshop on ExHIC

 2019.3-25 -4.5: YITP workshop on "Hadron Interactions and Polarization from High energy Collisions"

PHYSICAL REVIEW C 102 , 021901(R) (2020)
tapid Communications
Signatures of the vortical quark-gluon plasma in hadron yields
Hidetoshi Taya [•] , ^{1,2} Aaron Park, ³ Sungtae Cho, ⁴ Philipp Gubler, ⁵ Koichi Hattori, ⁶ Juhee Hong, ³ Xu-Guang Huang, ^{1,7} Su Houng Lee, ³ Akihiko Monnai, ^{8,9} Akira Ohnishi, ⁶ Makoto Oka, ⁵ and Di-Lun Yang ¹⁰ (ExHIC-P Collaboration)
¹ Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8521, Japar
³ Department of Physics and Institute of Physics and Applied Physics, Yonsei University, Seoul 03722, Korea
⁴ Division of Science Education, Kangwon National University, Chuncheon 24341, Korea
⁵ Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
⁶ Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto, 606-8317, Japan
⁷ Key Laboratory of Nuclear Physics and Ion-beam Application (MOE), Fudan University, Shanghai 200433, China
⁸ KEK Theory Center, Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
⁹ Department of Mathematical and Physical Sciences, Japan Women's University, Tokyo 112-8681, Japan
¹⁰ Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan
(Received 1 March 2020; accepted 1 July 2020; published 3 August 2020)

<u>Content</u>

- Introduction: Vorticity in heavy ion collisions
- Global spin polarization
 - Experimental results
 - Theoretical interpretation
- Local spin polarization
 - Experimental results
 - Puzzles and the attempts to the resolution
- Spin alignment of vector mesons

• Summary

Introduction

• Angular momentum conservation

•

No rigid rotation^{*}, but local fluid vorticity

(Angular velocity of fluid cell)

Angular momentum conservation

No rigid rotation*, but local fluid vorticity

$$\boldsymbol{\omega} = \frac{1}{2} \boldsymbol{\nabla} \times \boldsymbol{\nu}$$

(Angular velocity of fluid cell)

- Estimation at low energy $\sqrt{s} \gtrsim 2m_N$ •
- Estimation at high energy $\sqrt{s} \gg 2m_N$ part of $J_0 \sim Ab \sqrt{s}$ retained in the produced matter:

$$J \approx \int d^3 x \gamma^2(x) \varepsilon(x) x_{\perp}^2 \overline{\omega} \sim s A \sqrt{s} R_A^2 \overline{\omega} / (2m_N)^2$$
 for $b < 2R_A$

 $\overline{\omega} \sim \frac{b}{R_A^2} \left(\frac{2m_N}{\sqrt{s}}\right)^2 \sim 10^{19} s^{-1}$ $(b = R_A, \sqrt{s} = 200 \text{ GeV})$

* At low energy, there is a possibility that two colliding nuclei fuse into a compound high-spin nucleus

• Relativistic vorticities

Kinematic vorticity
$$\omega_{\mu\nu}^{\mathrm{K}} = -\frac{1}{2}(\partial_{\mu}u_{\nu} - \partial_{\nu}u_{\mu}) \implies \omega_{\mathrm{K}}^{\mu} = -(1/2)\epsilon^{\mu\nu\rho\sigma}u_{\nu}\omega_{\rho\sigma}^{\mathrm{K}}$$
Temperature vorticity $\omega_{\mu\nu}^{\mathrm{T}} = -\frac{1}{2}[\partial_{\mu}(Tu_{\nu}) - \partial_{\nu}(Tu_{\mu})]$ Thermal vorticity $\omega_{\mu\nu}^{\beta} = -\frac{1}{2}[\partial_{\mu}(\beta u_{\nu}) - \partial_{\nu}(\beta u_{\mu})]$

• Numerical results for various vorticities

Relativistic vorticities

 $\omega_{\mu\nu}^{\rm K} = -\frac{1}{2} (\partial_{\mu} u_{\nu} - \partial_{\nu} u_{\mu}) \quad \Longrightarrow \quad \omega_{\rm K}^{\mu} = -(1/2) \epsilon^{\mu\nu\rho\sigma} u_{\nu} \omega_{\rho\sigma}^{\rm K}$ **Kinematic vorticity** Temperature vorticity $\omega_{\mu\nu}^{T} = -\frac{1}{2} [\partial_{\mu}(Tu_{\nu}) - \partial_{\nu}(Tu_{\mu})]$ $\omega_{\mu\nu}^{\beta} = -\frac{1}{2} [\partial_{\mu}(\beta u_{\nu}) - \partial_{\nu}(\beta u_{\mu})]$ Thermal vorticity

Numerical results for various vorticities

(See also: Becattini-Karpenko etal 2015,2016; Xie-Csernai etal 2014,2016,2019; Pang-Petersen-Wang-Wang 2016; Xia-Li-Wang 2017,2018; Sun-Ko 2017; Ivanov etal 2017-2020;)

Au+Au @ b=7 fn

0 baseline

11.5 GeV

27 GeV

62.4GeV

200 GeV

10

6

Vorticity by inhomogeneous expansion

Other sources of vorticity

1) Jet

(Pang-Peterson-Wang-Wang 2016)

(Voloshin 2018; Lisa etal 2021)

2) Magnetic field

Einstein-de-Haas effect

Summary of this part

1. Global AM induces strong vorticity in HICs

:
$$\omega \approx 10^{19} - 10^{22} \, s^{-1}$$

(QGP: The most vortical fluid)

2. Inhomogeneous expansion: quadrupoles in both xy and xz planes

3. Vorticity (i.e., rotation of local fluid cell) can polarize spin

Global spin polarization

Global spin polarization

• The original idea was proposed by Liang and Wang

(Figure by J. H. Gao)

Global spin polarization: Experiments

• First measurement of Λ global polarization (in rest frame) by STAR@RHIC

parity-violating decay of hyperons

In case of Λ 's decay, daughter proton preferentially decays in the direction of Λ 's spin (opposite for anti- Λ)

$$\frac{dN}{d\Omega^*} = \frac{1}{4\pi} (1 + \alpha \mathbf{P}_{\mathbf{\Lambda}} \cdot \mathbf{\hat{p}}_{\mathbf{p}}^*)$$

 α : Λ decay parameter ($\alpha_{\Lambda}=0.732$) P_{\Lambda}: Λ polarization p_p*: proton momentum in Λ rest frame

 $\Lambda \rightarrow p + \pi$ - (BR: 63.9%, c τ ~7.9 cm)

• Using Λ to study spin physics in p+p, e+p, e+e collisions has a long history

Useful for understanding e.g. single spin asymmetry, proton spin puzzle, ...

15

Global spin polarization: Experiments

• Ξ^- , Ω^- global polarization by STAR@RHIC, Λ global polarization by ALICE@LHC

magnetic

moment µ_H

-0.613

-0.6507

-2.02

αн

0.732

-0.401

0.0157

Useful to understand B-field,

but still big uncertainties

∧→рπ-

(BR: 63.9%)

 $\Xi^{-} \rightarrow \Lambda \pi^{-}$

(BR: 99.9%)

Ω-**→**∧K-

(BR: 67.8%)

spin

1/2

1/2

3/2

Global polarization at low energy by STAR@RHIC 2021, HADES@GSI 2021

A spin polarization formula

- Global polarization is (mainly) due to global angular momentum (AM)
- Vorticity: a bridge connecting initial AM and final global polarization

An estimate for static spin:
$$P = \frac{\langle s \rangle}{s} = \frac{1}{sZ} \operatorname{Tr} \left(s e^{-\beta H + \beta s \cdot \omega} \right) \approx \frac{s+1}{3} \frac{\omega}{T}$$

Covariant extension to moving spin-1/2: (Becattini etal 2013, Fang-Pang-Wang-Wang 2016, Liu-Mameda-XGH 2020)

$$P^{\mu}(p) = -\frac{1}{8E_{p}} \epsilon^{\mu\nu\rho\sigma} p_{\nu} \frac{\int d\Sigma_{\lambda} p^{\lambda} f'(x,p) \varpi_{\rho\sigma}(x)}{\int d\Sigma_{\lambda} p^{\lambda} f(x,p)} + O(\varpi^{2})$$

- Valid at global equilibrium in lab frame. f(x, p) is Fermi-Dirac distribution
- Thermal vorticity $\varpi_{\rho\sigma} = \left(\frac{1}{2}\right) \left(\partial_{\sigma}\beta_{\rho} \partial_{\rho}\beta_{\sigma}\right), \beta_{\mu} = u_{\mu}/T$
- Spin polarization is enslaved to thermal vorticity, not dynamical
- Friendly for numerical simulation (A Cooper-Frye type freeze-out formula)
- When magnetic field is present: $\omega \Rightarrow \omega + s^{-1} \mu_H B$ and $\varpi_{\rho\sigma}^{\perp} \Rightarrow \varpi_{\rho\sigma}^{\perp} 2\beta \mu_H F_{\rho\sigma}^{\perp}$

Global spin polarization: Vorticity

 Λ hyperons: Experiment = Theory

(Li-Pang-Wang-Xia 2017; Sun-Ko 2017; Wei-Deng-XGH 2019; Xie-Wang-Csernai 2017; Karpenko-Becattini 2016)

(See also: Sun-Ko etal 2019; Xie-Wang-Csernai etal 2018-2021; Ivanov etal 2017-2019; Liao etal 2018-2021; Deng-XGH-Ma 2021;)

Global spin polarization: Vorticity

 Ξ, Ω hyperons: Experiment = Theory

Vorticity interpretation of global spin polarization works well!

Local spin polarization

Local A spin polarization

The global Λ polarization reflects the total amount of angular momentum retained in the mid-rapidity region. How is it distributed in different ϕ ?

• Spin harmonic flow:

$$\frac{dP_{y,z}}{d\phi} = \frac{1}{2\pi} [P_{y,z} + 2f_{2y,z}\sin(2\phi) + 2g_{2y,z}\cos(2\phi) + \cdots]$$

Azimuthal angle ϕ

$${m f_2},{m g_2}$$
: Spintronics analogue of elliptic flows

 \odot z direction

$$\frac{dN_{\rm ch}}{d\phi} \propto 1 + 2v_1 \cos\left(\phi - \Psi_1\right) + 2v_2 \cos\left[2(\phi - \Psi_2)\right] + \cdots$$

Local A spin polarization

The global Λ polarization reflects the total amount of angular momentum retained in the mid-rapidity region. How is it distributed in different ϕ ?

• Spin harmonic flow:

$$\frac{dP_{y,z}}{d\phi} = \frac{1}{2\pi} \left[P_{y,z} + 2f_{2y,z} \sin(2\phi) + 2g_{2y,z} \cos(2\phi) + \cdots \right]$$

How to resolve the local spin polarization puzzles

Attack the spin sign problem from theory side:

- Understand the vorticity (☺)
- Effect of feed-down decays is not enough (☺)
- Go beyond equilibrium treatment (spin as a dynamic d.o.f) spin hydrodynamics spin kinetic theory
- Initial condition (Initial polarization, initial flow,)
- Other possibilities

(chiral vortical effect (Liu-Sun-Ko 2019), mesonic mean-field (Csernai-Kapusta-Welle 2019), other spin chemical potential (Wu-Pang-XGH-Wang 2019, Florkowski etal 2019), contribution from shear flow (Becattini etal 2021, Fu-Liu-Pang-Song-Yin 2021, Yi-Pu-Yang 2021), contribution from gluons,)

Revisit spin polarization formula

• Consider a local Gibbs state for spin-1/2 fermions* (Zubarev etal 1979, Van Weert 1982, Becattini etal 2013)

$$\hat{\rho}_{\mathrm{LG}} = \frac{1}{Z_{\mathrm{LG}}} \exp \left\{ -\int_{\Xi} d\Xi_{\mu}(y) \begin{bmatrix} \hat{\Theta}^{\mu\nu}(y)\beta_{\nu}(y) - \frac{1}{2}\hat{\Sigma}^{\mu\rho\sigma}(y)\mu_{\rho\sigma}(y) \end{bmatrix} \right\}$$
Thermal flow vector Spin potential

The corresponding Wigner function

$$W(x,p) = \operatorname{Tr}\left[\hat{\rho}_{\mathrm{LG}}\hat{W}(x,p)\right] = \operatorname{Tr}\left[\hat{\rho}_{\mathrm{LG}}\int d^{4}s e^{-ip\cdot s}\bar{\hat{\psi}}\left(x+\frac{s}{2}\right)\otimes\hat{\psi}\left(x-\frac{s}{2}\right)\right]$$

• The canonical spin vector in phase space

$$S^{\mu}(x,p) = -\frac{1}{6} \epsilon^{\mu\nu\rho\sigma} \Sigma_{\nu\rho\sigma}(x,p) = -\frac{1}{24} \epsilon^{\mu\nu\rho\sigma} \operatorname{Tr}_{\mathrm{D}}\left[\{\gamma_{\nu}, \Sigma_{\rho\sigma}\} W(x,p)\right]$$

24

* Obtained by maximizing Von Neumann entropy under local constraints of stress and angular momentum tensors: $s = -\text{Tr}(\hat{\rho}\ln\hat{\rho})$ with $n_{\mu}\text{Tr}(\hat{\rho}\hat{\Theta}^{\mu\nu}) = n_{\mu}\Theta^{\mu\nu}$ and $n_{\mu}\text{Tr}(\hat{\rho}\hat{\Sigma}^{\mu\rho\sigma}) = n_{\mu}\Sigma^{\mu\rho\sigma}$

Revisit spin polarization formula

• For Dirac fermions (on-shell) at local equilibrium (Liu-XGH 2021; Buzzegoli 2021)

$$\bar{S}_{\mu}(p) = \bar{S}_{5\mu}(p) - \frac{1}{8\int d\Xi \cdot p \ n_F} \int d\Xi \cdot p \frac{n_F(1-n_F)}{E_p} \bigg\{ \epsilon_{\mu\nu\alpha\beta} p^{\nu} \mu^{\alpha\beta} + 2 \frac{\varepsilon_{\mu\nu\rho\sigma} p^{\rho} n^{\sigma}}{p \cdot n} \left[p_{\lambda} (\xi^{\nu\lambda} + \Delta \mu^{\nu\lambda}) + \partial^{\nu} \alpha \right] \bigg\}$$

 $\xi_{\mu\nu} = \frac{1}{2} \left(\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} \right) \quad : \text{Thermal shear tensor} \qquad \alpha = -\beta\mu \quad : \text{Baryon chemical potential}$ $\Delta\mu_{\rho\sigma} = \mu_{\rho\sigma} - \varpi_{\rho\sigma} \quad \text{with} \quad \varpi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma}\beta_{\rho} - \partial_{\rho}\beta_{\sigma} \right) \quad \text{thermal vorticity tensor}$

 \bar{S}^{μ}_{5} is the polarization induced by finite chirality

• This is a Cooper-Frye type formula for spin polarization

Recall Cooper-Frye formula for number spectrum:

$$N(p) = \int d\Xi_{\mu} \frac{p^{\mu}}{E_p} f(T(x), u^{\mu}(x), \mu(x))$$

$$\bar{S}^{\mu}(p) \leftarrow T(x), u^{\alpha}(x), \mu(x), \mu_{\alpha\beta}(x)$$

Revisit spin polarization formula

• It is worth writing down different components in non-rel. form in phase space:

$$\boldsymbol{S} = \boldsymbol{S}_{(\mu)} + \boldsymbol{S}_{(\omega)} + \boldsymbol{S}_{(\sigma)} + \boldsymbol{S}_{(T)} + \boldsymbol{S}_{(\alpha)}$$

- Spin potential: (Buzzegoli 2021, Liu-XGH 2021)
- Vorticity: (Becattini etal 2013, Fang etal 2016, Liu etal 2020)
- Shear tensor: (Becattini-Buzzegoli-Palermo 2021, Liu-Yin 2021)
- T gradient: (Becattini etal 2013, Fang etal 2016, Liu etal 2020)
- Chemical potential:

(Fang etal 2016, Liu-XGH 2021, Yi etal 2021, Fu etal 2022)

$$S_{(\mu)}^{i}(x,\mathbf{p}) = \left[\frac{\mu^{i}}{2} - \frac{\mathbf{p}^{2}\mu^{i} - \boldsymbol{\mu} \cdot \mathbf{p} p^{i}}{2E_{p}^{2}}\right] n_{F}(1-n_{F}) \quad \text{with} \quad n_{F} = n_{F}(\alpha + \beta E_{p})$$

$$S_{(\omega)}^{i}(x,\mathbf{p}) = \frac{\mathbf{p}^{2}\omega^{i} - \boldsymbol{\omega} \cdot \mathbf{p} p^{i}}{2T E_{p}^{2}} n_{F}(1 - n_{F})$$

with
$$\boldsymbol{\omega} = (\boldsymbol{\nabla} \times \boldsymbol{v})/2$$

with $\sigma_{ij} = \left(\partial_i v_j + \partial_j v_i + 2\delta_{ij} \boldsymbol{\nabla} \cdot \boldsymbol{v}/3\right)/2$

$$S_{(T)}^{i}(x,\mathbf{p}) = -\frac{\left(\mathbf{p}\times\mathbf{\nabla}T\right)^{i}}{2T^{2}E_{p}}n_{F}\left(1-n_{F}\right)$$

 $S_{(\sigma)}^{i}(x,\mathbf{p}) = \frac{\epsilon^{ijk} p^{j} p^{l} \sigma_{kl}}{2T E_{p}^{2}} n_{F}(1-n_{F})$

$$S_{(\alpha)}^{i}(x,\mathbf{p}) = \frac{(\mathbf{p} \times \boldsymbol{\nabla} \alpha)^{i}}{2E_{p}^{2}} n_{F}(1-n_{F})$$

Temperature vorticity as spin chemical potential

Recall

$$S^{\mu}(x,p) = -\frac{1}{E_p} \left[\frac{1}{4} \epsilon^{\mu\nu\alpha\beta} p_{\nu}\mu_{\alpha\beta} + \frac{1}{2p \cdot n} \epsilon^{\mu\nu\alpha\beta} \left(\xi_{\nu\lambda} + \Delta\mu_{\nu\lambda}\right) n_{\beta} p_{\alpha} p^{\lambda} \right] n_F (1-n_F) + O(\mu_{\rho\sigma}^2, \partial^2)$$

• Relax the global equilibrium condition (1)

$$\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} = 0 \qquad \qquad \mu_{\rho\sigma} = \frac{1}{2T^2} \left[\partial_{\sigma}(Tu_{\rho}) - \partial_{\rho}(Tu_{\sigma})\right]$$

(Wu-Pang-XGH-Wang 2019)

Shear tensor contribution

Recall

$$S^{\mu}(x,p) = -\frac{1}{E_p} \left[\frac{1}{4} \epsilon^{\mu\nu\alpha\beta} p_{\nu}\mu_{\alpha\beta} + \frac{1}{2p \cdot n} \epsilon^{\mu\nu\alpha\beta} \left(\xi_{\nu\lambda} + \Delta\mu_{\nu\lambda} \right) n_{\beta} p_{\alpha} p^{\lambda} \right] n_F (1-n_F) + O(\mu_{\rho\sigma}^2, \partial^2)$$

• Relax the global equilibrium condition (2) (Becattini-Buzzegoli-Palermo 2021, Liu-Yin 2021)

$$\partial_{\mu}\beta_{\nu} + \partial_{\nu}\beta_{\mu} \neq 0 \qquad \qquad \mu_{\rho\sigma} = \varpi_{\rho\sigma} = \frac{1}{2} \left(\partial_{\sigma}\beta_{\rho} - \partial_{\rho}\beta_{\sigma} \right)$$

(See also Yi-Pu-Yang 2021; Florkowski-Kumar-Mazeliauskas-Ryblewski 2021; Sun-Zhang-Ko-Zhao 2021; Alzhrani-Ryu-Shen 2022)

Dynamic description of spin polarization

- Local spin polarization is still a puzzle.
- Dynamic theories for spin transport and polarization are needed
 - > Spin hydrodynamics : Fluid velocity, temperature, and spin density evolve together
 - Spin kinetic theory: Particle and spin phase-space distribution functions evolve together
- A lot of theoretical progress since 2019

Spin alignment of vector mesons

Spin density matrix

- Spin state is conveniently described by spin density matrix (SDM)
- Choose a direction (e.g. y-axis in lab frame) to quantize spin.
- For spin-1/2 particles (e.g. quarks), a state with only polarization in y-direction:

$$\phi^{q} = \frac{1}{2} \left(1 + P_{y}^{q} \sigma_{y} \right) = \frac{1}{2} \left(\begin{array}{cc} 1 + P_{y}^{q} & 0 \\ 0 & 1 - P_{y}^{q} \end{array} \right)$$

• A spin-1 particle (e.g. ϕ meson), SDM is 3×3 matrix in basis $|1\rangle$, $|0\rangle$, $|-1\rangle$

$$\rho^{V} = \begin{pmatrix} \rho_{11} & \rho_{10} & \rho_{1-1} \\ \rho_{01} & \rho_{00} & \rho_{0-1} \\ \rho_{-11} & \rho_{-10} & \rho_{-1-1} \end{pmatrix}$$

Hermiticity and unit-trace constrain that only 8 elements are independent:
 3 form a vector and 5 form a rank-2 spherical tensor

Spin density matrix

- Consider recombination $q + \overline{q}
 ightarrow \phi$
- ρ^V is obtained by $\rho^q \otimes \rho^{\overline{q}}$ projected onto spin-1 subspace

$$\rho^{V} = \begin{pmatrix} \frac{(1+P_{y}^{q})(1+P_{y}^{\bar{q}})}{3+P_{y}^{q}p_{y}^{\bar{q}}} & 0 & 0\\ 0 & \frac{1-P_{y}^{q}P_{y}^{\bar{q}}}{3+P_{y}^{q}p_{y}^{\bar{q}}} & 0\\ 0 & 0 & \frac{(1-P_{y}^{q})(1-P_{y}^{\bar{q}})}{3+P_{y}^{q}p_{y}^{\bar{q}}} \end{pmatrix}$$

- Vorticity dominance: $P_q = P_{\bar{q}}$, $\rho_{00} < \frac{1}{3}$ Magnetic-field dominance: $P_q = -P_{\bar{q}}$, $\rho_{00} > \frac{1}{3}$
- The results of Λ polarization suggests vorticity dominance

(Liang-Wang 2004)
$$\rho_{00} = \frac{1 - P_y^2}{3 + P_y^2} \approx \frac{1}{3} - \frac{4}{9}P_y^2$$

• Spin alignment: $\rho_{00} - \frac{1}{3}$ Expectation: spin alignment is a 10^{-4} level phenomenon

Spin alignment

• Main decay channels, parity-even strong decay: $\phi \to KK$, $K^{*0} \to K\pi$

• Global spin alignment Puzzle: ϕ -meson $\rho_{00} > \frac{1}{3}$ and too big!

$$ho_{00}(x,\mathbf{0}) - rac{1}{3} \propto \left< (g_{\phi} \mathbf{B}^{\phi}_{x(y)})^2 \right> \ \left< (g_{\phi} \mathbf{E}^{\phi}_{x(y)})^2 \right>$$

(Sheng-Oliva-Liang-Wang-Wang 2022)

Spin alignment

• Global spin alignment

Puzzle: charge sensitive but $K^{*+}(u\bar{s})$ larger than $K^{*0}(d\bar{s})$, opposite to B-effect

• Global spin alignment of $J/\psi \rightarrow l^+l^-$

$$W(\theta) \propto \frac{1}{3+\lambda_{\theta}} \left(1+\lambda_{\theta}\cos^2\theta\right) \qquad \qquad \rho_{00} - \frac{1}{3} = \frac{2}{3}\frac{\lambda_{\theta}}{3+\lambda_{\theta}}$$

Puzzle: Λ polarization at LHC is very small but a big J/ψ spin alignment

Local spin alignment

• Local spin alignment

More significant at higher energies

Central collisions

 $\mathbf{P}^{q,\bar{q}} = (P_x^{q,\bar{q}}, P_y^{q,\bar{q}}, P_z^{q,\bar{q}})$

(b)

Quark spin density matrix:

 $\rho^{q,\bar{q}} = \frac{1}{2} \begin{pmatrix} 1 + P_y^{q,\bar{q}} & P_z^{q,\bar{q}} - iP_x^{q,\bar{q}} \\ P_z^{q,\bar{q}} + iP_z^{q,\bar{q}} & 1 - P_z^{q,\bar{q}} \end{pmatrix}$

More significant at higher energies

Local spin alignment

• Vector meson spin density matrix element

(Xia-Li-XGH-Huang 2020)

More experimental verification of this scenario is needed

1) Measure azimuthal angle dependence

2) Measure ho_{00} w.r.t other plane, e.g., yz plane

Summary

Global angular momentum

Global angular momentum

$$J_0 \sim \frac{Ab\sqrt{s}}{2} \sim 10^6 \hbar$$

(RHIC Au+Au 200 GeV, b=10 fm)