Understanding the nature of light scalar meson with ALICE

Junlee Kim Jeonbuk National University, South Korea

Sep 30, 2022 Exotics and Exotic Phenomena in Heavy Ion Collisions

Suggestion of tetraquark structure for light scalar mesons

FIG. 9. The quark content of the cryptoexotic nonet. (a) the $\frac{3}{2}$ formed from two quarks; (b) the 3 formed from two antiquarks; (c) the (magically mixed) nonet formed from the direct product of (a) and (b).

э.

- Tetraquark picture was firstly suggested by: Phys. Rev. D 15, 267 (1977)
- Scalar mesons: zero spin + even parity
- Inverted masses ordering ($\sigma(500)$, $\kappa(800)$, $f_0(980)$ and so on)

Conventional $q\bar{q}$ with angular momentum

- HADRON PROPERTIES FROM QCD SUM RULE, PHYSICS REPORTS 127, No. 1(1985) 1-97
- In quark model, scalar meson can be expressed as $q\bar{q}$ with L = 1 to make parity even.
- In equation (4.50) of the physics report cited above, $m_{n\bar{n}} = 1.00 \text{ GeV}/c^2$ (f₀(980) mass) and $m_{s\bar{s}} = 1.35 \text{ GeV}/c^2$
- Difficult to separate the molecular and the tetraquark state
- Many suggestions for the $f_0(980)$ structure.
 - $q\bar{q}$ state: PRD 67, 094011 (2003)
 - Tetraquark $(q\bar{q}s\bar{s})$ state: PRD 103, 014010 (2021)
 - $K\overline{K}$ molecule state: PRD 101 094034 (2020)

	$ ho^0$	K^*	$f_0(980)$	ϕ
Mass (MeV/c^2)	775	892	990	1020
J^P	1^{-}	1^{-}	0^+	1^{-}
Contents	$\frac{u\bar{u} + d\bar{d}}{\sqrt{2}}$	$d\bar{s}$???	$s\bar{s}$
lifetime (fm/c)	1.3	4.2	\sim 2–20	46.2

Measurement for short-lived resonances in HIC

- Resonance yields can be modified in the hadronic gas via regeneration and rescattering.
- Short-lived resonances are powerful probes to study the properties of the hadron gas.
- Modification of the $f_0(980)$ yield: good tool to study the hadron gas

Particle yield ratio

- Strangeness enhancement is seen in the (K/π) and (ϕ/π) ratios.
- Flat (K^{*0}/π) with increasing multiplicity in pp and p–Pb collisions, due to two competing effects.
 - Strangeness enhancement
 - Suppressions due to the short lifetime of K^{*0} ($\tau_{K^{*0}} \sim 4.2 \text{ fm/c}$) \rightarrow evidence for rescattering effects
- No strangeness enhancement + dominant rescattering effects in Pb–Pb: decreasing (K^{*0}/π)

Junlee Kim

K^{*0}/K

- Strangeness enhancement effect is not expected in (K^{*0}/K) ratio.
- Rescattering effects dominate the decreasing trend.
 - EPOS+UrQMD can qualitatively reproduce the (K^{*0}/K) ratio from small to large collision systems.
 - Strong suppression at low $p_{\rm T}$ + no suppression at high $p_{\rm T}$
- Therefore, rescattering is dominant at low $p_{\rm T}$.

Junlee Kim

- Subtracting the combinatorial background using like-sign backgrounds
- The contributions from other resonances, $f_2(1270)$ and $\rho(770)$, are considered at the same time.
- The residual background is modeled using the function:

 $f_{\rm BG}(M_{\pi\pi}) = (M_{\pi\pi} - 2m_{\pi})^n A \exp(BM_{\pi\pi} + CM_{\pi\pi}^2)$

• Phase space correction for possible $\pi\pi$ interferences

Particle yield ratios: (f_0/K^{*0}) with ALICE

- Canonical statistical model (CSM) with multiplicity dependent $\gamma_s < 1$ [1] is used to predict (f_0/K^{*0}) ratio for different strangeness content hypotheses.
- Hidden strangeness |S|: $|S|^{\rho} = 0$ and $|S|^{\phi} = 2$
- CSM predicts an almost flat behavior for

|S| = 2 while a decreasing trend (qualitatively similar to what seen in data) is expected for

|S| = 0

- N.B.: No rescattering effects in CSM
- Lifetimes of K^{*0} and $f_0(980)$ are comparable to each other.
- [1] V. Vovchenko et al, PRC 100 (2019) 5, 054906

	K^*	$f_0(980)$	ϕ
lifetime (fm/c)	4.2	~ 4	46.2

Particle yield ratios: (f_0/π)

- (f_0/π) ratio decreases with increasing $\langle dN/d\eta \rangle$.
 - Similar trend as observed for (K^{*0}/K) but larger decrease with the multiplicity
 - Larger rescattering effects or smaller regeneration effects for $f_0(980)$?
- $\gamma_s \text{CSM}$ predicts (f_0/π)

increasing trend for |S| = 2 while

a flat behavior is expected for |S| = 0.

- (f_0/π) is overestimated by CSM.
- Rescattering effects for $f_0(980)$ are not considered.

	K^*	$f_0(980)$	ϕ
lifetime (fm/c)	4.2	~ 4	46.2

$p_{\rm T}$ -differential yield ratios of f_0(980) to π

• (f_0/π) : Significant modification at low p_T (< 3 GeV/c) and no modification at high p_T (> 4 GeV/c)

- Similar $p_{\rm T}$ dependence for $(pp_{\rm high}/pp_{\rm low})$ and (Pb-Pb/pp) for (K^{*0}/K)
- Similar $p_{\rm T}$ dependence for double ratios of (K^{*0}/K) and $({\rm f}_0/\pi)$

Junlee Kim

$p_{\rm T}$ -differential yield ratios of f₀(980) to K^{*0}

- Rescattering effects should be comparable between $f_0(980)$ and K^{*0} as they have comparable lifetime.
- Different behavior between (K^{*0}/K) and (f_0/K^{*0}) in the full measured $p_{\rm T}$ interval
- (f_0/K^{*0}) : Modification in the entire p_T range.
 - \rightarrow due to different quark content for the two particles?

Junlee Kim

ExHIC meeting

Comparison with pp collisions

• Sequential suppressions with the increasing multiplicity.

Nuclear modification factor, $Q_{\rm pPb}$

• Multiplicity dependent suppression for $f_0(980)$ at low $p_T(< 4 \text{ GeV}/c)$

• Rescattering effects observed in all the centrality intervals

Junlee Kim

Cronin peak

• Cronin enhancement at intermediate $p_{\rm T}$: J. W. Cronin et al, PRD 11 3105 (1975)

• No Cronin peak is observed for $f_0(980)$ in contrast to what is observed for baryons.

Junlee Kim

NCQ scaling for $f_0(980)$

- The NCQ scaling results in the same flow coefficients between baryons and mesons.
- The NCQ scaling test for $f_0(980)$

Junlee Kim

Preliminary results on NCQ scaling for $f_0(980)$

- Event plane method was applied to reconstruct the reaction plane, ψ_2 .
- $dY/d\varphi \sim G(1 + 2v_2\cos(2\Delta\varphi))$
- Decreasing $dY/d\varphi$ observed at $\Delta \varphi = 0.5\pi$.
- $v_2(0.5 < p_T < 3.0) = 0.162 \pm 0.050_{\text{stat}}$
 - $m_{\rm T} m_0 = 1.03 \; {\rm GeV}/c.$
 - Comparable with other particles
 - NCQ scaling rarely provides a hint for the $f_0(980)$ structure at low p_T .
- Important to measure v_2 at high $p_{\rm T} > 4 \ {\rm GeV}/c$ $((m_{\rm T} - m_0)/n_2 > 1.5 \ {\rm GeV}/c).$

$K^0 K^{\pm}$ femtoscopy for $a_0(980)$

- Pairwise interactions present for $K_0 K^{\pm}$.
 - Non-identical pairs: no quantum statistics
 - No Coulomb interaction
 - $a_0(980)$ strong interaction
- Studying the geometry of kaon source, $R{:}$ radius of source
- Exploring the Internal structure of $a_0(980)$, λ : correlations strength

• The Lednicky eqution models experimental data well for different collision systems.

• Extraction of R and λ

Comparison with $K_{\rm s}^0 K_{\rm s}^0$

- Decreasing R: radial flow effects (PLB 356, 525 (1995))
- Comparable λ between $K^0_{\rm s}K^0_{\rm s}$ and K^0K^\pm

Junlee Kim

Comparison with the system size

- Small source size for pp collisions $(R \sim A^{1/3})$
- Small flow effects in small systems.

Comparison with the system size

PLB 774 (2017) 64-77

- Comparable λ for $K^0_s K^0_s \to$ Quantum statistics effects dominate the correlations
- $\lambda_{\text{PbPb}} > \lambda_{\text{pp}}$ for $K^0 K^{\pm}$
 - Enhanced $s-\bar{s}$ annihilation due to the small source size inside a_0 ?

Junlee Kim

Summary

- Decreasing (f_0/π) at low p_T in pp and p–Pb collisions
 - Evidence of rescattering-like effects for the $f_0(980)$
- Decreasing (f_0/K^{*0}) in the full measured p_T range in pp and p–Pb collisions
 - due to different quark content for $f_0(980)$ and K^{*0} ?
- Multiplicity dependence of $Q_{\rm pPb}$ of $f_0(980)$
 - Stronger suppression of $f_0(980)$ at low p_T : rescattering effects
 - No Cronin peak for $Q_{\rm pPb}$ of $f_0(980)$ in high-multiplicity events.
- Measurement of $f_0(980)$ elliptic flow at high p_T to test the NCQ scaling with Run3 data in Pb–Pb collisions
- \bullet Femtoscopy measurement of $K^0_{\rm s}K^0_{\rm s}$ and K^0K^\pm
 - Source (system) size determination of pp and Pb–Pb collisions
 - System-size-dependent correlations strength $\rightarrow a_0$ to have $s\bar{s}$?

BACKUP

ALICE detector

24/22

Great performance for tracking and PID down to very low $p_{\rm T}$

- Tracking with TPC + ITS
- PID with TPC + TOF
- Multiplicity estimation with V0 + ZDC

$p_{\rm T}$ spectra for $f_0(980)$

- Fully corrected $p_{\rm T}$ spectra for f₀(980) down to $p_{\rm T} = 0$ in different multiplicity classes
- $f_0(980) p_T$ spectra cannot be reproduced by HERWIG 7.2 model and AMPT+coalescence model in three configurations ($s\bar{s}$, $u\bar{u}s\bar{s}$, and $K\bar{K}$ molecule).
 - Some configurations for the f₀(980) structure can be excluded in the context of AMPT and Herwig models

arXiv:2206.06216