WHAN-KI KIM (05-IV-71, UNIVERSE)

Photo-production at LHC and EIC

Yongsun Kim 1 Oct 2022 ExHIC meeting

Hadronic heavy ion collision at LHC

Hadronic A+A collision

Ultra peripheral collision at LHC

b > 2R

 Too far in the transverse plane to make hadronic interaction

Ultra Peripheral Collision (UPC)

- quasi-elastic and diffractive collision
- Occasionally neutrons are emitted from excited ions

Ultra peripheral collision at LHC

b > 2R

Too far in the transverse plane to make hadronic interaction

Ultra Peripheral Collision (UPC)

- quasi-elastic and diffractive collision
- Occasionally neutrons are emitted from excited ions

Equivalent Photon Approximation

Zweck der vorliegenden Arbeit ist, die Analogie zwischen diesen beiden Klassen von Erscheinungen zu präzisieren und die Erscheinungen bei dem Stoße quantitativ aus der Lichtabsorption abzuleiten.

Wenn ein elektrisch geladenes Teilchen in der Nähe eines Punktes vorüberfliegt, entsteht in diesem Punkte ein veränderliches elektrisches Feld. Wenn wir nun dieses Feld durch ein Fouriersches Integral in harmonische Komponenten zerlegen, so sehen wir, daß es gleich dem Felde ist, das in dem Punkte sein würde, wenn es mit Licht von einer passenden kontinuierlichen Frequenzenverteilung belichtet würde. Denken

Nuovo Cim.,2:143-158,1925 (arXiv:hep-th/0205086 in English)

- Trajectory of fast moving charged particle is equivalent to a flux of photons (Fermi, 1924)
- Later, extended to relativistic regime by Weizsacker[1
- At LHC, photon energy can reach up to 80 GeV, and a
- We can practice high energy γ + (p or A) and γ + γ col
- These events are called ultra-peripheral collisions, or

[1] Z. Phys. 88, 612 (1934) [2] Kgl. Danske Videnskab. Selskab Mat.-Fys. Medd. 13, 4 (1935) maximum energy *E_{γ,max}~γ(ħc/R*)

typical p⊤ (& virtuality) *р*т_{тах} ~ *ħ*с/R

LHC, the most powerful photon collider

Accelerator	Ions	Max. Energy per nucleon pair (CM)	Luminosity	Max. γ p	Max. γγ energy
CERN SPS	Pb+Pb	17 GeV	_	3.1 GeV	0.8 GeV
RHIC	Au+Au	200 GeV	$4 \times 10^{26} \mathrm{~cm^{-2}~s^{-1}}$	24 GeV	6.0 GeV
RHIC	p+p	500 GeV	$6 \times 10^{30} \mathrm{~cm^{-2}~s^{-1}}$	79 GeV	50 GeV
LHC	Pb+Pb	5.6 TeV	$10^{27} \text{ cm}^{-2} \text{ s}^{-1}$	705 GeV	178 GeV
LHC	p+p	14 TeV	$10^{34} \text{ cm}^{-2} \text{ s}^{-1}$	3130 GeV	1400 GeV
Tevatron	p+p	20 TeV	$5 \times 10^{31} \mathrm{~cm^{-2}~s^{-1}}$	320 GeV	200 GeV

UPC can tell us...

- The smallest (or non-) QCD system made by hadronic collision
 - γ + A \simeq vector meson + A collision in the vector-meson dominance picture
- Control measurement for study of quark gluon plasma
- gluon momentum distribution at very low x
- Low background provides precise test for Beyond Standard Model

UPC for BSM search

UPC for BSM search

											1					1			1			
6	7	8	91	0				20)	3	0	40)	50	6	60	7	0		-	10) ²
																		m	a [G	e\	/]

$\gamma + \gamma \rightarrow \gamma + \gamma$

- QED + CEP backgrounds are also well described by acoplanarity nature
- No deviation from SM was observed
- The strongest constraints for the mass rages $6 < m_a < 100 \mbox{ GeV}$

 $\gamma + \gamma \rightarrow \tau + \tau$

- Deviation from calculation can be a signal for anomalous magnetic moment $a_{\tau} = (g_{\tau} 2)/2$
- UPC at LHC is great laboratory by virtue of small backgrounds
- Cross section scales by $Z^4 \sim 40,000,000$ compared to pp

$\gamma + \gamma \rightarrow \tau + \tau$

Muon + 1 track

Muon + 3 tracks

electron + Muon

- · ATLAS measured all three channels above with full Run II data
 - Analyzed the \mathbf{p}_{T} shape to find the best fit with a_{τ} as a parameter
 - a_{τ} : (-0.058, -0.012) \cup (-0.006, 0.025) in 95% CL
- CMS measured Muon + 3 tracks with partial Run II data (full stat. in preparation)
 - Cross section with efficiency correction: $\sigma_{\text{fiducial}} = 4.8 \pm 0.6(\text{stat}) \pm 0.5(\text{sys}) \text{sys} \ \mu b$
 - Compared $\sigma_{\it fiducial}$ with theoretical calculation to extract a_{τ}

• Compared to DELPHI, better resolution is expected with Run3 + Run4 data, PbPb with L= 13 nb⁻¹

Photon flux measurement

• Is our understanding of QED in UPC perfect?

Photon flux measurement

- Is our understanding of QED in UPC perfect?
- Do we have good estimate for the initial photon flux?

Photon flux measurement

- Is our understanding of QED in UPC perfect?
- Do we have good estimate for the initial photon flux?
- $\gamma + \gamma \rightarrow \mu + \mu$ may answer

Cross section of $\gamma\gamma \rightarrow \mu\mu(ee)$ **in PbPb UPC**

- Cross section is proportional to the incoming photon flux
- Thus useful for calibration of photon flux
- Monte Carlo simulation, like SuperChic and STARLIGHT, calculate inclusive cross section within uncertainties

Cross section of $\gamma\gamma \rightarrow \mu\mu(ee)$

0 0.5 1 1.5 2

ا**y** _µµ

 \mathfrak{g} Bata and MC (STARlight) have different f_{Xn0n} and $f_{nxn0.6}$

nX۲

Dimuon acoplanarity in UPC

- → 14
- The produced dimuon pairs had acoplanarity depending on the impact parameter

Dimuon acoplanarity in UPC

Vector meson in UPC

- ho(770), J/ ψ , ψ (2S), Υ (nS), ϕ
- Test for pQCD and nuclear structure

- J\ψ was suppressed by more than factor of 2 when compared to normalized γ+p calculation with impulse approximation
- Models with shadowing and saturation effects better describes data
- Yet, none can reproduce the rapidity distribution in -4 < y < 1

- The suppression of $\psi(2S)$ level is same to J/ψ in UPC
- Confirms that the suppression occurs by gluon distributions in A

• First measurement of charmonia spectra vs p_T

LHCb-PAPER-2022-012, LHCb

J/ψ

• LHCb also measured rapidity-differential cross section and single ratio of J/ ψ and $\psi(2S)$, providing input for pQCD models

NLO calculation looks promising for J/ψ phenomenology

Löytäinen's slides in QM22

• Sensitive to the scale, but can find an optimal value that reproduces $\gamma + p$ and $\gamma + Pb$ results simultaneously

NLO calculation looks promising for J/ψ phenomenology

Löytäinen's slides in QM22

- Sensitive to the scale, but can find an optimal value that reproduces γ + p and γ + Pb results simultaneously
- At mid rapidity, quark contribution is dominant because gluon's amplitudes cancel for LO and NLO

Exclusive ρ (770) in pPb collision at 5.02 TeV

- |t| dependence shows proton density profile
- Diff. cross section of ρ in $\gamma + p$ agrees well with HERA data
- Diff. cross section of $J \psi$ in $\gamma + Pb$ agrees well with nuclear shadowing models

Exclusive Υ (1S) in pPb collision at 5.02 TeV

- Exclusive Y(1S) in γ +p was measued as a function rapidity
- Compared with saturation deployed models CGC model (flPsat), Color dipole formalism (IIM), and pQCD calculation with DGLAP formalism (JMRT)
- $W_{\gamma p}$ dependence, power-law, is compatible with H1 and ZEUS

Exclusive ρ (770) in XeXe

- Study of target species dependence
- Power law fit $\alpha \sim 0.96 \pm 2$
- Coherent VM cross section is expected to scale by A^{4/3}, however, the nPDF cancel this out, as suggested by CKZ (shadowing) and CCKT (saturation)

Exclusive ρ (770) in XeXe

- Study of target species dependence
- Power law fit $\alpha \sim 0.96 \pm 2$
- Coherent VM cross section is expected to scale by A^{4/3}, however, the nPDF cancel this out, as suggested by CKZ (shadowing) and CCKT (saturation)

Exclusive ρ (770) in XeXe

- Study of target species dependence
- Power law fit $\alpha \sim 0.96 \pm 2$
- Coherent VM cross section is expected to scale by A^{4/3}, however, the nPDF cancel this out, as suggested by CKZ (shadowing) and CCKT (saturation)

Photoproduction of Exotic particles at EIC

Decay width for P_c measured by LHCb (2018)

State	$M \ [\mathrm{MeV}]$	$\Gamma \;[\mathrm{MeV}\;]$	(95% CL)	$\mathcal{R}~[\%]$
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+ \hspace{0.1cm} 3.7}_{- \hspace{0.1cm} 4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6\pm4.9^{+~8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3\pm0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

Decay width for P_c measured by LHCb (2018)

Decay of P_c
Production of P_c

Perhaps we can create a pentaquark by coalesce J/ ψ and proton at collider

$a_{\rm C}$ ecay width for P_c measured by LHCb (2018)

from proton beam

Decay width for P_c measured by LHCb (2018)

Cross section of P_c(4312) in EIC

	е	р	³ He ²⁺	¹⁹⁷ Au ⁷⁹⁺
Energy, GeV	15.9	250	167	100
CM energy, GeV		122.5	81.7	63.2
Bunch frequency, MHz	9.4	9.4	9.4	9.4
Bunch intensity (nucleons), 10 ¹¹	0.33	0.3	0.6	0.6
Bunch charge, nC	5.3	4.8	6.4	3.9
Beam current, mA	50	42	55	33
Hadron rms norm. emittance, µm		0.27	0.20	0.20
Electron rms norm. emittance, µm		31.6	34.7	57.9
Beta*, cm (both planes)	5	5	5	5
Hadron beam-beam parameter		0.015	0.014	0.008
Electron beam disruption		2.8	5.2	1.9
Space charge parameter		0.006	0.016	0.016
rms bunch length, cm	0.4	5	5	5
Polarization. %	80	70	70	none
Peak luminosity, 10 ³³ cm ⁻² s ⁻¹		1.5	2.8	1.7

Peak lumi updated to 10^{34} cm⁻²s⁻¹ => 10 fb⁻¹ per month is

Cross section of P_c(4312) in EIC

TABLE II. Expected number of $P_c(4312)$ produced at the EIC with 10 fb^{-1} .

J^P of P_c	$\frac{1}{2}^+$	$\frac{1}{2}^{-}$	$\frac{3}{2}^+$	$\frac{3}{2}$			
Yield	5.09×10^{6}	1.01×10^{6}	4.51×10^{8}	7.46×10^{7}			

PRD 105, 114023 I. Park, S. Cho, S. Lee, Y. Kim

Cross section of P_c(4312) in EIC

- BSA says the spin
- angular correlation says the parity

E

UPC, sic parvis magna

- UPC program at LHC was initially motivated for nuclear shadowing in heavy ion
- Proved to be useful for the search for new physics
- Exclusive channels for gluon polarization

Prospective probes at the LHC and EIC

- VM VM pairs double J/ ψ or double Υ events
- X(3872) is also a probable particle produced from UPC
- Huge chance for the study of Exotic particles at EIC

Impact parameters of photo-interaction

