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Introduction
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• Hypernuclei are unique
probes to study nuclear
structure

• Single L-hypernuclei
are major source of
extracting L-N 
interaction

• Correct L-N and L-N-N 
interaction needed to
understand structure of
neutron stars

Hypernuclei
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D. Logoteta et al., Astron. Astrophys. 646 (2021) A55



• Hypernuclei are decaying weakly
(about free L lifetime)

• Hypertriton special case: L
separation energy so low that
simple models expect free L
lifetime: d-L system

Hypernuclei
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Motivation

A. Andronic et al., PLB 697, 203 (2011) and 
references therein for the model, figure from A. 
Andronic, private communication

• Explore QCD and QCD 
inspired model predictions
for (unusual) multi-baryon 
states

• Search for rarely produced
anti- and hyper-matter

• Test model predictions, e.g. 
thermal and coalescence

àUnderstand production
mechanisms
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references therein for the model, figure from A. 
Andronic, private communication

• Explore QCD and QCD 
inspired model predictions
for (unusual) multi-baryon 
states

• Search for rarely produced
anti- and hyper-matter

• Test model predictions, e.g. 
thermal and coalescence

àUnderstand production
mechanisms

àBasis are light (anti-)nuclei
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Thermal model
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• Statistical (thermal) model with only three parameters able
to describe particle yields (grand chanonical ensemble)

- chemical freeze-
out temperature Tch

- baryo-chemical
potential µB

- Volume V

à Using particle
yields as input to
extract parameters



Energy dependence
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Thermal model fits show limiting temperature: Tlim = (159 ± 2) MeV

A. Andronic et al., PLB 673 (2009) 142, updated



Predicting yields of bound
states

A. Andronic et al., PLB 697 (2011) 203

Key parameter at LHC 
energies:
chemical freeze-out 
temperature Tch
Strong sensitivity of
abundance of nuclei
to choice of Tch due to:
1. large mass m
2. exponential dependence of
the yield ~ exp(-m/Tch)
à Binding energies small
compared to Tch
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• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei

Thermal model
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A. Andronic et al., Phys.Lett.B 797 (2019) 134836; 
Nature 561 (2018) 7723, 321; Phys.Lett.B 697 (2011) 203; 
Phys.Lett.B 792 (2019) 304
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• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei
at LHC

Thermal model
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V. Vovchenko, BD, B. Kardan, M. Lorenz, 
H. Stoecker, Phys.Lett.B 809 (2020) 135746



• For the thermal model
description of
production yields, feed-
down is an important
ingredient

• All light hadron
production yields are
populated strongly by
resonances

• Seems to not be the
case for (hyper-)nuclei

• Important for A=4 
hypernuclei !

Thermal model
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Exited states have higher population due to
degeneracy 2J+1:
Sharing yield in fraction 3 : 1
(mass difference is only 1 MeV to about 4GeV/c2)



Coalescence

J. I. Kapusta, PRC 21, 1301 (1980)

Nuclei are formed by protons
and neutrons which are
nearby and have similar
velocities (after kinetic freeze-
out)

Produced nuclei
➜ can break apart
➜ created again by final-state
coalescence
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(Anti-)Nuclei
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Deuterons

• pT-Spektra getting harder for more central collisions (from pp 
to Pb-Pb) à showing clear radial flow

• Blast-Wave fits describe the data in Pb-Pb very well
• No hint for radial flow in pp

ExHIC Workshop  - Benjamin Dönigus 19

Pb-Pb

pp

ALICE-PUBLIC-2017-006



(Anti-)Deuteron ratio

: -ratios consistent with unity, as expected
ExHIC Workshop  - Benjamin Dönigus 20



Combined Blast-Wave fit

• Simultaneous Blast-
Wave fit of p+, K+, p, 
d, t, 3He and 4He 
spectra for central
Pb-Pb collisions
leads to values for
<b> and Tkin close to
those obtained when
only p,K,p are used

ExHIC Workshop  - Benjamin Dönigus 21

ALICE Collaboration, arXiv:1910.07678

• All particles are described rather well with this simultaneous fit 
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• Production of (anti-) 
nuclei is follwing an 
exponential, and
decreases with
mass as expected
from thermal model

• In Pb-Pb the
„penalty factor“ for
each additional 
baryon ~300 (for
particles and anti-
particles)

Mass dependence

ALICE Collaboration, arXiv:1710.07531, NPA 971, 1 (2018) 

22
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• Production of (anti-) 
nuclei is follwing an 
exponential, and
decreases with
mass as expected
from thermal model

• In Pb-Pb the
„penalty factor“ for
each additional 
baryon ~300, in p-
Pb ~600 and in pp 
~1000

Mass dependence



d/p vs. multiplicity
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d/p ratio described by applying afterburner on Hybrid 
UrQMD simulations – similar results for thermal approach

24

As shown by R. Stock at QM2018,
meanwhile coalsecence published: S. Sombun et al., Phys.Rev.C 99 (2019) 014901



d/p vs. multiplicity

d/p ratio rather well described by coalescence and
(canonical) thermal model
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3He/p vs. multiplicity

3He/p and 3H/p ratios are similarily well described by
coalescence and (canonical) thermal model
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Thermal model

• Different model implementations describe the production probability, 
including light nuclei and hyper-nuclei, rather well at a temperture of
about Tch =156 MeV
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Hypernuclei
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Hypertriton Identification
Bound state of L, p, n
m = 2.991 GeV/c2 (BL =130 keV)
à Radius of about 10.6 fm
Decay modes:

+ anti-particles
à Anti-Hypertriton first observed by
STAR Collaboration:

29ExHIC Workshop  - Benjamin Dönigus 
Science 328,58 (2010)



Hypertriton signal

• Clear signal reconstructed by decay products
• Spectra can also be described by Blast-Wave model

à Hypertriton flows as all other particles

30ExHIC Workshop  - Benjamin Dönigus 



Hypertriton spectra

• Anti-hypertriton/Hypertriton ratio consistent with unity vs. pT

31ExHIC Workshop  - Benjamin Dönigus 



Fits: different view
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• Excellent agreement over
9 orders of magnitude

• Fit of nuclei (d, 3He, 4He):     
Tch=159 ± 5 MeV

• No feed-down for (anti-) 
(hyper-)nuclei

• charm quarks, out of
chemical equilibrium, 
undergo statistical
hadronization
à only input: number of
ccbar pairs

A. Andronic et al., arXiv:1901.09200
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• Shape of the pT spectra of J/y and hypertriton agree very well, despite
the binding energy of the hypertriton is 2.35 MeV and of the J/y 600 MeV

P. Braun-Munzinger, BD, Nucl. Phys. A 987 (2019) 144



Hypernuclei yields
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• Recent STAR 
preliminary results
are slightly
overestimated by
models

• Trend vs. energy
described
qualitatively by all 
models
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Hypernuclei yields
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SQM talk by Y. Ji

• Latest lifetime results
from STAR 
Collaboration nicely
agree with the world
averages for the
different hypernuclei



ALICE Collaboration, PRL 128 (2022) 252003, arXiv:2107.10627

Hypertriton in pp & p-Pb
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• Hypertriton signal recently also extracted in pp and
p-Pb collisions

• Stronger separation between models as for other particle
ratios, mainly due to the size of the hypertriton
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ALICE Collaboration, PRL 128 (2022) 252003, arXiv:2107.10627

Hypertriton in pp & p-Pb
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• Hypertriton signal recently also extracted in pp and
p-Pb collisions

• Stronger separation between models as for other particle
ratios, mainly due to the size of the hypertriton
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Summary
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Conclusion
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• ALICE@LHC is well suited
to study light                  
(anti-)(hyper-)nuclei and
perform searches for exotic
bound states (A<5)

• Models describe the
(anti-)(hyper-)nuclei data
rather well

• Ratios vs. multiplicity trend
described by both models

• New and more precise data
can be expected in the next
years

39

• Copious production of loosely bound objects measured
in heavy-ion collisions as predicted by models

• Production models (thermal & coalescence) are giving
rather good description at different energies/multiplicities
– Results at small systems seem to slightly prefer coalescence
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