


• Long-standing challenge in hadron physics
ü Multi-quark state other than mesons & baryons

− Famous 𝐻 dibaryon as six quark state of 𝑢𝑢𝑑𝑑𝑠𝑠
ü Recent discoveries of exotic hadron candidates 

with heavy quarks, but not with light quarks in flavor 
SU(3)

• Possible multi-strange dibaryons predicted by HAL QCD
ü Important to study fundamental hadron interactions 

in flavor SU(3)
ü Systems with 𝑆 > 2 are of particular interest

− 𝑁Ω 𝐽 = 2 , ΩΩ 𝐽 = 0
→ Heavy Ion collisions as unique playground for multi-

strange systems

Tetraquarks

Pentaquarks

Dibaryons
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• Dynamic space-time evolution of the collisions through phase 
transition from partonic phase (QGP) to hadronic phase
ü Particle production by coalescence

• Enhanced hyperon productions
ü Increasing at higher multiplicity even in pp/p-Pb collisions

𝜦

𝚵

𝛀

2



• Hadron yields well-described by Statistical Hadronization model 
ü Global fit with Tch, µB, volume as free parameters
ü Works even for loosely bound particles 

• Clear mass dependence of the yield
A.Andronic et al., Nature 561, 321-330 (2018)

REVIEW RESEARCH

to about 160 MeV, where it exhibits a saturation for sNN  > 20 GeV. 
The slight increase of this value compared to Tcf = 156.5 MeV obtained 
at LHC energy is due to the inclusion of some data at RHIC energies, 
but the details of this small difference are currently not fully 
understood.

The saturation of Tcf observed in Fig. 3 lends support to the earlier 
proposal48,50,82 that, at least at high energies, the chemical freeze-out 
temperature is very close to the QCD hadronization temperature51, 
implying a direct connection between data from relativistic nuclear col-
lisions and the QCD phase boundary. This is in accord with the earlier 
prediction, more than 50 years ago83,84, that hadronic matter cannot 
be heated beyond this limit. Whether there exists, at lower energies, a 
critical endpoint85 in the QCD phase diagram is currently at the focus 
of intense theoretical19 and experimental effort77.

To illustrate how well the thermal description of particle produc-
tion in central nuclear collisions works we show, in Fig. 4, the energy 
dependence (excitation function) of the relative abundance of several 
hadron species along with the prediction using the statistical had-
ronization approach and the smooth evolution of the parameters (see 
above). Because of the interplay between the energy dependence of Tcf 
and µb there are characteristic features in these excitation functions. In 
particular, maxima appear at slightly different center-of-mass energies 
in the K+/π+ and Λ/π+ ratios, whereas the corresponding antiparticle 
ratios exhibit a smooth behaviour86.

In the statistical approach in equation (2) and in the Boltzmann 
approximation, the density n(µb, T) of hadrons carrying baryon num-
ber B scales with the chemical potential as n(µb,T) ∝ exp(Bµb/T). 
Consequently, the ratios p/π+ and d/p, where d refers to a deuteron, 
scale as exp(µb/T), whereas the corresponding antiparticle ratios scale 
as exp(− µb/T). From Fig. 3, it is apparent that µb/Tcf decreases with 
collision energy, accounting for the basic features of particle ratios in 
the upper panel of Fig. 4. On the other hand, strangeness conservation 
unambiguously connects, for every T value, the strangeness potential 
and the baryo-chemical potential, µs = µs(µb). As a consequence, the 
yields of K+ and K−  increase and, respectively, decrease with µb/T.  

At higher energies, where T and hence pion densities saturate, the Λ/π+ 
and K+/π+ ratios are decreasing with energy (see lower panel of Fig. 3).

We further note that, for energies beyond that of the LHC, the 
thermal parameter Tcf is determined by the QCD pseudo-critical 
temperature and the value of µb vanishes. Combined with the energy 
dependence of overall particle production87 in central Pb–Pb collisions, 
this implies that the statistical hadronization model prediction of parti-
cle yields at any energy, including those at the possible Future Circular 
Collider (FCC)88 or in ultrahigh-energy cosmic ray collisions89, can be 
made with an estimated precision of better than 15%.

Since the statistical hadronization analysis at each measured energy 
yields a pair of (Tcf, µb) values, these points can be used to construct a 
T versus µb diagram, describing phenomenological constraints on the 
phase boundary between hadronic matter and the QGP; see Fig. 5. 
We note that the points at low temperature seem to converge towards 
the value for ground-state nuclear matter (µb = 931 MeV). As argued 
previously52, this limit is not necessarily connected to a phase transi-
tion. Although the situation at low temperatures and collision energies 
is complex and at present cannot be investigated with first-principles 
calculations, the high-temperature, high-collision energy limit allows a 
quantitative interpretation in terms of fundamental QCD predictions.

The connection between LQCD predictions and experimental 
chemical freeze-out points is made quantitative in Fig. 5. We use here 
recent results for the QCD phase boundary from the two leading LQCD 
groups30,90, represented by the band in Fig. 5. As can be seen, the LQCD 
values follow the measured µb dependence of the chemical freeze-out 
temperature very closely, demonstrating that with relativistic nuclear 
collisions one can directly probe the QCD phase boundary between 
hadronic matter and the QGP. The above results imply that the pseu-
do-critical temperature of the QCD phase boundary at µb = 0 as well 
as its µb dependence up to µb = 300 MeV have been determined exper-
imentally. There is indirect but strong evidence from measurements of 
the initial energy density as well as from hydrodynamical analysis of 
transverse momentum spectra and from the analysis of jet quenching 
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Fig. 2 | Mass dependence of hadron yields compared with predictions of 
the statistical hadronization model. Only particles (no antiparticles) are 
included and yields are divided by the spin degeneracy factor (2J +1). Data 
are from the ALICE Collaboration for central Pb–Pb collisions at the LHC. 
For the statistical hadronization approach, the ‘total’ yields (blue bars) 
include all contributions from high-mass resonances (for the Λ hyperon, 
the contribution from the electromagnetic decay Σ0 → Λγ, which cannot 
be resolved experimentally, is also included); the primordial yields before 
strong and electromagnetic decays are plotted as the dotted line. For more 
details, see the main text.

Fig. 3 | Energy dependence of chemical freeze-out parameters Tcf and 
µb. The results are obtained from the statistical hadronization analysis of 
hadron yields (at mid-rapidity, dN/dy, and in full phase space, 4π) for 
central collisions at different energies. The parameterizations shown are: 

= / + . − / .T T s{1 exp[2 60 ln( ) 0 45]}cf cf
lim

NN  and µ = / + .a s(1 0 288 )b NN , 
with sNN  in gigaelectronvolts, Tcf

lim =158.4 MeV and a = 1,307.5 MeV. 
The uncertainty of the limiting temperature Tcf

lim, determined from the fit 
of the five points that represent the highest energies, is 1.4 MeV.
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RUN-1 RUN-2
𝐻 ~104-5 ~106

𝑁𝛺 ~104 ~105

𝛺𝛺 ~102 ~103

Rough estimation of dibaryon yields 
in Pb-Pb 0-10% at ALICE

Dibaryons here

→ Searches for 𝐻 & 𝑁Ω dibaryons in HIC
ü Less statistics in pp HM and p-Pb, 

but better S/N than Pb-Pb
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Measurements with possible daughter particles
1. Invariant mass reconstruction

ü Only if the signal width is sufficiently small
2. Two-particle correlation
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Table 1
Selection criteria for !n analysis.

Selection criterion Value

Track selection criteria
Tracks with kinks rejected
Number of clusters in TPC ncl > 70
Track quality χ2/cluster < 5
Acceptance in pseudorapidity |η| < 0.9
Acceptance in rapidity |y| < 1

V 0 and kinematic selection criteria
Pointing angle $ < 0.045 rad
DCA between the V 0 daughters DCA < 0.3 cm
Momentum ptot of the anti-deuteron ptot > 0.2 GeV/c
Energy deposit dE/dx anti-deuteron dE/dx > 110 (from Fig. 1)
PID cut for daughters ± 3σ (TPC)

Fig. 2. Invariant mass distribution for dπ+ for the Pb–Pb data corresponding to 
19 .3 × 106 central events. The arrow indicates the sum of the mass of the con-
stituents (!n) of the assumed bound state. A signal for the bound state is expected 
in the region below this sum. The dashed line represents an exponential fit outside 
the expected signal region to estimate the background.

To identify the secondary vertex the two daughter tracks have to 
have a DCA smaller than 0.3 cm. Another condition is that the 
maximum pointing angle is smaller than 0.045 rad (see descrip-
tion above). Deuterons are cleanly identified in the rigidity region 
of 400 MeV/c to 1.75 GeV/c. To limit contamination from other 
particle species, the dE/dx has to be above 110 units of the TPC 
signal, shown in Fig. 1.

The selection criteria are summarised in Table 1. The resulting 
invariant mass distribution, reflecting the kinematic range of iden-
tified daughter tracks, is displayed in Fig. 2.

4.2. H-dibaryon

The search for the H-dibaryon is performed in the decay chan-
nel H → !pπ−, with a mass lying in the range 2.200 GeV/c2 <
mH < 2.231 GeV/c2 (see Fig. 3). The analysis strategy for the H-
dibaryon is similar as for the !n bound state described above, 
except that here a second V 0-type decay particle is involved.

One V 0 candidate originating from the H-dibaryon decay ver-
tex has to be identified as a ! decaying into a proton and a 
pion. In addition another V 0 decay pattern reconstructed from a 
proton and a pion is required to be found at the decay vertex 
of the H-dibaryon. First the invariant mass of the ! is recon-
structed and then the candidates in the invariant mass window of 
1.111 GeV/c2 < m! < 1.120 GeV/c2 are combined with the four-
vectors of the proton and pion at the decay vertex. A 3σ dE/dx
cut in the TPC is used to identify the protons and the pions for 
both the ! candidate and the V 0 topology at the H-dibaryon de-
cay vertex.

Fig. 3. Invariant mass distribution for !pπ− for the Pb–Pb data corresponding to 
19 .3 × 106 central events. The left arrow indicates the sum of the masses of the 
constituents (!!) of the possible bound state. A signal for the bound state is ex-
pected in the region below this sum. For the speculated resonant state a signal is 
expected between the !! and the 'p (indicated by the right arrow) thresholds. 
The dashed line is an exponential fit to estimate the background.

Table 2
Selection criteria used for !! (H-dibaryon) analysis.

Selection criterion Value

Track selection criteria
Tracks with kinks rejected
Number of clusters in TPC ncl > 80
Track quality χ2/cluster < 5
Acceptance in pseudorapidity |η| < 0.9
Acceptance in rapidity |y| < 1

V 0 selection criteria
DCA V 0 daughters DCA < 1 cm
DCA positive V 0 daughter – H decay vertex DCA > 2 cm
DCA negative V 0 daughter – H decay vertex DCA > 2 cm

Kinematic selection criteria
DCA positive H daughter – primary vertex DCA > 2 cm
DCA negative H daughter – primary vertex DCA > 2 cm
DCA H daughters DCA < 1 cm
Pointing angle of H $ < 0.05 rad
PID cut for daughters ± 3σ (TPC)
! mass window ± 3σ

To cope with the huge background caused by primary and sec-
ondary pions additional selection criteria have to be applied. Each 
track is required to be at least 2 cm away from the primary vertex 
and the tracks combined to a V 0 are required to have a minimum 
distance below 1 cm. The pointing angle is required to be below 
0.05 rad. All selection criteria are summarised in Table 2. The re-
sulting invariant mass is shown in Fig. 3. The shape of the invariant 
mass distribution is caused by the kinematic range of the identi-
fied daughter tracks.

5. Systematics and absorption correction

Monte Carlo samples have been produced to estimate the ef-
ficiency for the detection of the !n bound state and the H-
dibaryon. The kinematical distributions of the hypothetical bound 
states were generated uniformly in rapidity y and in transverse 
momentum pT. In order to deal with the unknown lifetime, differ-
ent decay lengths are investigated, ranging from 4 cm up to 3 m. 
The lower limit is determined by the secondary vertex finding ef-
ficiency and the upper limit by the requirement that there is a 
significant probability for decays inside the TPC2 (the final accep-

2 For the H-dibaryon there is also a theoretical maximal decay length calculated 
for the investigated decay channel [45].
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tance × efficiency drops down to 1% for the !n and 10−3 for the 
H-dibaryon). The shape of transverse momentum spectra in heavy-
ion collisions is described well by the blast-wave approach, with 
radial flow parameter ⟨β⟩ and kinetic freeze-out temperature Tkin
as in [46]. The true shape of the pT spectrum is also not known, 
therefore it is estimated from the extrapolation of blast-wave fits 
to deuterons and 3He spectra at the same energy [10]. To obtain 
final efficiencies, the resulting blast-wave distributions constructed 
for the exotic bound states are normalised to unity and convoluted 
with the correction factors (efficiency × acceptance).

Typical values of the final efficiency are of the order of a few 
percent assuming the lifetime of the free !. The uncertainty in the 
shape of the pT distributions is the main source of systematic er-
ror. Blast-wave fits of deuteron and 3He spectra are employed to 
explore the range of systematic uncertainties. Analyses of these 
results lead to a systematic uncertainty in the overall yield of 
around 25%.

Other systematic uncertainties are estimated by varying the 
cuts described in Table 1 and Table 2 within the limits consistent 
with the detector resolution. The contributions of these systematic 
uncertainties are typically found to be in the percent range. The 
combination of the different sources leads to a global systematic 
uncertainty of around 30% for both analyses, when all uncertain-
ties are added in quadrature.

For the !n bound state analysis the possible absorption of the 
anti-deuterons and the bound state itself when crossing material 
has to be taken into account. For this, the same procedure as used 
for the anti-hypertriton analysis [9] is utilised. The absorption cor-
rection ranges from 3 to 40% (depending on the lifetime of the !n
bound state, which determines the amount of material crossed) 
with an overall uncertainty of 7%.

6. Results

No significant signal in the invariant mass distributions has 
been observed for both cases, as visible from Fig. 2 and Fig. 3.3

The shape of the invariant mass distribution of dπ+ is of purely 
kinematic origin, reflecting the momentum distribution of the par-
ticles used. The selection criteria listed in Table 1 are tuned to 
select secondary decays. The secondary anti-deuterons involved 
in the analysis originate mainly from two sources: The first and 
dominating source are daughters from three-body decays of the 
anti-hypertriton (3

!̄
H → d̄p̄π+ and 3

!̄
H → d̄n̄π0) where the other 

decay daughters are not detected. The invariant mass spectrum is 
obtained by combining theses anti-deuterons with pions generated 
in the collision. The second source is due to prompt anti-deuterons 
which are incorrectly labelled as displaced, because they have such 
low momenta that the DCA resolution of these tracks is not suffi-
cient to separate primary from secondary particles.

Since no signal in the invariant mass distributions is observed 
upper limits are estimated. For the estimation of upper limits 
for the rapidity density dN/dy the method discussed in [47] is 
utilised. In particular, we apply the software package TRolke as im-
plemented in ROOT [48]. This method needs as input mass and 
experimental width (3σ ) of the hypothetical bound states. The ob-
served counts are therefore compared to a smooth background 
as given by an exponential fit outside the signal region (as indi-
cated by the line in Fig. 2 and Fig. 3). For both candidates !n
and H-dibaryon we assume a binding energy of 1 MeV. The width 
is determined by the experimental resolution and obtained from 

3 Note that a hypothetical H-dibaryon with a mass above the %p threshold would 
not be observable in the present analysis.

Fig. 4. Upper limit of the rapidity density as function of the decay length shown for 
the !n bound state in the upper panel and for the H-dibaryon in the lower panel. 
Here a branching ratio of 64% was used for the H-dibaryon and a branching ratio of 
54% for the !n bound state. The horizontal (dashed) lines indicate the expectation 
of the thermal model with a temperature of 156 MeV. The vertical line shows the 
lifetime of the free ! baryon. (For interpretation of the references to colour in this 
figure, the reader is referred to the web version of this article.)

Monte Carlo simulations. In addition, the final efficiency which 
is discussed in section 5 is required. Further, values of branch-
ing ratios of the assumed bound states are needed. These depend 
strongly on the binding energy. With a 1 MeV binding energy for 
the !n bound state the branching ratio in the d +π+ decay chan-
nel is expected to be 54% [49]. The branching ratio for a 1 MeV or 
less bound H-dibaryon decaying into !pπ− is predicted to be 64%, 
see [44].

The resulting upper limits, for 99% CL, are shown in Fig. 4 as 
a function of the different lifetimes; for the !n bound state in 
the upper panel and for the H-dibaryon in the lower panel. These 
upper limits include systematic uncertainties. For the !n the ab-
sorption corrections are also considered in the figure, which causes 
the upper limits to be shifted upwards.

The obtained upper limits can now be compared to model 
predictions. The rapidity densities dN/dy from a thermal model 
prediction for a chemical freeze-out temperature of, for example, 
156 MeV, are dN/dy = 4.06 × 10−2 for the !n bound state and 
dN/dy = 6.03 × 10−3 for the H-dibaryon [16]. These values are 
indicated with the (blue) dashed lines in Fig. 4. For the investi-
gated range of lifetimes the upper limit of the !n bound state is 
at least a factor 20 below this prediction. For the H-dibaryon the 
upper limits depend more strongly on the lifetime since it has a 
different decay topology and all four final state tracks have to be 
reconstructed. The upper limit is a factor of 20 below the thermal 
model prediction for the lifetime of the free ! and becomes less 
stringent at higher lifetimes since the detection efficiency becomes 
small. For a lifetime of 10−8 s, corresponding to a decay length of 
3 m, the difference between model and upper limit reduces to a 
factor two.

In order to take the uncertainties in the branching ratio into 
account, we plot in Fig. 5 the products of the upper limit of the 
rapidity density times the branching ratio together with several 
theory predictions [16,30,31,50]. The curves are obtained using the 
value for the !-lifetime of Fig. 4.

The (red) arrows in the figures indicate the branching ratio 
from the theory predictions [44,49]. The obtained upper limits are 
a factor of more than 5 below all theory predictions for a branch-
ing ratio of at least 5% for the !n bound state and at least 20% for 
the H-dibaryon.

ALICE, PLB 752, 267-277 (2016)

• Search for ΛΛ bound state as 𝐻 dibaryon with RUN-1 Pb-Pb data 
ü Invariant mass reconstruction at secondary vertex
ü Assumed to be long-lived as long as a free Λ
ü Search for Λ𝑛 bound state as well by 𝑑̅ + 𝜋+ combination

→ No peak was found.
ü Upper limits of the yield below 10-1 of model prediction
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• ΛΛ correlation measured in pp & p-Pb collisions
ü Flat correlation allowing a large parameter space

→ Almost excluded a possibility of existence of bound state
ü Non-existence of bound state supported by HAL QCD calculations 

with nearly physical point

ALICE Collaboration / Physics Letters B 797 (2019) 134822 5

Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5 .02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5 .02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19 ].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08  [48 ], HKMYY [22] and Nijmegen ND46  [18 ] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46  predicts a bound state, while the ESC08  and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8 ].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25 ], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35 ], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5 .02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49 ] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5 ] fm−1 and d0 ∈ [0, 18 ] fm 
and refit the !–! correlation using Eq. (5 ) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5 .02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i −χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49 ]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38 ]. 
The predicted scattering parameters of all discussed potentials are 
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Fig. 2. !–! correlations measured in pp collisions at √s = 13 TeV (left panel) and p–Pb collisions at √sNN = 5 .02 TeV (right panel) together with the functions computed 
by the different models [20]. The tested potentials are converted to correlation functions using CATS and the baseline is refitted for each model. The effects of momentum 
resolution and residuals are included in the theory curves.

existing model predictions are summarized in [20] and the corre-
sponding potentials V (r) are parametrized in a local form using a 
double-Gaussian function. The correlation function depends on the 
nature of the underlying interaction and Fig. 2 shows the exper-
imental !–! correlations measured in pp collisions at 

√
s = 13

TeV (left panel) and p–Pb collisions at √
sNN = 5 .02 TeV (right 

panel) together with the correlation functions obtained for differ-
ent meson-exchange interaction potentials employing CATS. Mod-
els with a strongly attractive interaction ( f −1

0 ! 1 and positive), 
like the Ehime [17] potential, result in a large enhancement of the 
correlation function at low momenta which overshoots the data 
significantly both in pp and p–Pb collisions. The same is valid for 
potentials corresponding to a shallow bound state ( f −1

0 → 0 and 
negative), e.g. NF44 [19 ].

The other tested potentials correspond either to a bound state 
or a shallow attractive ( f −1

0 " 1) non-binding interaction. However, 
those two very different scenarios result in similar correlations and 
are difficult to separate. This is evident from Fig. 2 as all of the 
ESC08  [48 ], HKMYY [22] and Nijmegen ND46  [18 ] models produce 
comparable results and are compatible with the experimental data, 
even though their scattering parameters are different. In particular, 
ND46  predicts a bound state, while the ESC08  and HKMYY models 
describe a shallow attractive potential and the latter is consistent 
with hypernuclei data [7,8 ].

The Lednický model can be used to compute C(k∗) for any f −1
0

and d0. Thus a scan over the scattering parameters can be pre-
formed and the agreement to the experimental data can be quan-
tified. The Lednický model breaks down for source sizes smaller 
than the effective range, especially when dealing with repulsive 
interactions [25 ], as it produces unphysical negative correlation 
functions. As there are no realistic models predicting such an in-
teraction, this study is not affected. Nevertheless, all models de-
scribed in [20] are explicitly tested by comparing the correlation 
functions obtained using the exact solution provided by CATS with 
the approximate solution evaluated using the Lednický model. The 
deviations are on the percent level and are neglected.

Another assumption, which the Lednický model is based on, is 
a Gaussian profile of the source. The EPOS [34] transport model 
predicts a non-Gaussian emission profile [35 ], and the effects of 
short lived resonances are included. This source was adopted in 
CATS, by tuning its width such as to describe the p–p correlation 
function, and the predicted C(k∗) for all of the ND and NF models, 
shown in Fig. 3, were compared to the !–! correlation function 
in pp collisions at 

√
s = 13 TeV. The deviations in χ2 compared to 

the case of a Gaussian source are within the uncertainty, justifying 
the use of a Gaussian source.

Fig. 3. Exclusion plot for the !–! scattering parameters obtained using the !–!

correlations from pp collisions at √s = 7 and 13 TeV as well as p–Pb collisions 
at √sNN = 5 .02 TeV. The different colors represent the confidence level of exclud-
ing a set of parameters, given in nσ . The black hashed region is where the Lednický 
model produces an unphysical correlation. The two models denoted by colored stars 
are compatible with hypernuclei data, while the red cross corresponds to the pre-
liminary result of the lattice computation performed by the HAL QCD collaboration. 
For details regarding the region at slightly negative f −1

0 and d0 < 4, compatible 
with a bound state, refer to Fig. 4.

To quantify the uncertainties of f −1
0 and d0, and estimate the 

confidence level of each parameter set, a Monte Carlo method is 
used. In the current work the approach described in [49 ] is fol-
lowed, which is closely related to the Bootstrap method. The strat-
egy is to use the Lednický model to perform a scan over the pa-
rameter space spanned by f −1

0 ∈ [−2, 5 ] fm−1 and d0 ∈ [0, 18 ] fm 
and refit the !–! correlation using Eq. (5 ) when fixing the scat-
tering parameters to a specific value ( f −1

0 , d0)i . The corresponding 
χ2

i is evaluated by taking all data sets (pp at 
√

s = 7 and 13 TeV 
and p–Pb at √sNN = 5 .02 TeV) into account. The different scatter-
ing parameters can be compared by finding the lowest (best) χ2

best
and evaluating $χ2

i = χ2
i −χ2

best for each parameter set. This ob-
servable, and the associated ( f −1

0 , d0)i , can be directly linked to 
the confidence level [49 ]. This can be achieved either by assum-
ing normally distributed uncertainties of ( f −1

0 , d0), or invoking a 
more sophisticated Monte Carlo study, like the Bootstrap method. 
The latter is used in the current analysis.

The resulting exclusion plot is presented in Fig. 3, where the 
color code corresponds to the confidence level nσ for a specific 
choice of scattering parameters. In the computation only the sta-
tistical uncertainties are taken into account, as the systematic un-
certainties are negligible according to the Barlow criterion [38 ]. 
The predicted scattering parameters of all discussed potentials are 

ALICE, PLB 797, 134822 (2019)pp, 13TeV p-Pb, 5.02TeV

attractiverepulsive

Possible bound state
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• Attractive 𝑝Ξ, interaction by strong interaction
ü Quantitative agreement with HAL QCD
ü Possible resonance state at 𝑁Ξ threshold
→ Looking for a possible peak around 𝑁Ξ threshold by reconstructing 

invariant mass of ΛΛ & 𝑝Ξ, from primary vertex

10 K. Sasaki et al. / Nuclear Physics A 998 (2020) 121737

Fig. 4. (a) !! scattering phase shift, (b) !! inelasticity, and (c) N" scattering phase shift in the 11S0 channel.

The !! phase shifts and the inelasticity are defined by the !!-component of the two-
by-two S-matrix, (S)!! = η exp(2iδ!!). In Fig. 4 (a, b), they are shown as a function of the 
center-of-mass energy ECM = k2/m! with k being the relative momentum between !s for 
t/a = 11, 12, 13. The t-dependence is minor within the statistical errors. We found that !! at-
traction is rather weak, as inferred from Fig. 1 (a). Accordingly, no bound or resonant di-hyperon 
exits around the !! threshold in (2+1)-flavor QCD at nearly physical quark masses. This is in 
contrast to the case of a possible H -dibaryon in 3-flavor QCD at heavy quark masses [28,29].

Low-energy part of !! phase shifts in Fig. 4 (a) provides the scattering length and the effec-
tive range using the S-wave effective range expansion (ERE) formula,

k cot δ = − 1
a0

+ 1
2
reffk

2 + O(k4), (13)

where we use the sign convention of a0 in nuclear and atomic physics. The results are

a
(!!)
0 = −0.81 ± 0.23+0.00

−0.13 [fm], r
(!!)
eff = 5.47 ± 0.78+0.09

−0.55 [fm], (14)

where the central values and the statistical errors are estimated at t/a = 12, while the systematic 
errors are estimated from the central values for t/a = 11 and 13. For comparison, the exper-
imental neutron-neutron ERE parameters are (a(nn)

0 , r(nn)
eff ) = (−18.5, 2.80) fm. Our results in 
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|S|=2 sector: p-Ξ- interaction and first test of LQCD

• Observation of the strong interaction beyond Coulomb
• Agreement with lattice calculations confirmed in pp and p-Pb colliding systems
• At finite density HAL QCD potentials predict in PNM a slightly repulsive UΞ ~+6 MeV(*)→

stiffening of the EoS
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𝑯 → 𝜦+ 𝜦 𝑯 → 𝒑 + 𝜩!
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• Initial attempt with pp HM & p-Pb
ü Analyzed events: 1B (pp HM), 

0.6B (p-Pb MB) events
ü Good purity for single Λ & Ξ

− Λ: 94%, Ξ: 92% in pp HM
ü No significant peak at 𝑁Ξ

threshold so far

• Ongoing issues:
a. Analysis with RUN-2 Pb-Pb 

data
b. Signal search with 𝐽 = 0 state 

selection for ΛΛ 𝑵𝜩 threshold

Single 𝜦 Single 𝚵
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• Attractive 𝑝Ω, interaction by strong interaction
ü More attractive than 𝑝Ξ,
ü Consistent with HAL QCD
ü Possible quasi-bound state (𝐽 = 2) similar to deuteron

− No Pauli blocking & assist by Coulomb attraction for 𝑝𝛺
→ Looking for a possible signal for 𝑛Ω quasi-bound state

288 T. Iritani et al. / Physics Letters B 792 (2019) 284–289

Fig. 5. The ratio of the effective range reff and the scattering length a0 as a func-
tion of reff for N!(5S2) (red circle) and !!(1S0) [7] (blue diamond) on the lattice, 
as well as for N N(3S1) (purple up-pointing triangle) and N N(1S0) (green down-
pointing triangle) [37] in experiments.

a0 = 5.30(0.44)(+0.16
−0.01) fm, reff = 1.26(0.01)(+0.02

−0.01) fm, (8)

where the central values and the statistical errors are estimated at 
t/a = 12, while the systematic errors in the last parentheses are 
estimated from the central values for t/a = 11, 13 and 14.

In Fig. 5, the ratio reff/a0 as a function of reff for N!(5S2)
is plotted together with the experimental values for N N(3S1)
(deuteron) and N N(1S0) (di-neutron) as well as lattice QCD value 
for !!(1S0) (di-Omega) [7]. Small values of |reff/a0| in all these 
cases indicate that these systems are located close to the unitary 
limit.9

The binding energy B and the root mean square distance 
(
√

⟨r2⟩) of N!(5S2) are obtained by solving the Schrödinger equa-
tion with the potential fitted to our lattice results:

B = 1.54(0.30)(+0.04
−0.10) MeV,

√
⟨r2⟩ = 3.77(0.31)(+0.11

−0.01) fm. (9)

Although the N-! is attractive everywhere, the binding energy is 
as small as ∼ 1 MeV due to the short range nature of the potential. 
Accordingly, the root mean square distance is comparable to the 
scattering length, indicating that the system is loosely bound like 
the deuteron and the di-Omega.

In our pilot study [10], we found B = 18.9(5.0)(+12.1
−1.8 ) MeV

for heavy pion mass mπ = 875 MeV. The larger magnitude of B
than the present result in Eq. (9) originates partly from the heavy 
masses of N and ! in [10] which reduce the kinetic energy and 
thus increase the binding energy. Another reason is that the short-
range attraction for heavy pion is relatively stronger.

So far, we have not considered extra attraction in the p!−

system due to Coulomb attraction. By taking into account the cor-
rection V C(r) → V C(r) − α/r with α ≡e2/(4π) = 1/137.036, we 
obtain the observables,

B p!− = 2.46(0.34)(+0.04
−0.11) MeV,

√
⟨r2⟩

p!− = 3.24(0.19)(+0.06
−0.00) fm. (10)

These results for p!−(5S2) are summarized in Fig. 6 together with 
n!−(5S2) without Coulomb correction.

Before ending this section, let us briefly discuss other possible 
systematic errors in Eqs. (8), (9) and (10). The first one is the finite 
volume effect whose typical error would be exp(−2mπ (L/2)) ≃

9 The values in the fm unit are (a0, reff)N N(3S1) = (5.4112(15), 1.7463(19)), 
(a0, reff)N N(1S0) = (−23.7148(43), 2.750(18)) from the experiment [37], and 
(a0, reff)!!(1S0) = (4.6(6)(+1.2

−0.5), 1.27(3)(+0.06
−0.03)) from the lattice QCD calculation [7].

Fig. 6. The binding energy B and the root mean square distance 
√

⟨r2⟩ for n!−

(red circle) and for p!− (blue square). In both figures, inner bars correspond to 
the statistical errors, while the outer bars are obtained by the quadrature of the 
statistical and systematic errors.

exp(−6) ≃0.25% and is much smaller than the statistical er-
rors in our simulation. The second one is the finite cutoff effect, 
which is also expected to be small assuming the naive order es-
timate ($a)2 ≤ 1% with the non-perturbative O(a) improvement. 
The third systematic error is due to the slightly heavy hadron 
masses (mπ = 146 MeV, mN = 955 MeV and m! = 1712 MeV). 
By using the same parameter set for t/a = 12 in Table 1 with 
mπ = 146 MeV kept fixed but with physical baryon masses (mp =
938 MeV and m!− = 1672 MeV), we find less binding than Eq. (10)
as expected: B p!− ≃2.18(32) MeV and 

√
⟨r2⟩p!− ≃3.45(22) fm. 

On the other hand, if we additionally employ m±
π = 140 MeV for 

the potential (see Eq. (6)), we find more binding than Eq. (10)
due to smaller pion mass: B p!− ≃3.00(39) MeV and 

√
⟨r2⟩p!− ≃

3.01(16) fm.

5. Summary

In this paper, we have studied the N-! system in the 5S2
channel, which is one of the promising candidates for quasi-stable 
dibaryon, from the (2+1)-flavor lattice QCD simulations with nearly 
physical quark masses (mπ ≃146 MeV and mK ≃525 MeV). The 
N-! central potential in the 5S2 channel obtained by the time-
dependent HAL QCD method is found to be attractive in all dis-
tances. The scattering length and the effective range obtained 
by solving the Schrödinger equation using the resultant potential 
show that N!(5S2) is close to unitarity similar to the cases of the 
deuteron (pn) and di-Omega (!!). The binding energy of p!−

without (with) the Coulomb attraction is about 1.5 MeV (2.5 MeV), 
which indicates the existence of a shallow quasi-bound state below 
the N! threshold. In our simulation, we did not find a signature 
of the strong coupling between N!(5S2) and $% or &% in the D-
wave state, while it remains to be an important future problem to 
analyze the coupled channel system with octet baryons, $% and 
&% .

The N!(5S2) in the unitary regime can be studied in the 
two-particle correlation measurements in p-p and p-nucleus and 
nucleus-nucleus collisions as suggested theoretically in [12] and 
experimentally reported by the STAR Collaboration at RHIC [16]. 
Phenomenological analyses along this line on the basis of the re-
sults in the present paper will be reported elsewhere [38].
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• Attractive pΩ interaction → di-baryon with Eb~2.5 MeV
• Presence of inelastic channels:

• First measurements of pΩ in pp HM 13 TeV by ALICE
– Strong attractive interaction

• Comparison with lattice predictions in two cases:
– No / dominant inelastic contributions

• Data in agreement with
– Negligible inelastic contributions → support the

scenario obtained in ΛΞ measured correlations
– No evidence of bound state

|S| = 3 : ΛΞ interaction and its role in pΩ interaction
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𝒏𝜴 → 𝜦 + 𝜩!

• Analysis with pp HM & p-Pb
ü No significant peak below 𝑛Ω

threshold
ü 𝑝𝛺 → 𝑝 + 𝛺, analysis is ongoing
ü Statistically suffering with finer 

mass-bin
→ Need more statistics with Pb-Pb 

data

• Ongoing issues:
a. Analysis with RUN-2 Pb-Pb data
b. Signal search with 𝐽 = 2 state 

selection for ΛΞ
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STAR Collaboration / Physics Letters B 790 (2019) 490–497 495

Fig. 3. Measured correlation function (C(k∗)) for proton–! and antiproton–!̄ (P! + P̄!̄) for (0–40)% (a) and (40–80)% (b) Au + Au collisions at √sNN = 200 GeV. The triangles 
represent raw correlations, open circles represent pair-purity corrected (PP) correlations, and solid circles represent pair-purity and smearing corrected (PP + SC) correlations. 
The error bars correspond to statistical errors and caps correspond to the systematic errors. The predictions from Ref. [24] for proton–! interaction potentials V I (red), V II
(blue) and V III (green) for source sizes R p = R! = 5 fm and R p = R! = 2.5 fm are shown in (a) and (b) respectively.

resolution on the correlation functions is negligible compared with 
statistical errors.

To study the shape of the correlation function for the back-
ground, the candidates from the side-bands of the invariant mass 
of ! were chosen in the range M < 1.665 GeV/c2 and M >
1.679 GeV/c2. These selected candidates were then combined with 
the proton tracks from the same event to construct the relative 
momentum for the same event. The relative momentum for the 
mixed event is generated by combining the selected candidates 
from the side-bands of the invariant mass of ! with protons from 
different events with approximately the same vertex position along 
the z-direction.

3. Results and discussion

After applying the selection criteria for the proton and !
identification, as mentioned in the data analysis section, a to-
tal of 38065 ± 195 (8816 ± 94) and 3037 ± 55 (679 ± 26) pairs 
of proton–! and antiproton–!̄ for k∗ < 0.2 (0.1) GeV/c are ob-
served for 0–40% and 40–80% Au + Au collisions, respectively. 
The measured proton–! and antiproton–!̄ correlation functions, 
P! + P̄!̄, the correlation functions after correction for pair-purity, 
P! + P̄!̄ (PP), and the correlation functions after correction for 
pair-purity and momentum smearing, P! + P̄!̄ (PP + SC), for 
0–40% and 40–80% Au + Au collisions at √

sN N = 200 GeV are 
shown in Fig. 3 (a) and 3 (b). The systematic errors for the mea-
sured proton–! correlation function were estimated by varying the 
following requirements for the selection of ! candidates: the de-
cay length, DCA of ! to the primary vertex, pointing angle cuts 
and mass range, which affect the purity of the ! sample. The DCA 
and m2 requirements were varied to estimate the systematic er-
ror from the proton purity. In addition, the systematic errors from 
normalization and feed-down contributions were also estimated. 
The systematic errors from different sources were then added in 
quadrature. The combined systematic errors are shown in Fig. 3 as 
caps for each bin of the correlation function.

Predictions for the proton–! correlation function from Ref. [24]
for the proton–! interaction potentials V I , V II and V III for a static 
source with sizes R p = R! = 5.0 fm and R p = R! = 2.5 fm are 
also shown in Fig. 3(a) and Fig. 3(b). The selected source sizes 
are not fit to the experimental data. The choice of the poten-
tials in Ref. [24] is based on an attractive N! interaction in the 

5 S2 channel from the lattice QCD simulations with heavy u-, d-, 
s-quarks from Ref. [16]. The potential V II is obtained by fitting 
the lattice QCD data with a function V (r) = b1e−b2r2 + b3(1 −
e−b4r2

)(e−b5r/r)2, where b1 and b3 are negative and b2, b4 and 
b5 are positive, which represents a case with a shallow N! bound 
state. Two more potentials V I and V III represent cases without a 
N! bound state and with a deep N! bound state, respectively. The 
binding energies (Eb), scattering lengths (a0) and effective ranges 
(reff) for the N! interaction potentials V I , V II and V III are listed 
in Table 2 [24]. The measured correlation function for P! + P̄!̄ is 
in agreement with the predicted trend with the interaction po-
tentials V I , V II and V III in 0–40% Au + Au collisions as shown 
in Fig. 3(a). However, due to limited statistics at the lower k∗ , 
strong enhancement due to the Coulomb interaction is not visi-
ble in 40–80% Au + Au collisions in Fig. 3(b).

The measured proton–! and antiproton–!̄ correlation func-
tions include three effects coming from the elastic scattering in 
the 5 S2 channel, the strong absorption in the 3 S1 channel and the 
long-range Coulomb interaction. The Coulomb interaction between 
the positively charged proton and negatively charged ! introduces 
a strong enhancement in the correlation function at the small k∗ , 
as seen in Fig. 3. One can remove the Coulomb enhancement us-
ing a Gamow factor [45], however, this simple correction is not 
good enough to extract the characteristic feature of the correla-
tion function from the strong interaction. A full correction with the 
source-size dependence is needed to isolate the effect of the strong 
interaction from the Coulomb enhancement. Therefore, the ratio of 
the correlation function between small and large collision systems, 
is proposed in Ref. [24] as a model-independent way to access the 
strong interaction with less contamination from the Coulomb in-
teraction.

The ratio of the combined proton–! and antiproton–!̄ corre-
lation function from the peripheral (40–80%) to central (0–40%) 
collisions, defined as R = C40–80/C0–40 is shown in Fig. 4. The cor-
relation functions corrected for pair-purity and momentum smear-
ing are used for the ratio calculations. The systematic uncertainties 
are propagated from the measured correlation functions for the 
0–40% and 40–80% centrality bins and are shown as caps. For the 
background study, the candidates from the side-bands of the !
invariant mass were combined with protons to construct the cor-
relation function. The same ratio, R, for the background is unity 
and is shown as open crosses in Fig. 4. Previous measurements 
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Furthermore, when the source size is not too small com-
pared to the interaction range, the integral is dominated
by the contribution outside the interaction range such that
the wave function can be approximated by its asymptotic
form ψq(r) ∼ e−iδ sin(qr + δ)/(qr) with δ being the S-wave-
scattering phase shift. Employing a Gaussian source S(r) ∝
exp(−r2/4R2) and the effective range formula for small q,

q cot δ ≃ − 1
a0

+ 1
2

reffq2, (12)

one can express the correlation function in terms of the scat-
tering length a0 and the effective range reff, which is known as
the Lednický-Lyuboshits (LL) formula [25],

C(LL)(q) = 1 + | f (q)|2

2R2
F3

(
reff

R

)
+ 2Re f (q)√

πR
F1(2qR)

− Im f (q)
R

F2(2qR). (13)

Here f (q) = (q cot δ − iq)−1 is the scattering amplitude,
F1(x) =

∫ x
0 dtet2−x2

, F2(x) = (1 − e−x2
)/x, and F3(x) = 1 −

x/(2
√

π ). Since the scattering length dominates the behavior
of the phase shift at small q, this correlation function is mainly
determined by the scattering length and the source size: For
reff = 0, C(LL)(q) is a function of two dimensionless variables,
qR and R/a0 [15].

Figure 1 represents characteristics of the correlation func-
tion C(LL)(q) with reff = 0. For a fixed qR [Fig. 1(a)], the
correlation function exhibits nonmonotonic changes against
the ratio of the system size to the scattering length. It shows
a strong peak around R/a0 ∼ 0 for small qR due to the
strong enhancement of the wave function. We call the region
where C(q) is enhanced as the “unitary region” throughout
this paper. The peak is smeared as qR is increased. As the
attraction becomes weaker (a0 < 0), the correlation is also
weakened to exhibit monotonic decrease with decreasing
R/a0 and increasing qR. On the other hand, if the attraction is
strong enough to accommodate a bound state (a0 > 0), C(q)
rapidly decreases with R/a0 and then takes values less than
unity, implying the depletion of correlated pairs at small qR.
The depletion can be understood by the so-called structural
core; the scattering wave function needs to be orthogonal
to the bound-state wave function, and then it has a node in
the interaction range as if there is a repulsive core. Thus the
squared wave function is suppressed on average.

The above properties of C(q) are essential in order to
extract the pairwise interaction from the measured correlation
functions. In particular, the behavior of C(q) for different
system size provides detailed information on the scattering
parameters as shown in Fig. 1(b). Consider the case where
C(q) ≫ 1 at small qR. It indicates that the system is in the
unitary region where |R/a0| is small, while the sign of a0 is
unknown. However, by increasing R with a0 and qR fixed,
C(q) eventually becomes smaller than 1 for positive a0, while
C(q) is always larger than 1 for negative a0.

In reality, the correlation at small q originates not only from
the single-channel FSI but also from the quantum statistics
in the case of identical pairs (Hanbury Brown-Twiss (HBT)
effect), from the Coulomb interaction, and from the coupled-
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FIG. 1. The correlation function C (LL)(q) with reff = 0 as a func-
tion of R/a0 for different qR (a) and as a function of qR for different
R/a0 value (b). In the present sign convention, a0 > 0 corresponds to
the existence of a bound state.

channels effect [26]. Furthermore, the correlation from the
HBT effect is affected by the collective flow through the
modification of the source geometry. As a result, even for non-
identical pairs, the absolute magnitude of C(q) with respect to
unity is not always a useful measure to quantify the effect of
FSI in heavy-ion collisions. However, by taking a ratio of the
correlation functions with small and large system sizes as

CSL(q) = Csmall-R(q)/Clarge-R(q), (14)

one can nicely cancel out the effect of the Coulomb interaction
between charged pairs and extract the FSI from the strong
interaction, as demonstrated in Ref. [17]. We will follow this
idea in this paper to study !! and p ! correlations.

III. MODELING EMISSION FUNCTION

As seen from Fig. 1, the correlation from FSI strongly
depends on the source size. In order to extract the pairwise
interaction from the correlation function, one needs to know
the source size or to look at the system size dependence of
the correlation [17]. Therefore, modeling the particle source is

015201-3
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𝒂𝟎 > 𝟎
repulsive/bound state

𝒂𝟎 < 𝟎
attractive/no bound state

• Crucial to study source size dependence of correlation function
ü 𝑝Ω, correlation: a sign of 𝑎< is unknown due to a large statistical error
ü Good to see CSL to cancel out the Coulomb contribution
→ Working on improvement of single Ω purity & low 𝑝= reach

− Purity ~ 50% for 𝑝=>1.2GeV/c with conventional selection
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Fig. 5. The ratio of the effective range reff and the scattering length a0 as a func-
tion of reff for N!(5S2) (red circle) and !!(1S0) [7] (blue diamond) on the lattice, 
as well as for N N(3S1) (purple up-pointing triangle) and N N(1S0) (green down-
pointing triangle) [37] in experiments.

a0 = 5.30(0.44)(+0.16
−0.01) fm, reff = 1.26(0.01)(+0.02

−0.01) fm, (8)

where the central values and the statistical errors are estimated at 
t/a = 12, while the systematic errors in the last parentheses are 
estimated from the central values for t/a = 11, 13 and 14.

In Fig. 5, the ratio reff/a0 as a function of reff for N!(5S2)
is plotted together with the experimental values for N N(3S1)
(deuteron) and N N(1S0) (di-neutron) as well as lattice QCD value 
for !!(1S0) (di-Omega) [7]. Small values of |reff/a0| in all these 
cases indicate that these systems are located close to the unitary 
limit.9

The binding energy B and the root mean square distance 
(
√

⟨r2⟩) of N!(5S2) are obtained by solving the Schrödinger equa-
tion with the potential fitted to our lattice results:

B = 1.54(0.30)(+0.04
−0.10) MeV,

√
⟨r2⟩ = 3.77(0.31)(+0.11

−0.01) fm. (9)

Although the N-! is attractive everywhere, the binding energy is 
as small as ∼ 1 MeV due to the short range nature of the potential. 
Accordingly, the root mean square distance is comparable to the 
scattering length, indicating that the system is loosely bound like 
the deuteron and the di-Omega.

In our pilot study [10], we found B = 18.9(5.0)(+12.1
−1.8 ) MeV

for heavy pion mass mπ = 875 MeV. The larger magnitude of B
than the present result in Eq. (9) originates partly from the heavy 
masses of N and ! in [10] which reduce the kinetic energy and 
thus increase the binding energy. Another reason is that the short-
range attraction for heavy pion is relatively stronger.

So far, we have not considered extra attraction in the p!−

system due to Coulomb attraction. By taking into account the cor-
rection V C(r) → V C(r) − α/r with α ≡e2/(4π) = 1/137.036, we 
obtain the observables,

B p!− = 2.46(0.34)(+0.04
−0.11) MeV,

√
⟨r2⟩

p!− = 3.24(0.19)(+0.06
−0.00) fm. (10)

These results for p!−(5S2) are summarized in Fig. 6 together with 
n!−(5S2) without Coulomb correction.

Before ending this section, let us briefly discuss other possible 
systematic errors in Eqs. (8), (9) and (10). The first one is the finite 
volume effect whose typical error would be exp(−2mπ (L/2)) ≃

9 The values in the fm unit are (a0, reff)N N(3S1) = (5.4112(15), 1.7463(19)), 
(a0, reff)N N(1S0) = (−23.7148(43), 2.750(18)) from the experiment [37], and 
(a0, reff)!!(1S0) = (4.6(6)(+1.2

−0.5), 1.27(3)(+0.06
−0.03)) from the lattice QCD calculation [7].

Fig. 6. The binding energy B and the root mean square distance 
√

⟨r2⟩ for n!−

(red circle) and for p!− (blue square). In both figures, inner bars correspond to 
the statistical errors, while the outer bars are obtained by the quadrature of the 
statistical and systematic errors.

exp(−6) ≃0.25% and is much smaller than the statistical er-
rors in our simulation. The second one is the finite cutoff effect, 
which is also expected to be small assuming the naive order es-
timate ($a)2 ≤ 1% with the non-perturbative O(a) improvement. 
The third systematic error is due to the slightly heavy hadron 
masses (mπ = 146 MeV, mN = 955 MeV and m! = 1712 MeV). 
By using the same parameter set for t/a = 12 in Table 1 with 
mπ = 146 MeV kept fixed but with physical baryon masses (mp =
938 MeV and m!− = 1672 MeV), we find less binding than Eq. (10)
as expected: B p!− ≃2.18(32) MeV and 

√
⟨r2⟩p!− ≃3.45(22) fm. 

On the other hand, if we additionally employ m±
π = 140 MeV for 

the potential (see Eq. (6)), we find more binding than Eq. (10)
due to smaller pion mass: B p!− ≃3.00(39) MeV and 

√
⟨r2⟩p!− ≃

3.01(16) fm.

5. Summary

In this paper, we have studied the N-! system in the 5S2
channel, which is one of the promising candidates for quasi-stable 
dibaryon, from the (2+1)-flavor lattice QCD simulations with nearly 
physical quark masses (mπ ≃146 MeV and mK ≃525 MeV). The 
N-! central potential in the 5S2 channel obtained by the time-
dependent HAL QCD method is found to be attractive in all dis-
tances. The scattering length and the effective range obtained 
by solving the Schrödinger equation using the resultant potential 
show that N!(5S2) is close to unitarity similar to the cases of the 
deuteron (pn) and di-Omega (!!). The binding energy of p!−

without (with) the Coulomb attraction is about 1.5 MeV (2.5 MeV), 
which indicates the existence of a shallow quasi-bound state below 
the N! threshold. In our simulation, we did not find a signature 
of the strong coupling between N!(5S2) and $% or &% in the D-
wave state, while it remains to be an important future problem to 
analyze the coupled channel system with octet baryons, $% and 
&% .

The N!(5S2) in the unitary regime can be studied in the 
two-particle correlation measurements in p-p and p-nucleus and 
nucleus-nucleus collisions as suggested theoretically in [12] and 
experimentally reported by the STAR Collaboration at RHIC [16]. 
Phenomenological analyses along this line on the basis of the re-
sults in the present paper will be reported elsewhere [38].
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aðΩΩÞ0 ¼ 4.6ð6Þðþ 1.2
−0.5Þ fm; ð7Þ

rðΩΩÞeff ¼ 1.27ð3Þðþ 0.06
−0.03Þ fm: ð8Þ

The central values and the statistical errors in the first
parentheses are extracted from δðkÞ at t=a ¼ 17, and the
systematic errors in the second parentheses are estimated
from the results at t=a ¼ 16 and 18. The origin of this
systematic error is the truncation of the higher derivatives
of the nonlocal potential as well as the contaminations
from inelastic states. To get a feel for the magnitude of
these values, we recapitulate here the experimental values
of a0 and reff in the NN systems: ða0; reffÞspin-triplet ¼
(5.4112ð15Þ fm; 1.7436ð19Þ fm) and ða0; reffÞspin-singlet ¼
( − 23.7148ð43Þ fm; 2.750ð18Þ fm) [38]. There exists no
symmetry reason that the scattering parameters in the NN
systems and those in the ΩΩ system should be similar.
Nevertheless, it is remarkable that they are all close to the
unitary region where reff=a0 is substantially smaller than 1
as shown in Fig. 3.
Shown in Fig. 4 are the bound state energy given by the

opposite sign of the binding energy, −BΩΩ, and the root-
mean-square distance (

ffiffiffiffiffiffiffiffi
hr2i

p
) of the ΩΩ bound state

obtained from the potential. The blue diamond is taken
from the data at t=a ¼ 17 without the Coulomb repulsion.
The blue solid and dashed lines are the statistical error at
t=a ¼ 17 and the systematic error estimated from the data
at t=a ¼ 17 % 1, respectively:

BðQCDÞ
ΩΩ ¼ 1.6ð6Þðþ 0.7

−0.6Þ MeV: ð9Þ

As an alternative estimate, the truncation error of the
derivative expansion on the binding energy is evaluated
perturbatively and is found to be less than 20% even if
the magnitude of the dimensionless next-to-leading-order
potential is the same order as that of the effective leading-
order potential. It is an important future subject to deter-
mine higher-order potentials explicitly by using the method

of multiple quark sources [39]. The binding energy is
consistent with the value obtained from the general formula
for loosely bound states [40] with (7) and (8): BΩΩ ¼
ð1=mΩr2effÞð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð2reff=a0Þ

p
Þ2 ≃ 1.5 MeV. Associated

with this small binding energy,
ffiffiffiffiffiffiffiffi
hr2i

p
is as large as 3–4 fm,

which is consistent with the expectation
ffiffiffiffiffiffiffiffi
hr2i

p
∼ a0 for

loosely bound states. The Coulomb repulsion can be
evaluated by adding α=r with α ¼ e2=4π to the potential
obtained from lattice QCD, i.e., VðQCDþ CoulombÞ≡
VðQCDÞ þ α=r. This reduces the above binding energy by
a factor of 2: BðQCDþ CoulombÞ

ΩΩ ¼ 0.7ð5Þð5Þ MeV as shown in
Fig. 4 by the red triangle.
It is in order here to remark that there are three energy

scales in the present problem: 2mΩ ≃ 3400 MeV ≫
jVðr ≃ 0.5 fmÞj ∼ 50 MeV ≫ BΩΩ ∼ 1 MeV. Since only

FIG. 2. The ΩΩ phase shift δðkÞ in the 1S0 channel for
t=a ¼ 16, 17, and 18 as a function of the center of mass kinetic
energy ECM ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ m2

Ω
p

− 2mΩ.

FIG. 3. The dimensionless ratio of the effective range reff and
the scattering length a0 as a function of reff for the ΩΩ system in
the 1S0 channel as well as for the spin-triplet NN system (the
deuteron channel) and for the spin-singlet NN system (the
neutron-neutron channel). The error bar for ΩΩ is the quadrature
of the statistical and systematic errors in Eqs. (7) and (8).

FIG. 4. Bound state energy of the ΩΩ system and the root-
mean-square distance between Ω’s obtained from the potential.
The filled diamond (triangle) corresponds to the result at
t=a ¼ 17 without (with) the Coulomb repulsion. The statistical
errors are shown by the solid lines, while the systematic errors
estimated from the difference between the data at t=a ¼ 17 and
those at t=a ¼ 16, 18 are shown by the dashed lines.
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• Possible ΩΩ bound state for 𝐽 = 0 predicted by HAL QCD calculation
ü Interesting to see with LHC RUN-3&4 data

− 100 times more MB events at ALICE with detector upgrade
− Both mass reconstruction via ΩΩ → Ω + Λ + 𝐾 & ΩΩ correlation 

function in Pb-Pb with different centralities
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• Making efforts to search for multi-strange dibaryons at LHC 
energy
ü Possible (quasi-)bound states for 𝑁Ω & ΩΩ systems predicted 

by HAL QCD calculations
ü Invariant mass reconstruction with daughter particles

• Current status:
ü Almost excluded ΛΛ bound state by initial searches in RUN-1
ü No significant peaks for 𝐻 → Λ + Λ/𝑝 + Ξ & 𝑛Ω → Λ + Ξ in small 

systems so far
• Ongoing analysis & plans

ü Analysis with RUN-2 Pb-Pb data with more statistics
− Working on improvement of purity for single Hyperons

ü 2 particle correlation measurements in Pb-Pb
− Source size dependence of correlation function
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