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1. Why anti-D meson and nucleon?
- Motivation to study exotic hadrons (multiquarks)

✔ Color confinement
✔ Flavor multiplets (unconventional)
✔ Multi-baryons (ex. strange/charm nuclei)
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Fig. 1 The weight diagram of SU(3)f for stable diquark of qq qq qQ
(Q = c) type (Hc) with strangeness S, isospin I and binding energy
BH . The black blobs indicate the stable dibaryons

Fig. 2 The weight diagram of SU(3)f for a stable diquark of
qq qq qQ (Q = b) type (Hb) with strangeness S, isospin I and binding
energy BH . The black blobs indicate the stable dibaryons

Fig. 3 The weight diagram of SU(3)f for a stable diquark of
qq qQqQ′ (Q = c and Q′ = b) type (Hbc) with strangeness S,
isospin I and binding energy BH . The black blobs indicate the stable
dibaryons, while the white blobs indicate the unstable dibaryons

a configuration is (ud)(us)(uc), (ud)((us)(dc) + (ds)(uc))

and (ud)(ds)(dc) in the isospin I = 1 multiplet. Concerning
(ud)(us)(uc), the binding energy of Hc can be investigated
by comparing its color–spin interaction to that of the proton
(udu) and Ξc (usc),

BHc = mHc − mp − mΞc
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Fig. 4 The weight diagram of SU(3)f for a stable diquark of
qq qq QQ′ (Q = c and Q′ = b) type (H ′

bc) with strangeness S, isospin
I and binding energy BH . The black blobs indicate the stable dibaryons

Fig. 5 The weight diagram of SU(3)f for a stable diquark of
qq qQQQ′ (Q = c and Q′ = b) type (Hbcc) with strangeness S,
isospin I and binding energy BH . The black blobs indicate the stable
dibaryons, while the white blobs indicate the unstable dibaryons
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The same binding energy is also obtained for the other
isospin partners. From another point of view, it can be
regarded that the binding energy of these Hc dibaryons
is supplied from the binding energy of (uc) or (dc) di-
quarks. As a result, one obtains BHc = −29 MeV and a
stable Hc dibaryon. This is a new prediction and could be
searched for in future heavy ion collisions, where a large
number of charm quarks are expected to be produced and
weakly decaying particle identifiable through vertex detec-
tors [20]. As further possible bound states, (ud)(us)(sc) and
(ud)(ds)(sc) in I = 1/2 and (us)(ds)(sc) in I = 0 all have
binding energies of −17 MeV. This binding energy is sup-
plied from the binding of the (sc) diquark, and hence is
smaller than that of the Hc dibaryon. Nevertheless, these
configurations are additional candidates for stable dibaryons
containing a single charm.

The dibaryons stated above have relatively large bind-
ing energies as the H dibaryon. The diquark model also
predicts other possible dibaryon states which have smaller
binding energies. In the (qq)(qq)(qQ) type, we obtain sta-
ble configurations for Q = b (Hb) with binding energies
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The same binding energy is also obtained for the other
isospin partners. From another point of view, it can be
regarded that the binding energy of these Hc dibaryons
is supplied from the binding energy of (uc) or (dc) di-
quarks. As a result, one obtains BHc = −29 MeV and a
stable Hc dibaryon. This is a new prediction and could be
searched for in future heavy ion collisions, where a large
number of charm quarks are expected to be produced and
weakly decaying particle identifiable through vertex detec-
tors [20]. As further possible bound states, (ud)(us)(sc) and
(ud)(ds)(sc) in I = 1/2 and (us)(ds)(sc) in I = 0 all have
binding energies of −17 MeV. This binding energy is sup-
plied from the binding of the (sc) diquark, and hence is
smaller than that of the Hc dibaryon. Nevertheless, these
configurations are additional candidates for stable dibaryons
containing a single charm.

The dibaryons stated above have relatively large bind-
ing energies as the H dibaryon. The diquark model also
predicts other possible dibaryon states which have smaller
binding energies. In the (qq)(qq)(qQ) type, we obtain sta-
ble configurations for Q = b (Hb) with binding energies
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is supplied from the binding energy of (uc) or (dc) di-
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The dibaryons stated above have relatively large bind-
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predicts other possible dibaryon states which have smaller
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1. Why anti-D meson and nucleon?
- Motivation to study exotic hadrons (multiquarks)

✔ Color confinement
✔ Flavor multiplets (unconventional)
✔ Multi-baryons (ex. strange/charm nuclei)

- Let us think exotic hadrons as simple as possible.
✔ Small number of channels (though many quarks...)
✔ Heavy quarks (effective theory of QCD; ΛQCD<<MQ)
✔ Symmetry (chiral symmetry, spin symmetry, ...)
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isospin partners. From another point of view, it can be
regarded that the binding energy of these Hc dibaryons
is supplied from the binding energy of (uc) or (dc) di-
quarks. As a result, one obtains BHc = −29 MeV and a
stable Hc dibaryon. This is a new prediction and could be
searched for in future heavy ion collisions, where a large
number of charm quarks are expected to be produced and
weakly decaying particle identifiable through vertex detec-
tors [20]. As further possible bound states, (ud)(us)(sc) and
(ud)(ds)(sc) in I = 1/2 and (us)(ds)(sc) in I = 0 all have
binding energies of −17 MeV. This binding energy is sup-
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- Anti-D meson and nucleon (pentaquark channel)
✔ Anti-c+qqqq (q=u,d): no annihilation channel
✔ Anti-charm nuclei?
✔ Extension to B meson and nucleon (heavy-quark spin symmetry)

Cohen, Hohler, Lebed, PRD72, 074010 (2005)
Yasui, Sudoh, PRD80, 034008 (2009)
Yamaguchi, Ohkoda, Yasui, Hosaka, PRD84, 014032 (2011),
ibid. D85, 054003 (2012)

1. Why anti-D meson and nucleon?

as hadronic molecule

π

πqc

q q
q

NucleonD(*) meson
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Fig. 5. Energy levels of D̄(⇤)NN , B(⇤)NN and P (⇤)NN with I = 1/2 and JP = 0� and 1� (solid lines) [137]. The complex energies for resonances are given as
Ere � i� /2, where Ere is a resonance energy and � /2 is a half decay width. Thresholds (subthresholds) are denoted by dashed (dash-dotted) lines.

detailed investigations of the few-body systems will provide another clue to understand the two-body interaction, as in the
case of the hypernuclei and the ⇤N interaction.

In Ref. [225], the DNN three-body system is studied with the DN interaction of Ref. [186] where the DN system has a
quasi-bound state of ⇤c(2595) in the I = 0 channel. The three-body system is solved by two techniques: a variational
calculation based on the Gaussian expansion method as explained in Section 2.4.1 and the fixed center approximation (FCA)
to the Faddeev equation as developed in Refs. [226,227]. In both methods, a narrow quasi-bound state of DNN is found
around 3500 MeV in the I(JP ) = 1/2(0�) channel. The I(JP ) = 1/2(1�) channel is unbound with respect to the ⇤c(2595)N
threshold. The width from the two-body absorption process DNN ! ⇤cN is evaluated in the FCA calculation and found to
be several tens of MeV. By analyzing the wave function obtained in the variational calculation, it is found that the DN(I = 0)
pair in the quasi-bound DNN system has a similar structure with the ⇤c(2595) in free space. This is a characteristic feature
observed in the K̄NN quasi-bound state [228,229]. The FCA approach is also applied to other three-body systems with the D
meson, such as NDK , K̄DN , NDD̄ systems [230], showing the existence of several quasi-bound states.

The D̄NN–D̄⇤NN system is studied in Ref. [137] which indicates the existence of bound and resonance states in the
three-body system. The D̄N–D̄⇤N interaction is given by the pion-exchange potential [98,192,211], and the NN interaction
is adopted by the Argonne v0

8 (AV8’) interaction [231]. The Argonne v0

8 interaction includes the tensor force explicitly, as the
pion-exchange potential is essential in nuclei. As a result, in the I(JP ) = 1/2(0�) channel, a bound state is found at 5.2 MeV
below the D̄NN threshold. In the I(JP ) = 1/2(1�) channel, a resonance state is found at 111.2 MeV above the D̄NN threshold,
with a 18.6 MeV decay width. As in the case of the D̄N–D̄⇤N system, it is found that the tensor force plays an important
role in the D̄NN–D̄⇤NN system. The binding energy mostly comes from the tensor force in the D̄N–D̄⇤N system, while the
central force is dominant in the NN pair rather than the tensor force. The energy levels of the three-body D̄NN–D̄⇤NN system
are summarized in Fig. 5, together with the BNN–B⇤NN system and PNN–P⇤NN which represents the mQ ! 1 limit. It is
shown that the I(JP ) = 1/2(1�) resonance in the charm sector degenerates with the bound I(JP ) = 1/2(0�) state in the
heavy quark limit. Thus, these states form a heavy quark spin doublet as a consequence of the heavy quark symmetry in the
formulation [58,59].

It is interesting to note that the lowest energy state is found to be the state with total spin J = 0 in both the DNN and
D̄NN systems. In the dominant s-wave DNN/D̄NN component in the J = 0 state, the two nucleons are combined into the 1S0
state. On the other hand, in the NN system without D/D̄, the lowest energy state is the bound deuteron in the 3S1 channel,
not the unbound 1S0 channel. This means that, by adding D/D̄, the lowest energy configuration of the two-nucleon system
changes from 3S1 to 1S0. The reason is attributed to the stronger DN/D̄N attraction in the I = 0 channel than that in the
I = 1 channel. By analyzing the isospin decomposition, it is found that the I(JP ) = 1/2(0�) channel has larger fraction
of I = 0 DN/D̄N pair than the I(JP ) = 1/2(1�) channel [225]. This is analogous to the K̄NN system [228,229] which also
favors the I(JP ) = 1/2(0�) state as the ground state. In this way, the injection of D/D̄ causes the structure transition of
the two-body correlation of nucleons. A thorough investigation of the few-body systems will elucidate the property of the
hadronic interactions inside the system.

masses (theory)
"HQS doublet"

More than 10 years ago...

Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)



1. Why anti-D meson and nucleon?
- 2022: First experiment has appeared!

✔ ALICE Coll.: 2201.05352 (theoretical analysis by Kamiya, Hyodo, Ohnishi)
✔ D-p correlation function
✔ Attraction suggested?

First study of the two-body scattering involving charm hadrons ALICE Collaboration
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Figure 2: Genuine pD− correlation function compared with different theoretical models (see text for details). The
null hypothesis is represented by the curve corresponding to the Coulomb interaction only.

red band. The purple band in Fig. 1 represents the total background that includes all contributions with
their corresponding weights. Finally, the genuine pD− correlation function is obtained by solving Eq. 1
for CpD−(k∗) and is shown in Fig. 2. The possible enhancement at low k∗ could be attributed to an overall
attractive genuine pD− final-state interaction.

The systematic uncertainties of the genuine pD− correlation function, CpD−(k∗), include (i) the un-
certainties of Cexp(k∗), (ii) the uncertainties of the λi weights, and (iii) the uncertainties related to the
parametrization of the background sources. In particular, the systematic uncertainties of Cp(K+π−π−)(k

∗)
are estimated by varying the proton and D−-candidate selection criteria and the range of the fit of the
C(k∗) parametrized from the invariant mass sidebands. The uncertainties of the λi weights are derived
from the systematic uncertainties on the D− purity and fnon-prompt reported above. The systematic un-
certainty of CpD∗−(k∗) is due to the uncertainty on the emitting source. The overall relative systematic
uncertainty on CpD−(k∗) resulting from the different sources is of 10% in the lowest k∗ interval.

The resulting genuine CpD−(k∗) correlation function can be employed to study the pD− strong interaction

that is characterized by two isospin configurations and is coupled to the nD
0

channel. First of all, in order
to assess the effect of the strong interaction on the correlation function, only the Coulomb interaction is
considered. The corresponding correlation function is obtained using CATS [73]. Secondly, various
theoretical approaches to describe the strong interaction are benchmarked, including meson exchange
(Haidenbauer et al. [21]), meson exchange based on heavy quark symmetry (Yamaguchi et al. [24]), an
SU(4) contact interaction (Hoffmann and Lutz [22]), and a chiral quark model (Fontoura et al. [23]). The
relative wave functions for the model [21] are provided directly, while for the models from [22–24] they
are evaluated by employing a Gaussian potential whose strength is adjusted to describe the corresponding
published I = 0 and I = 1 scattering lengths listed in Table 1. The pD− correlation function is computed
within the Koonin–Pratt formalism, taking into account explicitly the coupling between the pD− and nD0

channels [75] and including the Coulomb interaction [76]. The finite experimental momentum resolution
is considered in the modeling of the correlation functions [38].

The outcome of these models is compared in Fig. 2 with the measured genuine pD− correlation function.
The degree of consistency between data and models is obtained from the p-value computed in the range
k∗ < 200 MeV/c. It is expressed by the number of standard deviations nσ reported in Table 1, where the
nσ range accounts, at one standard deviation level, for the total uncertainties of the data points and the
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Table 1: Scattering parameters of the different theoretical models for the ND interaction [21–24] and degree of
consistency with the experimental data. Negative scattering parameters correspond to either a repulsive interaction
or to an attractive interaction with the presence of a bound state [24]. Positive scattering parameters correspond to
an attractive interaction.

Model f0 (I = 0) f0 (I = 1) nσ

Coulomb (1.1–1.5)
Haidenbauer et al. [21]
– g2

σ/4π = 1 0.14 −0.28 (1.2–1.5)
– g2

σ/4π = 2.25 0.67 0.04 (0.8–1.3)
Hofmann and Lutz [22] −0.16 −0.26 (1.3–1.6)
Yamaguchi et al. [24] −4.38 −0.07 (0.6–1.1)
Fontoura et al. [23] 0.16 −0.25 (1.1–1.5)

models. The data are compatible with the Coulomb-only hypothesis within (1.1–1.5)σ . Nevertheless,
the level of agreement slightly improves in case of the model by Yamaguchi et al. as reported in Table 1,
where the nσ values are summarized together with the scattering lengths f0. Here, the high-energy
physics convention on the scattering-length sign is adopted: a negative value corresponds to either
a repulsive interaction or to an attractive one with presence of a bound state, while a positive value
corresponds to an attractive interaction. Most notably, this is the only model in the literature that does
not predict a repulsive ND interaction and, in addition, it foresees the formation of a ND bound state with
a mass of 2804 MeV/c2 in the I= 0 channel. For the model by Haidenbauer et al., a better agreement with
the data can be achieved by fine-tuning the effective scalar coupling constant gσ [21]. As demonstrated
in Table 1, when increasing the coupling constant to g2

σ/4π = 2.25 the overall degree of consistency with
the data is improved. This also implies a change of the interaction, from repulsive to attractive.

Finally, the scattering parameters can be constrained by comparing the data with the outcome of calcu-
lations carried out varying the strength of the potential and the source radius. In this case the interaction
potential is parametrized by a Gaussian-type functional form with the range of ρ-meson exchange. In
this estimation, it is assumed that the interaction in the I = 1 channel is negligible for simplicity. The
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Figure 3: Regions of 68% confidence intervals for the inverse scattering length f−1
0, I=0 as a function of the source

radius varied within one standard deviation considering only the mT dependence on Reff and the total uncertainty
(see text for details) under the assumption of negligible interaction for I = 1. The most probable value is reported
by the star symbol.
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We should explore anti-D meson and nucleon more seriously!



- Anti-D meson and nucleon potential (P=anti-D, P*=anti-D*)
✔ PN-P*N mixing (P and P* are interchangeable.)
✔ Chiral (χ) symmetry + heavy-quark spin (HQS) symmetry
✔ OPEP (one-pion exchange potential) ← χ+HQS
✔ Scalar (σ), vector (ρ, ω) exchanges
✔ Analogy to nucleon-nucleon pot. (Note:1/√2 factor for mP(*)P(*))

π exchange → spin flipping (P, P* mixing) like in a deuteron

NP/P* π,σ,ρ,ωN Nπ,σ,ρ,ω
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✔ Chiral (χ) symmetry + heavy-quark spin (HQS) symmetry
✔ OPEP (one-pion exchange potential) ← χ+HQS
✔ Scalar (σ), vector (ρ, ω) exchanges
✔ Analogy to nucleon-nucleon pot. (Note:1/√2 factor for mP(*)P(*))

- Spin-structure (q: light quark, N: nucleon)
✔ (Anti-Q q) N = Anti-Q [q N]
✔ HQS multiplets

- HQS singlet: q+N with j=0 (total J=1/2 only)
- HQS doublet: q+N with j=1 (total J=1/2, 3/2 degenerate)

Spin decomposition 
of heavy-quark 
from light quarks 
and gluons
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- Spin-structure (q: light quark, N: nucleon)
✔ (Anti-Q q) N = Anti-Q [q N]
✔ HQS multiplets

- HQS singlet: q+N with j=0 (total J=1/2 only)
- HQS doublet: q+N with j=1 (total J=1/2, 3/2 degenerate)

- Is qN analogous to "nucleon-nucleon" (NN)︖
✔ If qN is deuteron-like, then qN spin j=1 indicates HQS doublet.
✔ We need to solve QCD for getting the answer.

Spin decomposition 
of heavy-quark 
from light quarks 
and gluons

π exchange → spin flipping (P, P* mixing) like in a deuteron
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- Reference system: nucleon-nucleon (NN)
✔ Similarity between qN and NN
✔ π, σ, ρ, ω exchange
✔ σ is important to consider both I=0 and I=1

π,σ,ρ,ω

2. Nucleon-nucleon pot. (modified CD-Bonn)
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✔ Similarity between qN and NN
✔ π, σ, ρ, ω exchange
✔ σ is important to consider both I=0 and I=1

- CD-Bonn is a realistic NN potential
✔ Reproducing the fundamental properties of NN force
✔ Simple model: 1-meson exchange (π, σ, ρ, ω, ...)
✔ ...However still complicated (heavier mesons included)
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- Reference system: nucleon-nucleon (NN)
✔ Similarity between qN and NN
✔ π, σ, ρ, ω exchange
✔ σ is important to consider both I=0 and I=1

- CD-Bonn is a realistic NN potential
✔ Reproducing the fundamental properties of NN force
✔ Simple model: 1-meson exchange (π, σ, ρ, ω, ...)
✔ ...However still complicated (heavier mesons included)

- We consider the simpler version of CD-Bonn ("modified CD-Bonn")
✔ We consider only mesons with lower masses
✔ Coupling constants as the same as in CD-Bonn
✔ Price to be paid: rescaling of the momentum cutoffs
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TABLE III. Parameters of the local NN potentials from
Ref. [16]. The meson masses are given as the isospin-averaged
values. �I is the � meson considered in the NN scatterings
with total isospin I = 0 and I = 1.

Mesons Masses [MeV] g2/4⇡ f/g

⇡ 138.04 13.6 —

⇢ 769.68 0.84 6.1

! 781.94 20 0.0

�0 350 0.51673 —

�1 452 3.96451 —

TABLE IV. The scale parameters I (I = 0 and I = 1)
and the observables in the NN scatterings. a and re are the
scattering length and the e↵ective range, respectively. Bd is
the binding energy of a deuteron in I = 0. The values with *
indicate the input values.

channel I (I = 0 and I = 1) a [fm] re [fm] Bd [MeV]
3S1 (I = 0) 0.8044226 5.296 1.562 2.225*
1S0 (I = 1) 0.7729982 23.740* 2.337 —

length in the 3
S1 (I = 0) channel is chosen instead of Bd.

As shown in the table, the obtained values of the scat-
tering lengths and the e↵ective ranges are well consistent
with those obtained from the original CD-Bonn potential,
a(3S1) = 5.419 ± 0.007 fm, re(3S1) = 1.753 ± 0.008 fm,
a(1S0) = �23.740 ± 0.020 fm, re(1S0) = 2.77 ± 0.05 fm,
and Bd = 2.225 MeV as shown in table IV, see Ref. [16]
for details.

Appendix B: Potential in a simple model

As an illustration of deriving a potential, we consider
a simple model where a potential is provided by the bo-

son exchange interaction (�) between two heavy particles
(�). We consider the Lagrangian
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1
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with the massesm andM for � and �, respectively. From
the equation of motion for �, (@2 +m

2)� = �g�†�, we
obtain the solution
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for given �(y). As a nonrelativistic limit, making the
approximation @

2 = @
2
0 � @2

⇡ �@2, we find that the
solution is expressed by

�(x) = g
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1
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by dropping the temporal dependence in x
µ = (x0,x)

and y
µ = (y0,y). The states |xi and |yi also are changed

to |xi and |yi, respectively. Hereafter, we omit x0 and
y0 if not necessary to be specified.
From the Lagrangian (B1), we obtain the interac-

tion Hamiltonian Hint =

Z
d4xHint(x) with Hint(x) =

g�(x)�†(x)�(x). In the following discussion, we express
this term by Hint(x) = g�(x)�†(x)�(x) because the
temporal dependence is dropped in the nonrelativistic
approximation. The expectation value of Hint(x) leads
to the energy shift of the system:

�E ⌘ h1, 2|

Z
d3xHint(x)|1, 2i, (B4)

with |1, 2i = |1i⌦ |2i where |1i and |2i denote the heavy-
particle states at the position 1 and 2, respectively, at
the equal time. By using Eq. (B3), we rewrite �E in the
following form:

�E = g
2

Z
d3x

Z
d3y h1, 2|�†(x)�(x)hx|

Z
d3p

(2⇡)3
|pihp|
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†(y)|0ih0|�(y)|2i. (B5)

In the above transformations, we have used hx|pi = e
ip·x

for the plane wave, and defined the potential by

Ṽ�(x,y) ⌘ g
2

Z
d3p

(2⇡)3
�1

p2 +m2
e
�ip·(x�y)

, (B6)

between x and y. In the last equation, we have inserted

the vacuum state denoted by |0i normalized by h0|0i = 1.

Let us consider the scattering process p1 + p2 ! p0
1 +

p0
2 of two � particles, where the states |1i and |2i (h1|

and h2|) have the three-dimensional momenta p1 and p2
(p0

1 and p0
2), respectively. Here we need to evaluate the

wave functions, h0|�(x)|1i, h0|�(y)|2i, h1|�†(x)|0i, and
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Masses and coupling constants of 
exchanged mesons (same as CD-Bonn)

Scattering lengths, effective ranges, binding energy of 
a deuteron in modified CD-Bonn

Reduction scale factor
in momentum cutoffs

Experiment values
a(3S1)=5.419±0.007 fm, re(3S1)=1.753±0.008 fm, Bd=2.225 MeV
a(1S0)=23.740±0.020 fm, re(1S0)=2.77±0.05 fm

π,σ,ρ,ω

2. Nucleon-nucleon pot. (modified CD-Bonn)

N N
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TABLE II. S-wave scattering lengths (a) of the D̄(⇤)N and
B(⇤)N states. An attractive scattering length is given by the
negative sign (a < 0), and a repulsive scattering length and
the scattering length for a bound state are given by the posi-
tive sign (a > 0).

D̄N a [fm]

0(1/2�)
D̄N(2S1/2) 5.21

D̄⇤N(2S1/2) 0.868� i3.72⇥ 10�2

1(1/2�)
D̄N(2S1/2) 2.60

D̄⇤N(2S1/2) 0.944� i0.722

BN a [fm]

0(1/2�)
BN(2S1/2) 1.25

B⇤N(2S1/2) 1.03� i1.07⇥ 10�2

1(1/2�)
BN(2S1/2) 3.84⇥ 10�2

B⇤N(2S1/2) 0.263� i0.585

spite of the su�cient heaviness of the bottom quark mass.
This would be simply due to the violation of the heavy
quark spin symmetry stemming from the di↵erence of
the B meson mass and the B

⇤ meson mass, as noted
in Ref. [12]. We should notice that the existence of the
j
P = 0+ state is new because only the j

P = 1+ state
was reported for the ⇡, ⇢, and ! potentials in Ref. [12].
We can understand this new result in terms of that the
j
P = 0+ state is provided mainly by the � potential
because of the su�cient attraction in the �1 exchange
stemming from the characteristic property of the CD-
Bonn potential (see table III in Sec. A).

V. CONCLUSION

We have discussed the D̄(⇤)
N and B

(⇤)
N bound states

in terms of the ⇡, �, ⇢, and ! meson-exchange poten-
tials by considering the heavy-quark spin symmetry and
the chiral symmetry. By referring the CD-Bonn poten-
tial for the nuclear force, we have constructed the PN -
P

⇤
N potential with the � exchanges as new degrees of

freedom at middle-range interaction. We carefully have
calculated the potentials with appropriate factors stem-
ming from the normalization of the wave function which
were underestimated in our previous studies. As re-
sults, we have found the D̄N bound state and the BN

bound state state below the lowest mass threshold for
each in I(JP ) = 0(1/2�) channel. Their binding ener-
gies are close to the values which were obtained by our
previous works. With the present potential including �
exchange, interestingly, we have found that the � ex-
change as well as the ⇡ exchange still plays an important
role. We also have found the BN deeply bound state in
I(JP ) = 1(1/2�) as a new state which has not been dis-
cussed so far. It is expected that those states are relevant
to the D

�
p interaction researched in LHCb [2].

The attraction in PN -P ⇤
N systems would open a new

way to understand the inter-hadron interaction in heavy
flavors. It is important that these systems are made
of genuinely five-quark components due to the absence
of the annihilation channels. It may help us to under-
stand the new channels of exotic hadrons. Furthermore,
the many-body dynamics would be an interesting sub-
ject, because the PN -P ⇤

N attraction suggest the forma-
tion of heavy-flavored nuclei as many-body states hav-
ing the heavy hadrons as impurity particles [1]. The
nuclear structure of charm and bottom nuclei has been
studied theoretically for some possible exotic light nu-
clei [18]. Experiments at J-PARC, GSIR-FAIR, NICA,
and so on would also be interesting. In theoretical study,
the cross sections for producing charm nuclei have been
discussed [19]. As one of the advanced topics related to
heavy-flavored nuclei, the isospin Kondo e↵ect is interest-
ing as it exhibits the “confinement” of isospin charge [20–
24]. Many subjects are awaited to be discussed in future.
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the B meson mass and the B

⇤ meson mass, as noted
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clei [18]. Experiments at J-PARC, GSIR-FAIR, NICA,
and so on would also be interesting. In theoretical study,
the cross sections for producing charm nuclei have been
discussed [19]. As one of the advanced topics related to
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ing as it exhibits the “confinement” of isospin charge [20–
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spite of the su�cient heaviness of the bottom quark mass.
This would be simply due to the violation of the heavy
quark spin symmetry stemming from the di↵erence of
the B meson mass and the B

⇤ meson mass, as noted
in Ref. [12]. We should notice that the existence of the
j
P = 0+ state is new because only the j

P = 1+ state
was reported for the ⇡, ⇢, and ! potentials in Ref. [12].
We can understand this new result in terms of that the
j
P = 0+ state is provided mainly by the � potential
because of the su�cient attraction in the �1 exchange
stemming from the characteristic property of the CD-
Bonn potential (see table III in Sec. A).

V. CONCLUSION
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N and B
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in terms of the ⇡, �, ⇢, and ! meson-exchange poten-
tials by considering the heavy-quark spin symmetry and
the chiral symmetry. By referring the CD-Bonn poten-
tial for the nuclear force, we have constructed the PN -
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N potential with the � exchanges as new degrees of

freedom at middle-range interaction. We carefully have
calculated the potentials with appropriate factors stem-
ming from the normalization of the wave function which
were underestimated in our previous studies. As re-
sults, we have found the D̄N bound state and the BN

bound state state below the lowest mass threshold for
each in I(JP ) = 0(1/2�) channel. Their binding ener-
gies are close to the values which were obtained by our
previous works. With the present potential including �
exchange, interestingly, we have found that the � ex-
change as well as the ⇡ exchange still plays an important
role. We also have found the BN deeply bound state in
I(JP ) = 1(1/2�) as a new state which has not been dis-
cussed so far. It is expected that those states are relevant
to the D

�
p interaction researched in LHCb [2].

The attraction in PN -P ⇤
N systems would open a new

way to understand the inter-hadron interaction in heavy
flavors. It is important that these systems are made
of genuinely five-quark components due to the absence
of the annihilation channels. It may help us to under-
stand the new channels of exotic hadrons. Furthermore,
the many-body dynamics would be an interesting sub-
ject, because the PN -P ⇤

N attraction suggest the forma-
tion of heavy-flavored nuclei as many-body states hav-
ing the heavy hadrons as impurity particles [1]. The
nuclear structure of charm and bottom nuclei has been
studied theoretically for some possible exotic light nu-
clei [18]. Experiments at J-PARC, GSIR-FAIR, NICA,
and so on would also be interesting. In theoretical study,
the cross sections for producing charm nuclei have been
discussed [19]. As one of the advanced topics related to
heavy-flavored nuclei, the isospin Kondo e↵ect is interest-
ing as it exhibits the “confinement” of isospin charge [20–
24]. Many subjects are awaited to be discussed in future.
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spite of the su�cient heaviness of the bottom quark mass.
This would be simply due to the violation of the heavy
quark spin symmetry stemming from the di↵erence of
the B meson mass and the B
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was reported for the ⇡, ⇢, and ! potentials in Ref. [12].
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gies are close to the values which were obtained by our
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the cross sections for producing charm nuclei have been
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FIG. 2. The scattering lengths of D̄N (top panels) and BN (bottom panels) as functions of the cuto↵ ratio D̄N and BN .
The left panels are for I = 0, and the right panels are for I = 1.
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in the 3
S1 channel, and
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in the 1
S0 channel. Notice that the tensor potentials

are switched on due to the spin-1 property in the I = 0
channel.

We choose the values of the coupling constants to be
the same values as those in the CD-Bonn potential [16]
as summarized in table III. We notice that the CD-Bonn
model includes the nonlocal potentials in the ⇡, �, ⇢,
and ! exchanges, and contact terms stemming from the
short-range part in the meson-exchange. In the present
study, however, we neglect the nonlocal potentials, the
contact terms and massive � mesons, and so on, because
we are interested only in the low-energy parts in the NN

scatterings.

In order to compensate the di↵erence from the CD-
Bonn potential, we rescale the momentum cuto↵ param-
eter by introducing I⇤m as the new cuto↵ parameter.
Here ⇤m (m = ⇡, �I , ⇢, !) is the original cuto↵ parame-
ter in the CD-Bonn potential, and I (I = 0 and I = 1)
is the scale parameter common to the ⇡, �, ⇢, and ! ex-
changes. Notice the values of I are dependent only on
the isospin channels I = 0 and I = 1. We use the val-
ues in proton-neutron channel in I = 1 in the CD-Bonn
potential, because the electric Coulomb force is not in-
cluded in our potential. We determine the values of I

to reproduce the binding energy of a deuteron Bd in the
3
S1 (I = 0) channel as well as the NN scattering length
in the 1

S0 (I = 1) channel. As the best fitting, we obtain
0 = 0.804 for I = 0 and 1 = 0.772 for I = 1. Roughly,
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- Heavy Meson Effective Theory (HMET)
✔ Hadronic effective theory based on χ + HQS symmetries
✔ Effective field:
✔ P(*)P(*)m vertices are uniquely determined (m=π, σ, ρ, ω)

3

For the interaction in the PN -P ⇤
N systems, we adopt

the meson-exchange potential between P
(⇤) and N . We

consider the one-pion exchange potential (OPEP) as the
long-range force. We also consider the ⇢ and !-meson
exchange potentials and the �-meson exchange poten-
tials as the short-range force. We explain the derivation
OPEP in details as an illustration. In constructing the
OPEP, we need the information of the interaction ver-
tices of ⇡ and P

(⇤) and those of ⇡ and N . For the ⇡PP
⇤

and ⇡P
⇤
P

⇤ vertices, we employ the heavy meson e↵ec-
tive theory (HMET) satisfying the HQS as well as chiral
symmetry [13, 14]. Notice the absence of the ⇡PP vertex
due to the parity symmetry.

For heavy mesons P and P
⇤, we define the e↵ective

field Ha being a superposition of a heavy pseudoscalar
meson and a vector meson as

H↵ =
�
P

⇤µ

↵
�µ + P↵�5

�1� /v

2
, (3)

where the subscripts ↵ = ±1/2 represent the isospin com-
ponents (up and down) in the light quark components.
We use the following notations: P and P

⇤ for denoting
the states of pseudoscalar and vector mesons (qQ̄), and
P↵ and P

⇤µ
↵

for denoting the corresponding fields in the
heavy-meson e↵ective theory. The relative phase of P ⇤µ

↵

and P↵ is arbitrary, and the present choice is adopted for
the convenience in representing the PN -P ⇤

N potential
as it will be shown later. Here v

µ (µ = 0, 1, 2, 3) is the
four-velocity of the heavy meson (heavy antiquark) sat-
isfying vµv

µ = 1 and v
0
> 0. We notice that (1� /v)/2 is

the operator for projecting out the positive-energy com-
ponent in the heavy antiquark Q̄ and discarding the
negative-energy component. The complex conjugate of
H↵ is defined by H̄↵ = �0H

†
↵
�0. The e↵ective field H↵

transforms as H↵ ! SH�U
†

�↵
under the heavy-quark

spin and chiral symmetries. Here S 2 SU(2)spin rep-
resents the transformation operator for the heavy-quark
spin and U↵� = U↵�(L,R) is a function in the nonlinear
representation of chiral symmetry with L 2 SU(2)L and
R 2 SU(2)R for light up and down flavors.

In terms of H↵ defined by Eq. (3), the interaction La-
grangian for the ⇡P (⇤)
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(⇤) vertex is given by
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where the axial current Aµ
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by pions is defined by A
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/2 with the nonlinear representation
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2f⇡
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, (5)

with the pion decay constant f⇡ = 94 MeV. The pion field
is defined by ⇡ = (⇡1,⇡2,⇡3) with ⇡± = (⇡1 ⌥ i⇡2)/

p
2

for charged pions and ⇡3 = ⇡
0 for a neutral pion. Notice

that the matrix A
µ is transformed by A

µ
! UA

µ
U

† in
the nonlinear representation of chiral symmetry. Thus
we confirm that the interaction Lagrangian (4) is invari-
ant under both the heavy-quark spin symmetry and the
chiral symmetry. The coupling constant g⇡ = 0.59 is de-
termined from the decay width ofD⇤�

! D
�
⇡
0 observed

by experiments [15]. Below we consider the static frame
in which the heavy meson is static, and set v

µ = (1,0)
in Eq. (4). Thus we obtain the ⇡P (⇤)

P
(⇤) vertices:
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We introduce the interaction Lagrangian of a pion and
a nucleon in the axial-vector coupling

L⇡NN = �
g⇡NN

2mN

 ̄�µ�5⌧ ·@
µ⇡ , (9)

with the coupling constant g⇡NN . Here  = ( 1, 2)T

with the isospin components  1 and  2 for a proton and
a neutron, respectively. The value of g⇡NN is given by
g
2
⇡NN

/4⇡ = 13.6 from the phenomenological nuclear po-
tential in Ref. [16] (see also Ref. [17]). We adopt the
values of the coupling constants and the cuto↵ parame-
ters by referring the parameters in the CD-Bonn poten-
tial. The nuclear potentials used in the present study are
explained in Sec. A.
With the interaction vertices (4) and (9), we construct

the OPEP between P
(⇤) and N [8–10].2 The OPEP in-

cludes three channels: P
⇤
N ! P

⇤
N , P ⇤

N ! PN , and
PN ! P

⇤
N . We notice that the PN ! PN process is

absent as a direct process due to the prohibition of the
⇡PP vertex, and that the PN -PN interaction is indi-
rectly supplied by multi-step process stemming from the
mixing of PN and P
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N [8–10]. The OPEPs for P

⇤
N -

P
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N , P ⇤

N -PN , and PN -P ⇤
N are given by
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T (r;m⇡)
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0
2s2
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0
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0
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�1↵1
·⌧N

�2↵2
, (10)

2 We show the demonstration to derive the potential for the simple model in Sec. B.
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2. � potentials

We given the interaction Lagrangian for a � meson and
a P

(⇤) meson,

L�IHH = g�I
tr
�
H�IH̄

�
, (23)

where �I (I = 0 and I = 1) meson is introduced for
isospin-singlet and isospin-triplet channels for the PN -
P

⇤
N scatterings. Notice �I has an isospin-dependent

mass (mI), coupling constant (g�I
), and cuto↵ parameter

(⇤�I
). Using the �NN vertices given by

L�INN = �g�INN  ̄�I , (24)

we find that the � potentials for PN and P
⇤
N are ob-

tained by

V
PN-PN

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
), (25)

V
P

⇤
N-P⇤

N

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
). (26)

The values of m�I
and g�INN are referred to the CD-

Bonn potential, see Sec. A. Concerning the values of g�I
,

we choose one-third of g�INN by assuming that the cou-
pling of a � meson and a hadron h = P

(⇤), N is propor-
tional to the number of the light quarks in the hadron h:
one light-quark in P

(⇤) and three light-quarks in N . The
�-exchange potentials are expressed explicitly by

V
�I

1/2� =

0

@
C�I

0 0
0 C�I

0
0 0 C�I

1

A , (27)

V
�I

3/2� =

0

B@

C�I
0 0 0

0 C�I
0 0

0 0 C�I
0

0 0 0 C�I

1

CA , (28)

for the bases by Eqs. (1) and (2), where we define the
function

C�I
= �

g�INNg�I

m2
�I

C(r;m�I
), (29)

for short notations. Notice that the di↵erent cuto↵ pa-
rameters ⇤�I

are used for I = 0 and I = 1.

3. ⇢ and ! potentials

We consider the exchange of the vector mesons, ⇢ and
!, at shorter range. The ⇢ and ! potentials can be con-
structed from the vP

(⇤)
P

(⇤) vertices for light vector me-
son v (v = ⇢, !). Following the previous papers [8–10],
we consider the interaction Lagrangian

LvHH = �i�tr
�
Hbv

µ(⇢µ)baH̄a

�

+ i�tr
�
Hb�

µ⌫(Fµ⌫(⇢))baH̄a

�
, (30)

by respecting the HQS. The vector meson field is defined
by ⇢µ = igV ⇢̂µ/

p
2 with ⇢̂µ,

⇢̂µ =

 
⇢
0

p
2
+ !

p
2

⇢
+

⇢
�

�
⇢
0

p
2
+ !

p
2

!

µ

, (31)

and gV ' 5.8 the universal vector-meson coupling. In
Eq. (30), the tensor field is given by Fµ⌫(⇢) = @µ⇢⌫ �

@⌫⇢µ+ [⇢µ, ⇢⌫ ]. The coupling constants are given by � =
0.9 and � = 0.56 by following Ref. [14]. For the vNN

vertex, we use the interaction Lagrangian

LvNN = g⇢NN

⇣
N̄�µ⌧ ·⇢

µ
N +

⇢

2mN

N̄�µ⌫⌧N ·@
⌫⇢µ

⌘

+ g!NN

⇣
N̄�µ!

µ
N +

!

2mN

N̄�µ⌫N@
⌫
!
µ

⌘
,

(32)

for ⇢µ = (⇢µ1 , ⇢
µ

2 , ⇢
µ

3 ) with ⇢
µ

±
= (⇢µ1 ⌥ i⇢

µ

2 )/
p
2 and ⇢µ0 =

⇢
µ

3 . The coupling constants are given by g
2
⇢NN

/4⇡ = 0.84,
g
2
!NN

/4⇡ = 20.0, ⇢ = 6.1, and ! = 0.0 [16] (see also
Ref. [17]).
From Eqs. (30) and (32), the one-boson exchange po-

tentials are obtained as
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(34)

with v = ⇢, ! for the 1/2� and 3/2� states in Eqs. (1)
and (2). The functions C 0

v
, Cv, and Tv are defined by

C
0

⇢
=

gV g⇢NN�

2
p
2m2

⇢

C(r;m⇢)⌧
H
·⌧N

, (35)
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, (36)
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p
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·⌧N

, (37)
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C(r;m!), (38)
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p
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1

3
T (r;m!), (40)

with ⌧H and ⌧N being the abbreviations of ⌧H

�1↵1
and

⌧N

�2↵2
for the isospin Pauli operators acting on P

(⇤) and
N , respectively.

HQS + χ sym.
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2. � potentials

We given the interaction Lagrangian for a � meson and
a P

(⇤) meson,

L�IHH = g�I
tr
�
H�IH̄

�
, (23)

where �I (I = 0 and I = 1) meson is introduced for
isospin-singlet and isospin-triplet channels for the PN -
P

⇤
N scatterings. Notice �I has an isospin-dependent

mass (mI), coupling constant (g�I
), and cuto↵ parameter

(⇤�I
). Using the �NN vertices given by

L�INN = �g�INN  ̄�I , (24)

we find that the � potentials for PN and P
⇤
N are ob-

tained by

V
PN-PN

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
), (25)

V
P

⇤
N-P⇤

N

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
). (26)

The values of m�I
and g�INN are referred to the CD-

Bonn potential, see Sec. A. Concerning the values of g�I
,

we choose one-third of g�INN by assuming that the cou-
pling of a � meson and a hadron h = P

(⇤), N is propor-
tional to the number of the light quarks in the hadron h:
one light-quark in P

(⇤) and three light-quarks in N . The
�-exchange potentials are expressed explicitly by

V
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0

@
C�I

0 0
0 C�I
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0 0 C�I
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A , (27)
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for the bases by Eqs. (1) and (2), where we define the
function

C�I
= �

g�INNg�I

m2
�I

C(r;m�I
), (29)

for short notations. Notice that the di↵erent cuto↵ pa-
rameters ⇤�I

are used for I = 0 and I = 1.

3. ⇢ and ! potentials

We consider the exchange of the vector mesons, ⇢ and
!, at shorter range. The ⇢ and ! potentials can be con-
structed from the vP

(⇤)
P

(⇤) vertices for light vector me-
son v (v = ⇢, !). Following the previous papers [8–10],
we consider the interaction Lagrangian

LvHH = �i�tr
�
Hbv

µ(⇢µ)baH̄a

�

+ i�tr
�
Hb�

µ⌫(Fµ⌫(⇢))baH̄a

�
, (30)

by respecting the HQS. The vector meson field is defined
by ⇢µ = igV ⇢̂µ/

p
2 with ⇢̂µ,

⇢̂µ =

 
⇢
0

p
2
+ !

p
2

⇢
+

⇢
�

�
⇢
0

p
2
+ !

p
2

!

µ

, (31)

and gV ' 5.8 the universal vector-meson coupling. In
Eq. (30), the tensor field is given by Fµ⌫(⇢) = @µ⇢⌫ �

@⌫⇢µ+ [⇢µ, ⇢⌫ ]. The coupling constants are given by � =
0.9 and � = 0.56 by following Ref. [14]. For the vNN

vertex, we use the interaction Lagrangian

LvNN = g⇢NN

⇣
N̄�µ⌧ ·⇢

µ
N +

⇢

2mN

N̄�µ⌫⌧N ·@
⌫⇢µ

⌘

+ g!NN

⇣
N̄�µ!

µ
N +

!

2mN

N̄�µ⌫N@
⌫
!
µ

⌘
,

(32)

for ⇢µ = (⇢µ1 , ⇢
µ

2 , ⇢
µ

3 ) with ⇢
µ

±
= (⇢µ1 ⌥ i⇢

µ

2 )/
p
2 and ⇢µ0 =

⇢
µ

3 . The coupling constants are given by g
2
⇢NN

/4⇡ = 0.84,
g
2
!NN

/4⇡ = 20.0, ⇢ = 6.1, and ! = 0.0 [16] (see also
Ref. [17]).
From Eqs. (30) and (32), the one-boson exchange po-

tentials are obtained as
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(34)

with v = ⇢, ! for the 1/2� and 3/2� states in Eqs. (1)
and (2). The functions C 0

v
, Cv, and Tv are defined by

C
0

⇢
=

gV g⇢NN�

2
p
2m2

⇢

C(r;m⇢)⌧
H
·⌧N

, (35)

C⇢ =
gV g⇢NN�(1 + ⇢)

2
p
2mN

1

3
T (r;m⇢)⌧

H
·⌧N

, (36)

T⇢ =
gV g⇢NN�(1 + ⇢)
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1
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H
·⌧N

, (37)
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gV g!NN�(1 + !)

2
p
2mN

1

3
C(r;m!), (39)

T! =
gV g!NN�(1 + !)
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1

3
T (r;m!), (40)

with ⌧H and ⌧N being the abbreviations of ⌧H

�1↵1
and

⌧N

�2↵2
for the isospin Pauli operators acting on P

(⇤) and
N , respectively.
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- P(*)N state (JP=1/2-, I=0 or 1) Note: applicable to JP=3/2- (HQS partner)
✔ Particle basis: PN(2S1/2), P*N(2S1/2), P*N(4D1/2)
✔ HQS basis: [Anti-Qj=1/2[qN]j=1]JP=1/2- Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, 

Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)

3. Anti-D meson and nucleon potential



- P(*)N(1/2-) Hamiltonian
✔ Kinetic term
✔ π, σ, v(=ρ, ω) pot. term

✔ Tensor force in off-diagonal components (strong mixing effect)
✔ Model parameters

- π pot. coupling (D*→Dπ)
- v pot. couplings (universal couplings)
- σ pot. coupling ~ 1/3 in NN (# of light quarks in P(*) meson)
- Momentum cutoffs (size ratios of anti-D (B) and N (quark model))
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B. Total Hamiltonian

The total Hamiltonian for the P
(⇤)

N states is given
as a sum of the kinetic term and the ⇡, �, ⇢, and !

potentials as

HJP = KJP + V
⇡

JP + V
�I

JP + V
⇢

JP + V
!

JP . (41)

Here KJP is the diagonal matrix for the kinetic terms
given by

K1/2� = diag
�
K0,K

⇤

0 ,K
⇤

2

�
, (42)

K3/2� = diag
�
K0,K

⇤

0 ,K
⇤

2 ,K
⇤

2

�
, (43)

where each component is defined by

KL = �
1

2µ

✓
@
2

@r2
+

2

r

@

@r
�

L(L+ 1)

r2

◆
, (44)

K
⇤

L
= �

1

2µ⇤

✓
@
2

@r2
+

2

r

@

@r
�

L(L+ 1)

r2

◆
, (45)

for angular momenta L = 0 and L = 2. The re-
duced masses µ = mNmP /(mN + mP ) and µ

⇤ =
mNmP⇤/(mN +mP⇤) are defined with mP and mP⇤ be-
ing the masses of P and P

⇤ mesons, respectively.
Concerning the cuto↵ parameters in the potentials, for

example, we consider ⇤H in Eq. (18) to be expressed
by ⇤H = HN⇤N where HN is the ratio stemming
from inverse hadron-size. In Refs. [8–10], we obtained
D̄N = 1.35 for the D̄

(⇤)
N potential and BN = 1.29

for the B
(⇤)

N potential. The same ratios was adopted
for the ⇢ and ! exchange potentials, and can be applied
also for the � exchange potential. In the present study,
however, we regard HN as a free parameter in order to
investigate the dependence of the results on the choice
of HN within some range including D̄N = 1.35 and
BN = 1.29 as representative values. The value of ⇤N is
given by reproducing the phase shifts of the NN scatter-
ings and the binding energy of a deuteron, see Sec. A.

III. NUMERICAL RESULTS

We show the numerical results of the phase shifts for
D̄

(⇤)
N and B

(⇤)
N scatterings with I = 0 and I = 1 in

Fig. 1. In the case of D̄N , the I = 0 channel has a
bound state below the D̄N mass threshold as the phase
shift starts at � = ⇡ and it decreases to zero as the scat-
tering energy increases. We notice that the D̄

⇤
N com-

ponent feels repulsion due to the existence of the bound
state. The I = 1 channel has no bound state below the
D̄N mass threshold. However, it can have a quasi-bound
state near the D̄

⇤
N mass threshold as seen in the D̄

⇤
N

phase shifts starts at � = ⇡. In the bottom case, the
BN interaction in the I = 0 channel has a bound state
below the BN mass threshold, and the B

⇤
N component

feels repulsion due to this bound state. At first sight
the I = 1 channel seems to have no bound state, but the

TABLE I. Binding energies (B.E.) and mixing ratios of the
D̄(⇤)N and B(⇤)N states with I(JP ) quantum numbers. The
binding energies are measured from the mass thresholds of
D̄N or BN . No bound state exists for D̄N in I = 1.

D̄N B.E. [MeV] Mixing ratio [%]

0(1/2�) 1.38

D̄N(2S1/2) 96.1

D̄⇤N(2S1/2) 1.94

D̄⇤N(4D1/2) 1.93

BN B.E. [MeV] Mixing ratio [%]

0(1/2�) 29.7

BN(2S1/2) 76.4

B⇤N(2S1/2) 14.1

B⇤N(4D1/2) 9.46

1(1/2�) 66.0

BN(2S1/2) 38.5

B⇤N(2S1/2) 61.5

B⇤N(4D1/2) 1.82⇥ 10�2

B
⇤
N component has a deeply bound state under the BN

mass threshold.
In table I, we summarize the binding energies and the

mixing ratios of each internal component. The bound
D̄N state in I = 0 has the binding energy 1.38 MeV. The
internal component is almost dominated by D̄N(2S1/2)
with a small mixture of D̄⇤

N(2S1/2) and D̄
⇤
N(4D1/2).

Even when the D-wave component is a small amount,
it plays an important role to switch on the attraction
by the tensor interaction in the OPEP as emphasized in
our previous papers [8–10]. Also in the present model,
the nonnegligible amount of the D-wave component in-
dicates the importance of the OPEP. In the bottom case,
the BN states with I = 0 and I = 1 give deeply bound
states with the binding energies 29.7 MeV and 66.0 MeV,
respectively. In I = 0, the main component is provided
by BN(2S1/2) accompanying small amount of fractions
of B⇤

N(2S1/2) and B
⇤
N(4D1/2). The existence of the

D-wave component indicates again the importance of the
OPEP. In I = 1, in contrast, the bound state has a few
amount of fraction for the B⇤

N(4D1/2) component. This
suggests that the deeply bound BN state with I = 1 is
generated mainly not by the OPEP but by the � ex-
change potential. In the present model setting, in fact,
the � exchange potential provides a strong attraction in
the P (⇤)

N systems as the � exchange potential is strongly
attractive for the NN system with I = 1 in the CD-Bonn
potential. The scattering lengths in each state are sum-
marized in table II.
We investigate the parameter dependence of the at-

traction in P
(⇤)

N . In Fig. 2, we show the dependence
of the scattering lengths on the cuto↵-ratio parameters,
D̄N and BN . The values of these parameters have
some ambiguity in the present model setting. In the D̄N

case, we find that the attraction in I = 0 is provided for
D̄N

>
⇠ 1.1 which values are consistent with the one es-

timated by the ratio of the di↵erent hadron sizes of a D̄
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with the coe�cient

⇡ = +
1

3

1

2

g⇡NN

2mN

g⇡

f⇡
. (13)

We notice that the coe�cient 1/2 is necessary due to the
normalization factor of the wave functions as explained
in Sec. C in details. The functions C(r;m) and T (r;m)
are defined by
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(15)

with m = m⇡, respectively, as functions of an inter-
distance r = |r| for r being the relative coordinate vector
between P

(⇤) and N . The detailed information to derive
the potentials are presented in Sec. C. Notice that the
values of the cuto↵ parameters ⇤H and ⇤N are depen-
dent on the species of the exchanged light-meson, e.g. the
⇡ meson. Originally, C(r,m) and V (r,m) are defined by

C(r;m) =

Z
d
3q

(2⇡)3
m

2

q 2 +m2
e
iq·r

F (q;m) , (16)

SO(r̂)T (r;m) =

Z
d
3q

(2⇡)3
�q 2

q 2 +m2
SO(q̂)e

iq·r
F (q;m),

(17)

for the central and tensor parts, respectively, with q̂ =
q/|q|. The dipole-type form factor is given by

F (q;m) =
⇤2
H
�m

2

⇤2
H
+ |q|2

⇤2
N
�m

2

⇤2
N
+ |q|2

, (18)

where the cuto↵ parameters ⇤H and ⇤N would corre-
spond to the inverse of the spatial sizes of hadrons, e.g.,
at the ⇡P (⇤)

P
(⇤) and ⇡NN vertices for m = m⇡. See the

derivations in Sec. C for more details. In Eqs. (11) and
(12), we define the polarization vectors ✏ (�) (✏ (�)⇤) for

the incoming (outgoing) P ⇤ meson with the polarization
� = 0,±1. The explicit forms ✏ (�) can be represented by

✏ (±) =
1
p
2

�
⌥1,�i, 0

�
, ✏ (0) = (0, 0, 1), (19)

by choosing the positive direction in the z axis for the
helicity � = 0. As the spin-one operator for the P

⇤ me-
son in Eq. (10), we define T = (T1, T2, T3) by (Ti)�0� ⌘

�i"ijk✏
(�0)⇤
j

✏
(�)
k

(i, j, k = 1, 2, 3):

T1 =
1
p
2

0

@
0 1 0
1 0 1
0 1 0

1

A , T2 =
1
p
2

0

@
0 �i 0
i 0 �i

0 i 0

1

A ,

T3 =

0

@
1 0 0
0 0 0
0 0 �1

1

A , (20)

satisfying the commutation relation [Ti, Tj ] = i"ijkTk as
the generators of the spin symmetry. We define the ten-
sor operators S✏(r̂) and ST (r̂) by SO(r̂) = 3(O · r̂)(� ·

r̂)�O·� with r̂ = r/r for O = ✏ and T . Here � are the
Pauli matrices acting on the nucleon spin, and ⌧H

�1↵1
and

⌧N

�2↵2
with ↵i,�i = ±1/2 are the isospin Pauli operators

for P (⇤) (i = 1) and N (i = 2), respectively.

Using the basis of the J
P = 1/2� and 3/2� channels

in Eqs. (1) and (2), we represent the OPEPs (10), (11),
and (12) by the matrix forms,

V
⇡

1/2� =

0

@
0

p
3C⇡ �

p
6T⇡p

3C⇡ �2C⇡ �
p
2T⇡

�
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2T⇡ C⇡ � 2T⇡

1

A , (21)

V
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BB@

0
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p
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3T⇡ C⇡ 2T⇡ T⇡

�
p
3T⇡ 2T⇡ C⇡ �T⇡p
3C⇡ T⇡ �T⇡ �2C⇡

1

CCA , (22)

where we define C⇡ = ⇡C(r;m⇡) and T⇡ = ⇡T (r;m⇡)
for short notations. In Eqs. (21) and (22), we confirm
that the mixing between PN and P

⇤
N are represented

by the o↵-diagonal parts including the tensor potentials.
These tensor potentials induce the strong mixing by dif-
ferent angular momenta, leading to the strong attractions
at short-range scales. Thus, the mixing of PN and P

⇤
N

is important to switch on the strong attraction. This is
analogous to the OPEP in the nucleon-nucleon interac-
tion.
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2. � potentials

We given the interaction Lagrangian for a � meson and
a P

(⇤) meson,

L�IHH = g�I
tr
�
H�IH̄

�
, (23)

where �I (I = 0 and I = 1) meson is introduced for
isospin-singlet and isospin-triplet channels for the PN -
P

⇤
N scatterings. Notice �I has an isospin-dependent

mass (mI), coupling constant (g�I
), and cuto↵ parameter

(⇤�I
). Using the �NN vertices given by

L�INN = �g�INN  ̄�I , (24)

we find that the � potentials for PN and P
⇤
N are ob-

tained by
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), (25)
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). (26)

The values of m�I
and g�INN are referred to the CD-

Bonn potential, see Sec. A. Concerning the values of g�I
,

we choose one-third of g�INN by assuming that the cou-
pling of a � meson and a hadron h = P

(⇤), N is propor-
tional to the number of the light quarks in the hadron h:
one light-quark in P

(⇤) and three light-quarks in N . The
�-exchange potentials are expressed explicitly by
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for the bases by Eqs. (1) and (2), where we define the
function

C�I
= �

g�INNg�I

m2
�I

C(r;m�I
), (29)

for short notations. Notice that the di↵erent cuto↵ pa-
rameters ⇤�I

are used for I = 0 and I = 1.

3. ⇢ and ! potentials

We consider the exchange of the vector mesons, ⇢ and
!, at shorter range. The ⇢ and ! potentials can be con-
structed from the vP

(⇤)
P

(⇤) vertices for light vector me-
son v (v = ⇢, !). Following the previous papers [8–10],
we consider the interaction Lagrangian

LvHH = �i�tr
�
Hbv

µ(⇢µ)baH̄a

�

+ i�tr
�
Hb�

µ⌫(Fµ⌫(⇢))baH̄a

�
, (30)

by respecting the HQS. The vector meson field is defined
by ⇢µ = igV ⇢̂µ/

p
2 with ⇢̂µ,

⇢̂µ =

 
⇢
0

p
2
+ !

p
2

⇢
+

⇢
�

�
⇢
0

p
2
+ !

p
2

!

µ

, (31)

and gV ' 5.8 the universal vector-meson coupling. In
Eq. (30), the tensor field is given by Fµ⌫(⇢) = @µ⇢⌫ �

@⌫⇢µ+ [⇢µ, ⇢⌫ ]. The coupling constants are given by � =
0.9 and � = 0.56 by following Ref. [14]. For the vNN

vertex, we use the interaction Lagrangian

LvNN = g⇢NN

⇣
N̄�µ⌧ ·⇢

µ
N +

⇢

2mN

N̄�µ⌫⌧N ·@
⌫⇢µ

⌘

+ g!NN

⇣
N̄�µ!

µ
N +

!

2mN

N̄�µ⌫N@
⌫
!
µ

⌘
,

(32)

for ⇢µ = (⇢µ1 , ⇢
µ

2 , ⇢
µ

3 ) with ⇢
µ

±
= (⇢µ1 ⌥ i⇢

µ

2 )/
p
2 and ⇢µ0 =

⇢
µ

3 . The coupling constants are given by g
2
⇢NN

/4⇡ = 0.84,
g
2
!NN

/4⇡ = 20.0, ⇢ = 6.1, and ! = 0.0 [16] (see also
Ref. [17]).
From Eqs. (30) and (32), the one-boson exchange po-

tentials are obtained as

V
v

1/2� =

0

@
C

0
v

2
p
3Cv

p
6Tv

2
p
3Cv C

0
v
� 4Cv

p
2Tvp

6Tv

p
2Tv C

0
v
+ 2Cv + 2Tv

1

A , (33)

V
v

3/2� =

0

BB@

C
0
v

�
p
3Tv

p
3Tv 2

p
3Cv

�
p
3Tv C

0
v
+ 2Cv �2Tv �Tvp

3Tv �2Tv C
0
v
+ 2Cv Tv

2
p
3Cv �Tv Tv C

0
v
� 4Cv

1

CCA ,

(34)

with v = ⇢, ! for the 1/2� and 3/2� states in Eqs. (1)
and (2). The functions C 0

v
, Cv, and Tv are defined by

C
0

⇢
=

gV g⇢NN�

2
p
2m2

⇢

C(r;m⇢)⌧
H
·⌧N

, (35)

C⇢ =
gV g⇢NN�(1 + ⇢)

2
p
2mN

1

3
T (r;m⇢)⌧

H
·⌧N

, (36)

T⇢ =
gV g⇢NN�(1 + ⇢)

2
p
2mN

1

3
T (r;m⇢)⌧

H
·⌧N

, (37)

C
0

!
=

gV g!NN�

2
p
2m2

!

C(r;m!), (38)

C! =
gV g!NN�(1 + !)

2
p
2mN

1

3
C(r;m!), (39)

T! =
gV g!NN�(1 + !)

2
p
2mN

1

3
T (r;m!), (40)

with ⌧H and ⌧N being the abbreviations of ⌧H

�1↵1
and

⌧N

�2↵2
for the isospin Pauli operators acting on P

(⇤) and
N , respectively.

- P(*)N state (JP=1/2-, I=0 or 1) Note: applicable to JP=3/2- (HQS partner)
✔ Particle basis: PN(2S1/2), P*N(2S1/2), P*N(4D1/2)
✔ HQS basis: [Anti-Qj=1/2[qN]j=1]JP=1/2-
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B. Total Hamiltonian

The total Hamiltonian for the P
(⇤)

N states is given
as a sum of the kinetic term and the ⇡, �, ⇢, and !

potentials as

HJP = KJP + V
⇡

JP + V
�I

JP + V
⇢

JP + V
!

JP . (41)

Here KJP is the diagonal matrix for the kinetic terms
given by

K1/2� = diag
�
K0,K

⇤

0 ,K
⇤

2

�
, (42)

K3/2� = diag
�
K0,K

⇤

0 ,K
⇤

2 ,K
⇤

2

�
, (43)

where each component is defined by

KL = �
1

2µ

✓
@
2

@r2
+

2

r

@

@r
�

L(L+ 1)

r2

◆
, (44)

K
⇤

L
= �

1

2µ⇤

✓
@
2

@r2
+

2

r

@

@r
�

L(L+ 1)

r2

◆
, (45)

for angular momenta L = 0 and L = 2. The re-
duced masses µ = mNmP /(mN + mP ) and µ

⇤ =
mNmP⇤/(mN +mP⇤) are defined with mP and mP⇤ be-
ing the masses of P and P

⇤ mesons, respectively.
Concerning the cuto↵ parameters in the potentials, for

example, we consider ⇤H in Eq. (18) to be expressed
by ⇤H = HN⇤N where HN is the ratio stemming
from inverse hadron-size. In Refs. [8–10], we obtained
D̄N = 1.35 for the D̄

(⇤)
N potential and BN = 1.29

for the B
(⇤)

N potential. The same ratios was adopted
for the ⇢ and ! exchange potentials, and can be applied
also for the � exchange potential. In the present study,
however, we regard HN as a free parameter in order to
investigate the dependence of the results on the choice
of HN within some range including D̄N = 1.35 and
BN = 1.29 as representative values. The value of ⇤N is
given by reproducing the phase shifts of the NN scatter-
ings and the binding energy of a deuteron, see Sec. A.

III. NUMERICAL RESULTS

We show the numerical results of the phase shifts for
D̄

(⇤)
N and B

(⇤)
N scatterings with I = 0 and I = 1 in

Fig. 1. In the case of D̄N , the I = 0 channel has a
bound state below the D̄N mass threshold as the phase
shift starts at � = ⇡ and it decreases to zero as the scat-
tering energy increases. We notice that the D̄

⇤
N com-

ponent feels repulsion due to the existence of the bound
state. The I = 1 channel has no bound state below the
D̄N mass threshold. However, it can have a quasi-bound
state near the D̄

⇤
N mass threshold as seen in the D̄

⇤
N

phase shifts starts at � = ⇡. In the bottom case, the
BN interaction in the I = 0 channel has a bound state
below the BN mass threshold, and the B

⇤
N component

feels repulsion due to this bound state. At first sight
the I = 1 channel seems to have no bound state, but the

TABLE I. Binding energies (B.E.) and mixing ratios of the
D̄(⇤)N and B(⇤)N states with I(JP ) quantum numbers. The
binding energies are measured from the mass thresholds of
D̄N or BN . No bound state exists for D̄N in I = 1.

D̄N B.E. [MeV] Mixing ratio [%]

0(1/2�) 1.38

D̄N(2S1/2) 96.1

D̄⇤N(2S1/2) 1.94

D̄⇤N(4D1/2) 1.93

BN B.E. [MeV] Mixing ratio [%]

0(1/2�) 29.7

BN(2S1/2) 76.4

B⇤N(2S1/2) 14.1

B⇤N(4D1/2) 9.46

1(1/2�) 66.0

BN(2S1/2) 38.5

B⇤N(2S1/2) 61.5

B⇤N(4D1/2) 1.82⇥ 10�2

B
⇤
N component has a deeply bound state under the BN

mass threshold.
In table I, we summarize the binding energies and the

mixing ratios of each internal component. The bound
D̄N state in I = 0 has the binding energy 1.38 MeV. The
internal component is almost dominated by D̄N(2S1/2)
with a small mixture of D̄⇤

N(2S1/2) and D̄
⇤
N(4D1/2).

Even when the D-wave component is a small amount,
it plays an important role to switch on the attraction
by the tensor interaction in the OPEP as emphasized in
our previous papers [8–10]. Also in the present model,
the nonnegligible amount of the D-wave component in-
dicates the importance of the OPEP. In the bottom case,
the BN states with I = 0 and I = 1 give deeply bound
states with the binding energies 29.7 MeV and 66.0 MeV,
respectively. In I = 0, the main component is provided
by BN(2S1/2) accompanying small amount of fractions
of B⇤

N(2S1/2) and B
⇤
N(4D1/2). The existence of the

D-wave component indicates again the importance of the
OPEP. In I = 1, in contrast, the bound state has a few
amount of fraction for the B⇤

N(4D1/2) component. This
suggests that the deeply bound BN state with I = 1 is
generated mainly not by the OPEP but by the � ex-
change potential. In the present model setting, in fact,
the � exchange potential provides a strong attraction in
the P (⇤)

N systems as the � exchange potential is strongly
attractive for the NN system with I = 1 in the CD-Bonn
potential. The scattering lengths in each state are sum-
marized in table II.
We investigate the parameter dependence of the at-

traction in P
(⇤)

N . In Fig. 2, we show the dependence
of the scattering lengths on the cuto↵-ratio parameters,
D̄N and BN . The values of these parameters have
some ambiguity in the present model setting. In the D̄N

case, we find that the attraction in I = 0 is provided for
D̄N

>
⇠ 1.1 which values are consistent with the one es-

timated by the ratio of the di↵erent hadron sizes of a D̄

Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, 
Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)
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2. � potentials

We given the interaction Lagrangian for a � meson and
a P

(⇤) meson,

L�IHH = g�I
tr
�
H�IH̄

�
, (23)

where �I (I = 0 and I = 1) meson is introduced for
isospin-singlet and isospin-triplet channels for the PN -
P

⇤
N scatterings. Notice �I has an isospin-dependent

mass (mI), coupling constant (g�I
), and cuto↵ parameter

(⇤�I
). Using the �NN vertices given by

L�INN = �g�INN  ̄�I , (24)

we find that the � potentials for PN and P
⇤
N are ob-

tained by

V
PN-PN

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
), (25)

V
P

⇤
N-P⇤

N

�I
(r) = �

g�INNg�I

m2
�I

C(r;m�I
). (26)

The values of m�I
and g�INN are referred to the CD-

Bonn potential, see Sec. A. Concerning the values of g�I
,

we choose one-third of g�INN by assuming that the cou-
pling of a � meson and a hadron h = P

(⇤), N is propor-
tional to the number of the light quarks in the hadron h:
one light-quark in P

(⇤) and three light-quarks in N . The
�-exchange potentials are expressed explicitly by

V
�I

1/2� =

0

@
C�I

0 0
0 C�I

0
0 0 C�I

1

A , (27)

V
�I

3/2� =

0

B@

C�I
0 0 0

0 C�I
0 0

0 0 C�I
0

0 0 0 C�I

1

CA , (28)

for the bases by Eqs. (1) and (2), where we define the
function

C�I
= �

g�INNg�I

m2
�I

C(r;m�I
), (29)

for short notations. Notice that the di↵erent cuto↵ pa-
rameters ⇤�I

are used for I = 0 and I = 1.

3. ⇢ and ! potentials

We consider the exchange of the vector mesons, ⇢ and
!, at shorter range. The ⇢ and ! potentials can be con-
structed from the vP

(⇤)
P

(⇤) vertices for light vector me-
son v (v = ⇢, !). Following the previous papers [8–10],
we consider the interaction Lagrangian

LvHH = �i�tr
�
Hbv

µ(⇢µ)baH̄a

�

+ i�tr
�
Hb�

µ⌫(Fµ⌫(⇢))baH̄a

�
, (30)

by respecting the HQS. The vector meson field is defined
by ⇢µ = igV ⇢̂µ/

p
2 with ⇢̂µ,

⇢̂µ =

 
⇢
0

p
2
+ !

p
2

⇢
+

⇢
�

�
⇢
0

p
2
+ !

p
2

!

µ

, (31)

and gV ' 5.8 the universal vector-meson coupling. In
Eq. (30), the tensor field is given by Fµ⌫(⇢) = @µ⇢⌫ �

@⌫⇢µ+ [⇢µ, ⇢⌫ ]. The coupling constants are given by � =
0.9 and � = 0.56 by following Ref. [14]. For the vNN

vertex, we use the interaction Lagrangian

LvNN = g⇢NN

⇣
N̄�µ⌧ ·⇢

µ
N +

⇢

2mN

N̄�µ⌫⌧N ·@
⌫⇢µ

⌘

+ g!NN

⇣
N̄�µ!

µ
N +

!

2mN

N̄�µ⌫N@
⌫
!
µ

⌘
,

(32)

for ⇢µ = (⇢µ1 , ⇢
µ

2 , ⇢
µ

3 ) with ⇢
µ

±
= (⇢µ1 ⌥ i⇢

µ

2 )/
p
2 and ⇢µ0 =

⇢
µ

3 . The coupling constants are given by g
2
⇢NN

/4⇡ = 0.84,
g
2
!NN

/4⇡ = 20.0, ⇢ = 6.1, and ! = 0.0 [16] (see also
Ref. [17]).
From Eqs. (30) and (32), the one-boson exchange po-

tentials are obtained as

V
v

1/2� =

0

@
C

0
v

2
p
3Cv

p
6Tv

2
p
3Cv C

0
v
� 4Cv

p
2Tvp

6Tv

p
2Tv C

0
v
+ 2Cv + 2Tv

1

A , (33)

V
v

3/2� =

0

BB@

C
0
v

�
p
3Tv

p
3Tv 2

p
3Cv

�
p
3Tv C

0
v
+ 2Cv �2Tv �Tvp

3Tv �2Tv C
0
v
+ 2Cv Tv

2
p
3Cv �Tv Tv C

0
v
� 4Cv

1

CCA ,

(34)

with v = ⇢, ! for the 1/2� and 3/2� states in Eqs. (1)
and (2). The functions C 0

v
, Cv, and Tv are defined by

C
0

⇢
=

gV g⇢NN�

2
p
2m2

⇢

C(r;m⇢)⌧
H
·⌧N

, (35)

C⇢ =
gV g⇢NN�(1 + ⇢)

2
p
2mN

1

3
T (r;m⇢)⌧

H
·⌧N

, (36)

T⇢ =
gV g⇢NN�(1 + ⇢)

2
p
2mN

1

3
T (r;m⇢)⌧

H
·⌧N

, (37)

C
0

!
=

gV g!NN�

2
p
2m2

!

C(r;m!), (38)

C! =
gV g!NN�(1 + !)

2
p
2mN

1

3
C(r;m!), (39)

T! =
gV g!NN�(1 + !)

2
p
2mN

1

3
T (r;m!), (40)

with ⌧H and ⌧N being the abbreviations of ⌧H

�1↵1
and

⌧N

�2↵2
for the isospin Pauli operators acting on P

(⇤) and
N , respectively.

3. Anti-D meson and nucleon potential

(S,S,D)

π,σ,ρ,ωP/P* N(1/√2 factor included) 



- Results (anti-D and N)
✔ bound states (I=0, 1)

- I=0: shallow bound state (consistent with previous works)
- I=1: deeply bound state (new!)
- Both π and σ are important
- σ pot. in I=1 is very strong

3. Anti-D meson and nucleon potential
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TABLE II. Binding energies (B.E.) and mixing ratios of the
D̄(⇤)N and B(⇤)N states with I(JP ) quantum numbers. The
binding energies are measured from the mass thresholds of
D̄N or BN .

D̄N B.E. [MeV] Mixing ratio [%]

0(1/2�) 1.38

D̄N(2S1/2) 96.1

D̄⇤N(2S1/2) 1.94

D̄⇤N(4D1/2) 1.93

1(1/2�) 5.99

D̄N(2S1/2): 88.9

D̄⇤N(2S1/2): 10.9

D̄⇤N(4D1/2): 0.11

BN B.E. [MeV] Mixing ratio [%]

0(1/2�) 29.7

BN(2S1/2) 76.4

B⇤N(2S1/2) 14.1

B⇤N(4D1/2) 9.46

1(1/2�) 66.0

BN(2S1/2) 38.5

B⇤N(2S1/2) 61.5

B⇤N(4D1/2) 1.82⇥ 10�2

stant as shown in Fig 3. Here we show (a) the binding
energies, (b) the scattering lengths for PN , and (c) the
scattering length for P

⇤
N , respectively, for D̄N(I = 0),

D̄N(I = 1), BN(I = 0), and BN(I = 1). For I = 0, the
binding energies and the scattering lengths are not sensi-
tive to g� value indicating that the sigma exchange force
is not dominant in I = 0; the pion exchange is the most
dominant. For I = 1, however, the results indicate the
sensitiveness to g�, i.e., that the sigma exchange force is
dominant rather than the other meson exchanges.

The existence of the D̄N and BN bound states in
I = 0 is consistent with the result in our previous
works [25–27]. However, we should note the di↵erence
between the present analysis and the previous one. In
the previous case, the ⇡ exchange potential was almost
dominant among the ⇡, ⇢, and ! exchanges. However, the
coupling strengths of the meson exchange potentials were
incorrectly overestimated by factor two due to the incor-
rect normalization of wave functions in Refs. [25–27]. In
the present analysis for I = 0, we have also found that
similar bound states exist by reconstructing the PN in-
teraction model newly including the � exchange. Again,
the ⇡ exchange potential plays the dominate role to pro-
duce the attraction. In contrast, the bound states in
I = 1 have been obtained in the PN states, where the
main attraction is provided by the � potential whose
strength in I = 1 is set to be larger than that in I = 0. .

IV. DISCUSSION

We discuss the internal spin structures of the bound
D̄N and BN states in a view of the HQS symme-

try. As already discussed in detail in Ref. [29], the
P

(⇤)
N state can be decomposed into product states of

the heavy antiquark Q̄ and the light quarks qqqq in
the heavy quark limit. The latter component is called
the light spin-complex, instead of the brown muck, be-
cause it makes a specific structure composed of q and
N which is denoted by [qN ]jP with total spin j and par-
ity P of the light quark components. These are a con-
served quantities due to the spin decoupling from the
heavy quark. The important property in the heavy quark
limit is that the ratio of the fractions of the amount of
PN(2S+1

LJ) and P
⇤
N(2S

0+1
L
0

J
) wavefunctions is deter-

mined uniquely. Here S
0 and L

0 can be di↵erent from S

and L, respectively, in general. As shown explicitly in
Ref. [29], we obtain the fractions

PN(2S1/2) : P
⇤
N(2S1/2) = 1 : 3, (48)

for jP = 0+ and

PN(2S1/2) : P
⇤
N(2S1/2) = 3 : 1, (49)

for j
P = 1+, which hold irrespectively of the choice of

the PN -P ⇤
N potential. Although these ratios are exact

only in the heavy quark limit, they provide us with a
guideline to understand the internal spin structures of
the obtained D̄N and BN bound states.

In table II, for example, we show that the mixing ra-
tios of BN(2S1/2) and B

⇤
N(2S1/2) in I = 0 are 76.4 %

and 14.4%, respectively, which are close to the ratio in
Eq. (48) rather than that in Eq. (49). Thus, it is sug-
gested that the BN bound state in I = 0 is dominated
by the light spin-complex with j

P = 1+. In contrast, the
mixing ratios BN(2S1/2) and B

⇤
N(2S1/2) in I = 1 are

38.5 % and 61.5 %, respectively, are close to the ratio in
Eq. (49) rather than that in Eq. (48). Thus, it is sug-
gested that the BN bound state in I = 1 includes the
light spin-complex with j

P = 0+ as a major component.
One may wonder that the ratios in bottom sector are

not the same as the ratios in Eqs. (48) and (49) in spite of
the su�cient heaviness of the bottom quark mass. This
would be simply due to the violation of the heavy quark
spin symmetry stemming from the di↵erence of the B

meson mass and the B⇤ meson mass, as noted in Ref. [29].
We should notice that the existence of the j

P = 0+

state is new because only the j
P = 1+ state was re-

ported for the ⇡, ⇢, and ! potentials in Ref. [29]. We
can understand this new result in terms of the fact that
the j

P = 0+ state is provided mainly by the � potential
because of the su�cient attraction in the �1 exchange
stemming from the characteristic property of the CD-
Bonn potential (see table IV in Appendix A).

V. CONCLUSION

We have discussed the D̄(⇤)
N and B

(⇤)
N bound states

in terms of the ⇡, �, ⇢, and ! meson-exchange potentials
by considering the heavy-quark spin symmetry and the

π,σ,ρ,ωP/P* N

shallow

deep



✔ Phase shifts

✔ Scattering lengths

3. Anti-D meson and nucleon potential
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TABLE III. S-wave scattering lengths (a) of the D̄(⇤)N and
B(⇤)N states. An attractive scattering length is given by the
negative sign (a < 0), and a repulsive scattering length and
the scattering length for a bound state are given by the posi-
tive sign (a > 0).

D̄N a [fm]

0(1/2�)
D̄N(2S1/2) 5.21

D̄⇤N(2S1/2) 0.868� i3.72⇥ 10�2

1(1/2�)
D̄N(2S1/2) 2.60

D̄⇤N(2S1/2) 0.944� i0.722

BN a [fm]

0(1/2�)
BN(2S1/2) 1.25

B⇤N(2S1/2) 1.03� i1.07⇥ 10�2

1(1/2�)
BN(2S1/2) 3.84⇥ 10�2

B⇤N(2S1/2) 0.263� i0.585

the new channels of exotic hadrons. Furthermore, the
many-body dynamics would be an interesting subject,
because the PN -P ⇤

N attraction suggests the formation
of heavy-flavored nuclei as many-body states having the
impurity particles in nuclei [16]. Few-body systems such
as D̄NN (BNN) [38] and D̄↵ (D̄He) (B↵ (BHe)) are
also interesting, which can be accessed through the rel-
ativistic heavy ion collisions in LHC and RHIC [39–41].
The nuclear structure of charm and bottom nuclei has
been studied theoretically for some possible exotic light
nuclei [42]. Experiments at J-PARC, GSI-FAIR, NICA,
and so on would also be interesting. In theoretical study,
the cross sections for producing such exotic nuclei have
been discussed [43]. As one of the advanced topics re-
lated to heavy-flavored nuclei, the isospin Kondo e↵ect
is interesting as it exhibits the “confinement” of isospin
charge [44–48]. Many subjects are awaiting to be dis-
cussed in the future.
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Appendix A: The NN potential

We construct the nuclear potential by considering the
⇡, �, ⇢, and ! exchanges. Their interaction Lagrangians

for the vertices with a nucleon are given by

L⇡NN = g⇡NN  ̄i�5⌧ · ⇡ , (A1)

L�INN = g�INN  ̄�I , (A2)

L⇢NN = g⇢NN  ̄�µ⌧ ·⇢
µ
 

+
f⇢NN

4mN

 ̄�µ⌫⌧ ·
�
@
µ⇢⌫

� @
⌫⇢µ

�
 , (A3)

L!NN = g!NN  ̄�µ!
µ
 , (A4)

with the appropriate coupling constants. We use di↵er-
ent � mesons: the �0 meson for the isosinglet (I = 0)NN

scatterings and the �1 meson for the isotriplet (I = 1)
NN scatterings. Their di↵erence appears not only in the
coupling constants but also in their masses. We some-
times omit the underscript I if unnecessary. From the
Lagrangians (A1)-(A4), we obtain the NN potentials:

V⇡(r) =

✓
g⇡NN

2mN
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✓
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� 1
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NN
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with v = ⇢, !, where the functions C
NN

⇡
, TNN

⇡
, CNN

�I
,

C
0NN

v
, CNN

v
, and T

NN

v
are defined as above. More con-

cretely, the NN potentials are expressed by

V
NN
3S1

(r) = V̄
NN

⇡
(r) + V̄

NN

�0
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⇢
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⇡
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TABLE I. Parameters of the meson exchange potentials. The meson masses are given as the isospin-averaged values. g⇡, �,
� and g�I

are the coupling constants of heavy mesons (see text in details), while g↵NN and f↵NN are those of a nucleon taken
from the CD-Bonn potential [30]. The cuto↵s ⇤D̄ and ⇤B are shown as typical values for ⇤D̄ = 1.35⇤N and ⇤B = 1.29⇤N ,
where ⇤N is the nucleon cuto↵ which is scaled by the parameter I (0 = 0.804 and 1 = 0.773) from the CD-Bonn potential
(see Appendix A in details).

Mesons (↵) Masses [MeV] g⇡ � � [GeV�1] g�I

g2
↵NN

4⇡

f↵NN

g↵NN

⇤D̄ [MeV] ⇤B [MeV] ⇤N [MeV]

I = 0 I = 1 I = 0 I = 1 I = 0 I = 1

⇡ 138.04 0.59 — — — 13.6 — 1868 1795 1785 1715 1384 1330

⇢ 769.68 — 0.9 0.56 — 0.84 6.1 1359 1306 1423 1367 1054 1013

! 781.94 — 0.9 0.56 — 20 0.0 1629 1565 1557 1496 1207 1159

�0 350 — — —
g�0NN

3 0.51673 — 2715 — 2594 — 2011 —

�1 452 — — —
g�1NN

3 3.96451 — — 2609 — 2493 — 1932

(a) D̄N (I = 0) (b) D̄N (I = 1)

(c) BN (I = 0) (d) BN (I = 1)

FIG. 1. The phase shifts of D̄N ((a) and (b)) and BN ((c) and (d)) as functions of the scattering energy. The panels (a) and
(c) are for I = 0, and the panels (b) and (d) are for I = 1.

the attraction in I = 0 has only weak dependence on the
choice of BN in the range of BN

>
⇠ 1.0. This result

would tell us a confidence for the existence of the BN

bound state in I = 0. In comparison with I = 0, the at-
traction in I = 1 is more sensitive to choice of the value of
BN . Thus the BN deeply bound state in I = 1 needs to
be carefully considered in terms of its model dependence.

Uncertainty in the current model is also brought by the
sigma coupling. In general, the coupling constants of the
meson exchange potential are fixed by the experimental

data, such as the nucleon-nucleon scattering data and
heavy meson decays. However, the sigma coupling to
the heavy meson is di�cult to be determined uniquely
only by the currently existing experimental data. In
our present calculational framework, we have adopted
g� = g�NN/3 (see Sec. II A2). In order to investigate
the uncertainty from the ambiguity of the sigma cou-
pling value, we estimate dependence of binding energies
and scattering lengths on the g� coupling constant as
shown in Figs 3. Here we show (a) the binding en-



4. B meson and nucleon potential
- Same discussion for B meson and nucleon (more ideal for HQS)
- Results (B and N)

✔ Bound states (I=0)

- I=0: deeply bound state (consistent with previous works)
- I=1: more deeply bound state (new!)
- Both π and σ are important
- σ pot. in I=1 is very strongly attractive
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TABLE II. Binding energies (B.E.) and mixing ratios of the
D̄(⇤)N and B(⇤)N states with I(JP ) quantum numbers. The
binding energies are measured from the mass thresholds of
D̄N or BN .

D̄N B.E. [MeV] Mixing ratio [%]

0(1/2�) 1.38

D̄N(2S1/2) 96.1

D̄⇤N(2S1/2) 1.94

D̄⇤N(4D1/2) 1.93

1(1/2�) 5.99

D̄N(2S1/2): 88.9

D̄⇤N(2S1/2): 10.9

D̄⇤N(4D1/2): 0.11

BN B.E. [MeV] Mixing ratio [%]

0(1/2�) 29.7

BN(2S1/2) 76.4

B⇤N(2S1/2) 14.1

B⇤N(4D1/2) 9.46

1(1/2�) 66.0

BN(2S1/2) 38.5

B⇤N(2S1/2) 61.5

B⇤N(4D1/2) 1.82⇥ 10�2

stant as shown in Fig 3. Here we show (a) the binding
energies, (b) the scattering lengths for PN , and (c) the
scattering length for P

⇤
N , respectively, for D̄N(I = 0),

D̄N(I = 1), BN(I = 0), and BN(I = 1). For I = 0, the
binding energies and the scattering lengths are not sensi-
tive to g� value indicating that the sigma exchange force
is not dominant in I = 0; the pion exchange is the most
dominant. For I = 1, however, the results indicate the
sensitiveness to g�, i.e., that the sigma exchange force is
dominant rather than the other meson exchanges.

The existence of the D̄N and BN bound states in
I = 0 is consistent with the result in our previous
works [25–27]. However, we should note the di↵erence
between the present analysis and the previous one. In
the previous case, the ⇡ exchange potential was almost
dominant among the ⇡, ⇢, and ! exchanges. However, the
coupling strengths of the meson exchange potentials were
incorrectly overestimated by factor two due to the incor-
rect normalization of wave functions in Refs. [25–27]. In
the present analysis for I = 0, we have also found that
similar bound states exist by reconstructing the PN in-
teraction model newly including the � exchange. Again,
the ⇡ exchange potential plays the dominate role to pro-
duce the attraction. In contrast, the bound states in
I = 1 have been obtained in the PN states, where the
main attraction is provided by the � potential whose
strength in I = 1 is set to be larger than that in I = 0. .

IV. DISCUSSION

We discuss the internal spin structures of the bound
D̄N and BN states in a view of the HQS symme-

try. As already discussed in detail in Ref. [29], the
P

(⇤)
N state can be decomposed into product states of

the heavy antiquark Q̄ and the light quarks qqqq in
the heavy quark limit. The latter component is called
the light spin-complex, instead of the brown muck, be-
cause it makes a specific structure composed of q and
N which is denoted by [qN ]jP with total spin j and par-
ity P of the light quark components. These are a con-
served quantities due to the spin decoupling from the
heavy quark. The important property in the heavy quark
limit is that the ratio of the fractions of the amount of
PN(2S+1

LJ) and P
⇤
N(2S

0+1
L
0

J
) wavefunctions is deter-

mined uniquely. Here S
0 and L

0 can be di↵erent from S

and L, respectively, in general. As shown explicitly in
Ref. [29], we obtain the fractions

PN(2S1/2) : P
⇤
N(2S1/2) = 1 : 3, (48)

for jP = 0+ and

PN(2S1/2) : P
⇤
N(2S1/2) = 3 : 1, (49)

for j
P = 1+, which hold irrespectively of the choice of

the PN -P ⇤
N potential. Although these ratios are exact

only in the heavy quark limit, they provide us with a
guideline to understand the internal spin structures of
the obtained D̄N and BN bound states.

In table II, for example, we show that the mixing ra-
tios of BN(2S1/2) and B

⇤
N(2S1/2) in I = 0 are 76.4 %

and 14.4%, respectively, which are close to the ratio in
Eq. (48) rather than that in Eq. (49). Thus, it is sug-
gested that the BN bound state in I = 0 is dominated
by the light spin-complex with j

P = 1+. In contrast, the
mixing ratios BN(2S1/2) and B

⇤
N(2S1/2) in I = 1 are

38.5 % and 61.5 %, respectively, are close to the ratio in
Eq. (49) rather than that in Eq. (48). Thus, it is sug-
gested that the BN bound state in I = 1 includes the
light spin-complex with j

P = 0+ as a major component.
One may wonder that the ratios in bottom sector are

not the same as the ratios in Eqs. (48) and (49) in spite of
the su�cient heaviness of the bottom quark mass. This
would be simply due to the violation of the heavy quark
spin symmetry stemming from the di↵erence of the B

meson mass and the B⇤ meson mass, as noted in Ref. [29].
We should notice that the existence of the j

P = 0+

state is new because only the j
P = 1+ state was re-

ported for the ⇡, ⇢, and ! potentials in Ref. [29]. We
can understand this new result in terms of the fact that
the j

P = 0+ state is provided mainly by the � potential
because of the su�cient attraction in the �1 exchange
stemming from the characteristic property of the CD-
Bonn potential (see table IV in Appendix A).

V. CONCLUSION

We have discussed the D̄(⇤)
N and B

(⇤)
N bound states

in terms of the ⇡, �, ⇢, and ! meson-exchange potentials
by considering the heavy-quark spin symmetry and the

π,σ,ρ,ωP/P* N

deep

very deep



✔ Phase shifts

✔ Scattering lengths

✔ Why not to predict BN correlation function for HIC?
- Very few theory papers on BN interaction yet
- B0p (I=0, 1)?
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TABLE III. S-wave scattering lengths (a) of the D̄(⇤)N and
B(⇤)N states. An attractive scattering length is given by the
negative sign (a < 0), and a repulsive scattering length and
the scattering length for a bound state are given by the posi-
tive sign (a > 0).

D̄N a [fm]

0(1/2�)
D̄N(2S1/2) 5.21

D̄⇤N(2S1/2) 0.868� i3.72⇥ 10�2

1(1/2�)
D̄N(2S1/2) 2.60

D̄⇤N(2S1/2) 0.944� i0.722

BN a [fm]

0(1/2�)
BN(2S1/2) 1.25

B⇤N(2S1/2) 1.03� i1.07⇥ 10�2

1(1/2�)
BN(2S1/2) 3.84⇥ 10�2

B⇤N(2S1/2) 0.263� i0.585

the new channels of exotic hadrons. Furthermore, the
many-body dynamics would be an interesting subject,
because the PN -P ⇤

N attraction suggests the formation
of heavy-flavored nuclei as many-body states having the
impurity particles in nuclei [16]. Few-body systems such
as D̄NN (BNN) [38] and D̄↵ (D̄He) (B↵ (BHe)) are
also interesting, which can be accessed through the rel-
ativistic heavy ion collisions in LHC and RHIC [39–41].
The nuclear structure of charm and bottom nuclei has
been studied theoretically for some possible exotic light
nuclei [42]. Experiments at J-PARC, GSI-FAIR, NICA,
and so on would also be interesting. In theoretical study,
the cross sections for producing such exotic nuclei have
been discussed [43]. As one of the advanced topics re-
lated to heavy-flavored nuclei, the isospin Kondo e↵ect
is interesting as it exhibits the “confinement” of isospin
charge [44–48]. Many subjects are awaiting to be dis-
cussed in the future.
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Appendix A: The NN potential

We construct the nuclear potential by considering the
⇡, �, ⇢, and ! exchanges. Their interaction Lagrangians

for the vertices with a nucleon are given by

L⇡NN = g⇡NN  ̄i�5⌧ · ⇡ , (A1)

L�INN = g�INN  ̄�I , (A2)

L⇢NN = g⇢NN  ̄�µ⌧ ·⇢
µ
 

+
f⇢NN

4mN

 ̄�µ⌫⌧ ·
�
@
µ⇢⌫

� @
⌫⇢µ

�
 , (A3)

L!NN = g!NN  ̄�µ!
µ
 , (A4)

with the appropriate coupling constants. We use di↵er-
ent � mesons: the �0 meson for the isosinglet (I = 0)NN

scatterings and the �1 meson for the isotriplet (I = 1)
NN scatterings. Their di↵erence appears not only in the
coupling constants but also in their masses. We some-
times omit the underscript I if unnecessary. From the
Lagrangians (A1)-(A4), we obtain the NN potentials:

V⇡(r) =

✓
g⇡NN

2mN

◆2 1

3
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⌘
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2mN
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� 1
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with v = ⇢, !, where the functions C
NN

⇡
, TNN

⇡
, CNN

�I
,

C
0NN
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, CNN

v
, and T

NN

v
are defined as above. More con-

cretely, the NN potentials are expressed by
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TABLE I. Parameters of the meson exchange potentials. The meson masses are given as the isospin-averaged values. g⇡, �,
� and g�I

are the coupling constants of heavy mesons (see text in details), while g↵NN and f↵NN are those of a nucleon taken
from the CD-Bonn potential [30]. The cuto↵s ⇤D̄ and ⇤B are shown as typical values for ⇤D̄ = 1.35⇤N and ⇤B = 1.29⇤N ,
where ⇤N is the nucleon cuto↵ which is scaled by the parameter I (0 = 0.804 and 1 = 0.773) from the CD-Bonn potential
(see Appendix A in details).

Mesons (↵) Masses [MeV] g⇡ � � [GeV�1] g�I

g2
↵NN

4⇡

f↵NN

g↵NN

⇤D̄ [MeV] ⇤B [MeV] ⇤N [MeV]

I = 0 I = 1 I = 0 I = 1 I = 0 I = 1

⇡ 138.04 0.59 — — — 13.6 — 1868 1795 1785 1715 1384 1330

⇢ 769.68 — 0.9 0.56 — 0.84 6.1 1359 1306 1423 1367 1054 1013

! 781.94 — 0.9 0.56 — 20 0.0 1629 1565 1557 1496 1207 1159

�0 350 — — —
g�0NN

3 0.51673 — 2715 — 2594 — 2011 —

�1 452 — — —
g�1NN

3 3.96451 — — 2609 — 2493 — 1932

(a) D̄N (I = 0) (b) D̄N (I = 1)

(c) BN (I = 0) (d) BN (I = 1)

FIG. 1. The phase shifts of D̄N ((a) and (b)) and BN ((c) and (d)) as functions of the scattering energy. The panels (a) and
(c) are for I = 0, and the panels (b) and (d) are for I = 1.

the attraction in I = 0 has only weak dependence on the
choice of BN in the range of BN

>
⇠ 1.0. This result

would tell us a confidence for the existence of the BN

bound state in I = 0. In comparison with I = 0, the at-
traction in I = 1 is more sensitive to choice of the value of
BN . Thus the BN deeply bound state in I = 1 needs to
be carefully considered in terms of its model dependence.

Uncertainty in the current model is also brought by the
sigma coupling. In general, the coupling constants of the
meson exchange potential are fixed by the experimental

data, such as the nucleon-nucleon scattering data and
heavy meson decays. However, the sigma coupling to
the heavy meson is di�cult to be determined uniquely
only by the currently existing experimental data. In
our present calculational framework, we have adopted
g� = g�NN/3 (see Sec. II A2). In order to investigate
the uncertainty from the ambiguity of the sigma cou-
pling value, we estimate dependence of binding energies
and scattering lengths on the g� coupling constant as
shown in Figs 3. Here we show (a) the binding en-

π,σ,ρ,ωP/P* N



5. Discussions
- I=0 spin structures

✔ Calculated mxing ratios
- Anti-DN(2S1/2):anti-D*N(2S1/2) = 96:2
- BN(2S1/2):B*N(2S1/2) = 76:14

✔ Light spin-complex [qN]j (HQ limit)
- j=0: PN(2S1/2):P*N(2S1/2) = 1:3
- j=1: PN(2S1/2):P*N(2S1/2) = 3:1 (←relatively similar to this)

✔ Calculated P(*)N includes mostly the spin-complex [qN]j with j=1
✔ [qN]j=1 is analogue of a deuteron

- Duality between P(*)N and NN?

π,σ,ρ,ωP/P* N

[qN]j in P(*)N



5. Discussions
- I=0 spin structures

✔ Calculated mxing ratios
- Anti-DN(2S1/2):anti-D*N(2S1/2) = 96:2
- BN(2S1/2):B*N(2S1/2) = 76:14

✔ Light spin-complex [qN]j (HQ limit)
- j=0: PN(2S1/2):P*N(2S1/2) = 1:3
- j=1: PN(2S1/2):P*N(2S1/2) = 3:1 (←relatively similar to this)

✔ Calculated P(*)N includes mostly the spin-complex [qN]j with j=1
✔ [qN]j=1 is analogue of a deuteron

- Duality between P(*)N and NN?

- I=1 spin structures
✔ Calculated mxing ratios

- Anti-DN(2S1/2):anti-D*N(2S1/2) = 90:11 (→ j=1)
- BN(2S1/2):B*N(2S1/2) = 39:62 (→ j=0)

✔ The spin-complex [qN]j j=0 is favored in I=1 in HQ limit?

π,σ,ρ,ωP/P* N

[qN]j in P(*)N



5. Discussions
- Model dependence

✔ Uncertainty in σ pot. couplings
- We assumed σP(*)P(*) strength coupling is 1/3 of that in σNN

✔ The uncertainty from σ pot. couplings
- Binding energies

- Similar results for scattering lengths for PN and P*N
✔ I=0 is less dependent, and I=1 is more dependent.

- σ is less important in I=0, and more important in I=1

π,σ,ρ,ωP/P* N
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(a) D̄N (I = 0) (b) D̄N (I = 1)

(c) BN (I = 0) (d) BN (I = 1)

FIG. 2. The scattering lengths of D̄N ((a) and (b)) and BN ((c) and (d)) as functions of the cuto↵ ratio D̄N and BN . The
(a) and (c) panels are for I = 0, and the panels (b) and (d) are for I = 1.

(a) Binding energy (b) Scattering length for PN (c) Scattering length for P ⇤N

FIG. 3. (a) Binding energies and scattering lengths of the (b) PN and (c) P ⇤N states obtained by varying the sigma coupling.
The scale parameter � is introduced as g = �g�, i.e. changing g� to g as a free couping value.

by considering the heavy-quark spin symmetry and the
chiral symmetry. By referring the CD-Bonn potential for
the nuclear force, we have constructed the PN -P ⇤

N po-
tential with the � exchanges as new degrees of freedom at
middle-range interaction. We have carefully calculated
the potentials with appropriate factors stemming from
the normalization of the wave function which were un-
derestimated in our previous studies [25–27]. As results,
we have found that the interaction is largely attractive to
hold the D̄N bound state and the BN bound state below
the lowest mass threshold for each in I(JP ) = 0(1/2�)
channel. Their binding energies are close to the values

which were obtained by our previous works. With the
present potential including � exchange, interestingly, we
have found that the � exchange as well as the ⇡ exchange
still plays an important role. We also have found the
D̄N and BN bound states in I(JP ) = 1(1/2�) as a new
state which has not been discussed so far. It is expected
that those states are relevant to the D

�
p interaction re-

searched in LHCb [17].

The attraction in PN -P ⇤
N systems would open a new

way to understand the inter-hadron interaction in heavy
flavors. It is important that these systems are made of
genuinely five-quark components due to the absence of

→ stronger σ couplingweaker σ coupling ←



6. Summary
- Anti-D (B) meson and nucleon potential (χ and HQS symmetries)

- We considered π, σ, ρ, ω exchanges by reference to CD-Bonn pot.

- Bound states in anti-D meson and nucleon with I(JP)=0(1/2-), 1(1/2-)

- More deeply bound states in B meson and nucleon with same I(JP)

- Future studies: experiments (LHC, Belle, J-PARC, etc.) and theories
✔ Heavy ion collisions (LHC)
✔ Fixed target experiments (J-PARC)
✔ More states in the other I(JP)︖
✔ Ds-N︖Anti-DΛ︖(from u,d to u,d,s)
✔ lattice QCD?
✔ More states in bottom?
✔ Multi-baryons︓P(*)NN, P(*)α??
✔ Anti-charm, bottom nuclei???

Yamagata-Sekihara, Garcia-Recio, Nieves, 
Salcedo, Tolos, PLB754, 26 (2016)

ExHIC: PRL106 212001 (2011); PRC84, 064910 (2011), PPNP95, 279 (2017)
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Fig. 2. Energy levels of D̄(∗)NN , B(∗)NN and P
(∗)
Q NN with I = 1/2 and JP = 0− and 1− (solid lines). The complex

energies for resonances are given as Ere − iΓ /2, where Ere is a resonance energy and Γ /2 is a half decay width.
Thresholds (subthresholds) are denoted by dashed (dashed-dotted) lines.

The Gaussian ranges bn and BN are given by the form of geometric series as

bn = b1a
n−1, BN = B1A

N−1. (10)

For the sum of Eq. (7), we include all possible coupled channels to obtain solutions with
sufficiently good accuracy. For instance, we include orbital angular momentum of l1, l2 ! 2.
Furthermore, we consider two independent isospin states to form the total isospin I = 1/2. For
instance, we include the NN subsystems of I = 0 and 1 which are combined with the D̄(∗)

meson of I = 1/2 for the total I = 1/2.
By diagonalizing the total Hamiltonian using the three-body bases introduced above, we ob-

tain eigenenergies and coefficient C
(c)
nl1,Nl2,L,s12S,I12I

. We also calculate the poles for resonances
as complex eigenvalues by using the complex scaling method [41–44].

4. Numerical results

Let us present the results of D̄(∗)NN and B(∗)NN for JP = 0−. We obtain bound states both
of D̄(∗)NN and B(∗)NN with energy levels shown in Fig. 2. The bound state of D̄(∗)NN , whose
binding energy is −5.2 MeV, locates below the threshold of D̄N(1/2−) + N . Here D̄N(1/2−)

is the bound state of D̄(∗) and N with binding energy −1.6 MeV for JP = 1/2− and I = 0
as discussed in Refs. [14,15]. Therefore, the three-body state of D̄(∗)NN is more bound than
the two-body state of D̄(∗)N , as naturally expected. We also find the B(∗)NN state with the
binding energy −26.2 MeV. The B(∗)NN state is more bound than the D̄(∗)NN state, because
the mixing effect between PNN and P ∗NN is enhanced, when P and P ∗ mesons become more
degenerate.

Yamaguchi, Yasui, Hosaka, 
NPA927, 110 (2014)

P(*)NN masses

Thanks!


