Anti-D meson and nucleon interaction from meson exchange model

S. Yamaguchi, S. Yasui, A. Hosaka, arXiv:2206.01921 [hep-ph] accepted in PRD

Shigehiro YASUI (Keio U.)

with Yasuhiro YAMAGUCHI (Nagoya U.) and Atsushi HOSAKA (RCNP, JAEA)

Exotics and Exotic Phenomena in Heavy Ion Collisions@APCTP (hybrid), 29 Sep. - 1 Oct. 2022

Contents

- 1. Why anti-D meson and nucleon?
- 2. Nucleon-nucleon potential (modified CD-Bonn)
- 3. Anti-D meson and nucleon potential
- 4. B meson and nucleon potential
- 5. Discussions
- 6. Summary

1. Why anti-D meson and nucleon?

- Motivation to study exotic hadrons (multiquarks)
 Color confinement
 - ✓ Flavor multiplets (unconventional)
 - ✓ Multi-baryons (ex. strange/charm nuclei)

1. Why anti-D meson and nucleon?

- Motivation to study exotic hadrons (multiquarks)
 ✓ Color confinement
 - ✓ Flavor multiplets (unconventional)
 - ✓ Multi-baryons (ex. strange/charm nuclei)

M. Gell-Mann "Quarks"

P. W. Anderson "More is different"

"More quarks are different" (Question that I ask often to myself)

1. Why anti-D meson and nucleon?

- Motivation to study exotic hadrons (multiquarks)
 ✓ Color confinement
 - ✓ Flavor multiplets (unconventional)
 - ✓ Multi-baryons (ex. strange/charm nuclei)

M. Gell-Mann "Quarks"

- What should we do?

"More quarks are different" (Question that I ask often to myself)

- ✓ What bound/resonant states are produced in QCD?
- ✓ Find out "periodic tables" (flavor, baryon number, ...) in QCD!

1. Why anti-D meson and nucleon?

- Motivation to study exotic hadrons (multiquarks) ✓ Color confinement
 - ✓ Flavor multiplets (unconventional)
 - ✓ Multi-baryons (ex. strange/charm nuclei)

P. W. Anderson

M. Gell-Mann "Quarks"

- What should we do?

"More quarks are different" (Question that I ask often to myself)

- \checkmark What bound/resonant states are produced in QCD?
- ✓ Find out "periodic tables" (flavor, baryon number, ...) in QCD!

- Let us think exotic hadrons as simple as possible. \checkmark Small number of channels (though many quarks...) ✓ Heavy quarks (effective theory of QCD; $\Lambda_{OCD} < < M_0$) \checkmark Symmetry (chiral symmetry, spin symmetry, ...)

1. Why anti-D meson and nucleon?

- Anti-D meson and nucleon (pentaquark channel)
 - ✓ Anti-c+qqqq (q=u,d): no annihilation channel
 - ✓ Anti-charm nuclei? Review paper: Hosaka, Hyodo, Sudoh, Yamaguchi, Yasui, PPNP 96, 88 (2017)
 - ✓ Extension to B meson and nucleon (heavy-quark spin symmetry)

More than 10 years ago...

1. Why anti-D meson and nucleon?

- 2022: First experiment has appeared!
 - ✓ ALICE Coll.: 2201.05352 (theoretical analysis by Kamiya, Hyodo, Ohnishi)
 - ✓ D⁻p correlation function
 - ✓ Attraction suggested?

We should explore anti-D meson and nucleon more seriously!

- 1. Why anti-D meson and nucleon?
- Anti-D meson and nucleon potential (P=anti-D, P*=anti-D*)
 - ✓ PN-P*N mixing (P and P* are interchangeable.)
 - ✓ Chiral (χ) symmetry + heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) ← χ +HQS
 - ✓ Scalar (σ), vector (ρ , ω) exchanges
 - ✓ Analogy to nucleon-nucleon pot. (Note: $1/\sqrt{2}$ factor for mP^(*)P^(*))

 π exchange \rightarrow spin flipping (P, P* mixing) like in a deuteron

- 1. Why anti-D meson and nucleon?
- Anti-D meson and nucleon potential (P=anti-D, P*=anti-D*)
 - ✓ PN-P*N mixing (P and P* are interchangeable.)
 - ✓ Chiral (χ) symmetry + heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi$ +HQS
 - ✓ Scalar (σ), vector (ρ, ω) exchanges
 - ✓ Analogy to nucleon-nucleon pot. (Note: $1/\sqrt{2}$ factor for mP^(*)P^(*))

 π exchange \rightarrow spin flipping (P, P* mixing) like in a deuteron

- Spin-structure (q: light quark, N: nucleon)
 - \checkmark (Anti-Q q) N = Anti-Q [q N]
 - ✓ HQS multiplets
 - HQS singlet: q+N with j=0 (total J=1/2 only)
 - **HQS doublet**: q+N with j=1 (total J=1/2, 3/2 degenerate)

Spin decomposition of heavy-quark from light quarks and gluons

- 1. Why anti-D meson and nucleon?
- Anti-D meson and nucleon potential (P=anti-D, P*=anti-D*)
 - ✓ PN-P*N mixing (P and P* are interchangeable.)
 - ✓ Chiral (χ) symmetry + heavy-quark spin (HQS) symmetry
 - ✓ OPEP (one-pion exchange potential) $\leftarrow \chi + HQS$
 - ✓ Scalar (σ), vector (ρ, ω) exchanges
 - ✓ Analogy to nucleon-nucleon pot. (Note: $1/\sqrt{2}$ factor for mP^(*)P^(*))

 π exchange \rightarrow spin flipping (P, P* mixing) like in a deuteron

- Spin-structure (q: light quark, N: nucleon)
 - \checkmark (Anti-Q q) N = Anti-Q [q N]
 - ✓ HQS multiplets
 - HQS singlet: q+N with j=0 (total J=1/2 only)
 - **HQS doublet**: q+N with j=1 (total J=1/2, 3/2 degenerate)
- Is qN analogous to "nucleon-nucleon" (NN)?
 - ✓ If qN is deuteron-like, then qN spin j=1 indicates HQS doublet.
 - \checkmark We need to solve QCD for getting the answer.

Spin decomposition of heavy-quark from light quarks and gluons

2. Nucleon-nucleon pot. (modified CD-Bonn)

- Reference system: nucleon-nucleon (NN)
 - \checkmark Similarity between qN and NN
 - ✓ Π, σ, ρ, ω exchange
 - $\checkmark \sigma$ is important to consider both I=0 and I=1

- 2. Nucleon-nucleon pot. (modified CD-Bonn)
- Reference system: nucleon-nucleon (NN)
 - \checkmark Similarity between qN and NN
 - ✓ Π, σ, ρ, ω exchange
 - $\checkmark \sigma$ is important to consider both I=0 and I=1
- CD-Bonn is a realistic NN potential
 - ✓ Reproducing the fundamental properties of NN force
 - ✓ Simple model: 1-meson exchange (π, σ, ρ, ω, …)
 - ✓ …However still complicated (heavier mesons included)

- 2. Nucleon-nucleon pot. (modified CD-Bonn)
- Reference system: nucleon-nucleon (NN)
 - ✓ Similarity between qN and NN
 - **√** Π, σ, ρ, ω exchange
 - $\checkmark \sigma$ is important to consider both I=0 and I=1
- CD-Bonn is a realistic NN potential
 - \checkmark Reproducing the fundamental properties of NN force
 - ✓ Simple model: 1-meson exchange (π, σ, ρ, ω, …)
 - ✓ …However still complicated (heavier mesons included)
- We consider the simpler version of CD-Bonn ("modified CD-Bonn")
 - \checkmark We consider only mesons with lower masses
 - \checkmark Coupling constants as the same as in CD-Bonn
 - \checkmark Price to be paid: rescaling of the momentum cutoffs

J	· · · · · · · · · · · · · · · · · · ·		
Mesons	Masses [MeV]	$g^2/4\pi$	f/g
π	138.04	13.6	
ho	769.68	0.84	6.1
ω	781.94	20	0.0
σ_0	350	0.51673	
σ_1	452	3.96451	

exchanged mesons (same as CD-Bonn)

Masses and coupling constants of

Scattering lengths, effective ranges, binding energy of a deuteron in modified CD-Bonn

channel	$\kappa_I \ (I=0 \text{ and } I=1)$	$a \; [{\rm fm}]$	$r_{\rm e} \; [{\rm fm}]$	$B_{\rm d} [{\rm MeV}]$
${}^{3}S_{1} \ (I=0)$	0.8044226	5.296	1.562	2.225^{*}
${}^{1}S_{0} \ (I=1)$	0.7729982	23.740^{*}	2.337	
	Reduction scale factor			
	in momentum cutoffs			
Experiment va	alues			
$a({}^{3}S_{1})=5.419$	± 0.007 fm, $r_e({}^{3}S_1) = 1.7$	53±0.00	8 fm, B _d	=2.225 MeV
$a({}^{1}S_{0})=23.74$	$0\pm 0.020 \text{ fm}, r_{e}({}^{1}S_{0})=2.$	77±0.05	fm	

2. Nucleon-nucleon pot. (modified CD-Bonn)

- Interaction Lagrangian

- NN potential

$$\begin{split} V_{\pi}(r) &= \left(\frac{g_{\pi NN}}{2m_N}\right)^2 \frac{1}{3} \left(\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 C_{\pi}(r) + S_{12}(\hat{\boldsymbol{r}}) T_{\pi}(r)\right) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \\ V_{\sigma_I}(r) &= -\left(\frac{g_{\sigma_I}}{2m_N}\right)^2 \left(\left(\frac{2m_N}{m_{\sigma_I}}\right)^2 - 1\right) C_{\sigma_I}(r) \\ V_v(r) &= g_{vNN}^2 \left(\frac{1}{m_v^2} + \frac{1 + f_v/g_{vNN}}{2m_N^2}\right) C_v(r) \\ &+ g_{vNN}^2 \left(\frac{1 + f_v/g_{vNN}}{2m_N}\right)^2 \frac{1}{3} \left(2\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2 C_v(r) - S_{12}(\hat{\boldsymbol{r}}) T_v(r)\right) \end{split}$$

3. Anti-D meson and nucleon potential

- P^(*)N potential (P=anti-D, B meson; P*=anti-D*, B* meson)

- PN-P*N channel couplings (different channels, different mesons)

3. Anti-D meson and nucleon potential

- P^(*)N potential (P=anti-D, B meson; P*=anti-D*, B* meson)

- PN-P*N channel couplings (different channels, different mesons)

- Heavy Meson Effective Theory (HMET) $\checkmark \text{ Hadronic effective theory based on } \chi + \text{HQS symmetries}$ $\checkmark \text{ Effective field: } H_{\alpha} = (P_{\alpha}^{*\mu}\gamma_{\mu} + P_{\alpha}\gamma_{5})\frac{1-\psi}{2} \quad H_{\alpha} \rightarrow \underset{\text{HQS}+\chi \text{ sym.}}{SH_{\beta}U_{\beta\alpha}^{\dagger}}$ $\checkmark P^{(*)}P^{(*)}\text{m vertices are uniquely determined (m=n, \sigma, \rho, \omega)}$ $\mathcal{L}_{\pi HH} = ig_{\pi}\text{tr}(H_{\alpha}\bar{H}_{\beta}\gamma_{\mu}\gamma_{5}A_{\beta\alpha}^{\mu})$ $\mathcal{L}_{\sigma_{I}HH} = g_{\sigma_{I}}\text{tr}(H\sigma_{I}\bar{H}) \leftarrow \text{New!}$ $\mathcal{L}_{vHH} = -i\beta\text{tr}(H_{b}v^{\mu}(\rho_{\mu})_{ba}\bar{H}_{a})$ $+i\lambda\text{tr}(H_{b}\sigma^{\mu\nu}(F_{\mu\nu}(\rho))_{ba}\bar{H}_{a})$ $\overset{\text{Previous works: } n \text{ only: SY, Sudoh, PRD80, 034008 (2009)} \\ n, \rho, \omega: Yamaguchi, Ohkoda, SY, Hosaka, PRD84 014032 (2011), ibid. 054003 (2012)}$

3. Anti-D meson and nucleon potential

- $P^{(*)}N$ state ($J^P=1/2^-$, I=0 or 1) Note: applicable to $J^P=3/2^-$ (HQS partner)
 - ✓ Particle basis: $PN(^{2}S_{1/2})$, $P*N(^{2}S_{1/2})$, $P*N(^{4}D_{1/2})$
 - ✓ HQS basis: $[Anti-Q_{j=1/2}[qN]_{j=1}]_{JP=1/2}$ Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)

3. Anti-D meson and nucleon potential

- P^(*)N state (J^P=1/2⁻, I=0 or 1) Note: applicable to J^P=3/2⁻ (HQS partner)
 ✓ Particle basis: PN(²S_{1/2}), P*N(²S_{1/2}), P*N(⁴D_{1/2})
 ✓ HQS basis: [Anti-Q_{j=1/2}[qN]_{j=1}]_{JP=1/2}- Cf. Yasui, Sudoh, Yamaguchi, Ohkoda, Hosaka, Hyodo, PLB727, 185 (2013); PRD91, 034034 (2015)

- $P^{(*)}N(1/2^{-})$ Hamiltonian $H_{J^P} = K_{J^P} + V_{J^P}^{\pi} + V_{J^P}^{\sigma_I} + V_{J^P}^{\rho} + V_{J^P}^{\omega}$ \checkmark Kinetic term $K_{1/2^{-}} = \text{diag}(K_0, K_0^*, K_2^*)$ (S,S,D) $\checkmark \Pi. \sigma. v(= \rho, \omega)$ pot. term (1/ \checkmark 2 factor included)

- $V_{1/2^{-}}^{\pi} = \begin{pmatrix} 0 & \sqrt{3} C_{\pi} & -\sqrt{6} T_{\pi} \\ \sqrt{3} C_{\pi} & -2 C_{\pi} & -\sqrt{2} T_{\pi} \\ -\sqrt{6} T_{\pi} & -\sqrt{2} T_{\pi} & C_{\pi} 2 T_{\pi} \end{pmatrix} \quad V_{1/2^{-}}^{\sigma_{I}} = \begin{pmatrix} C_{\sigma_{I}} & 0 & 0 \\ 0 & C_{\sigma_{I}} & 0 \\ 0 & 0 & C_{\sigma_{I}} \end{pmatrix}$ $V_{1/2^{-}}^{v} = \begin{pmatrix} C_{v}' & 2\sqrt{3}C_{v} & \sqrt{6}T_{v} \\ 2\sqrt{3}C_{v} & C_{v}' 4C_{v} & \sqrt{2}T_{v} \\ \sqrt{6}T_{v} & \sqrt{2}T_{v} & C_{v}' + 2C_{v} + 2T_{v} \end{pmatrix}$
- ✓ Tensor force in off-diagonal components (strong mixing effect)
 ✓ Model parameters
 - π pot. coupling (D* \rightarrow D π)
 - v pot. couplings (universal couplings)
 - σ pot. coupling ~ 1/3 in NN (# of light quarks in P^(*) meson)
 - Momentum cutoffs (size ratios of anti-D (B) and N (quark model))

3. Anti-D meson and nucleon potential

Results (anti-D and N)
 ✓ bound states (I=0, 1)

$\bar{D}N$	B.E. $[MeV]$	Mixing ratio [%]
		$\bar{D}N(^2S_{1/2})$ 96.1
$0(1/2^{-})$	1.38	$\bar{D}^*N(^2S_{1/2})$ 1.94
	shallow	$\bar{D}^* N(^4 D_{1/2}) \ 1.93$
		$\bar{D}N(^2S_{1/2})$: 88.9
$1(1/2^{-})$	5.99	$\bar{D}^* N(^2 S_{1/2})$: 10.9
	deep	$\bar{D}^*N(^4D_{1/2})$: 0.11

- I=0: shallow bound state (consistent with previous works)
- I=1: deeply bound state (new!)
- Both π and σ are important
- σ pot. in I=1 is very strong

3. Anti-D meson and nucleon potential

✓ Phase shifts

Ν

✓ Scattering lengths

$\bar{D}N$	a [f	îm]
$0(1/2^{-})$	$\bar{D}N(^2S_{1/2})$	5.21
	$\bar{D}^* N(^2 S_{1/2})$	$0.868 - i3.72 \times 10^{-2}$
$1(1/2^{-})$	$\bar{D}N(^2S_{1/2})$	2.60
	$\bar{D}^*N(^2S_{1/2})$	0.944 - i0.722

4. B meson and nucleon potential

- Same discussion for B meson and nucleon (more ideal for HQS)
- Results (B and N)
 - ✓ Bound states (I=0)

BN	B.E. $[MeV]$	Mixing ratio [%]
		$BN(^2S_{1/2})$ 76.4
$0(1/2^{-})$	29.7	$B^*N(^2S_{1/2})$ 14.1
	deep	$B^*N(^4D_{1/2})$ 9.46
		$BN(^2S_{1/2})$ 38.5
$1(1/2^{-})$	66.0	$B^*N(^2S_{1/2})$ 61.5
	very deep	$B^*N(^4D_{1/2}) \ 1.82 \times 10^{-2}$

- I=0: deeply bound state (consistent with previous works)
- I=1: more deeply bound state (new!)
- Both π and σ are important
- σ pot. in I=1 is very strongly attractive

4. B meson and nucleon potential

✓ Phase shifts

Ν

✓ Scattering lengths

BN	$a \; [{ m fm}]$
$0(1/2^{-})$	$BN(^2S_{1/2})$ 1.25
	$B^*N(^2S_{1/2}) \ 1.03 - i1.07 \times 10^{-2}$
$1(1/2^{-})$	$BN(^2S_{1/2}) 3.84 \times 10^{-2}$
	$B^*N(^2S_{1/2}) \ 0.263 - i0.585$

- ✓ Why not to predict BN correlation function for HIC?
 - Very few theory papers on BN interaction yet

5. Discussions

- I=0 spin structures
 - ✓ Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 96:2
 - $BN(^{2}S_{1/2}):B*N(^{2}S_{1/2}) = 76:14$
 - ✓ Light spin-complex $[qN]_j$ (HQ limit)
 - j=0: $PN(^{2}S_{1/2}):P*N(^{2}S_{1/2}) = 1:3$

- j=1: $PN(^{2}S_{1/2})$: P*N($^{2}S_{1/2}$) = 3:1 (←relatively similar to this)
- ✓ Calculated $P^{(*)}N$ includes mostly the spin-complex $[qN]_j$ with j=1
- \checkmark [qN]_{j=1} is analogue of a deuteron
 - Duality between P^(*)N and NN?

5. Discussions

- I=0 spin structures
 - ✓ Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 96:2
 - $BN(^{2}S_{1/2}):B*N(^{2}S_{1/2}) = 76:14$
 - ✓ Light spin-complex [qN]_j (HQ limit)
 - j=0: $PN(^{2}S_{1/2})$: $P*N(^{2}S_{1/2}) = 1:3$

- j=1: $PN(^{2}S_{1/2})$: P*N($^{2}S_{1/2}$) = 3:1 (←relatively similar to this)
- ✓ Calculated $P^{(*)}N$ includes mostly the spin-complex $[qN]_j$ with j=1
- \checkmark [qN]_{j=1} is analogue of a deuteron
 - Duality between P^(*)N and NN?
- I=1 spin structures
 - \checkmark Calculated mxing ratios
 - Anti-DN(${}^{2}S_{1/2}$):anti-D*N(${}^{2}S_{1/2}$) = 90:11 (\rightarrow j=1)
 - $BN(^{2}S_{1/2}):B*N(^{2}S_{1/2}) = 39:62 (\rightarrow j=0)$
 - ✓ The spin-complex $[qN]_j = 0$ is favored in I=1 in HQ limit?

- 5. Discussions
- Model dependence
 - \checkmark Uncertainty in σ pot. couplings

- We assumed $\sigma P^{(*)}P^{(*)}$ strength coupling is 1/3 of that in σNN
- \checkmark The uncertainty from σ pot. couplings
 - Binding energies

Similar results for scattering lengths for PN and P*N
 ✓ I=0 is less dependent, and I=1 is more dependent.
 − σ is less important in I=0, and more important in I=1

6. Summary

- Anti-D (B) meson and nucleon potential (χ and HQS symmetries)
- We considered π , σ , ρ , ω exchanges by reference to CD-Bonn pot.
- Bound states in anti-D meson and nucleon with $I(J^P)=O(1/2^-)$, $1(1/2^-)$
- More deeply bound states in B meson and nucleon with same $I(J^{P})$
- Future studies: experiments (LHC, Belle, J-PARC, etc.) and theories
 ✓ Heavy ion collisions (LHC) EXHIC: PRL106 212001 (2011); PRC84, 064910 (2011), PPNP95, 279 (2017)
 - ✓ Fixed target experiments (J-PARC) Yamagata-Sekihara, Garcia-Recio, Nieves, Salcedo, Tolos, PLB754, 26 (2016)
 - ✓ More states in the other $I(J^P)$?
 - ✓ D_s -N ? Anti-DA ? (from u,d to u,d,s)
 - ✓ lattice QCD?
 - ✓ More states in bottom?
 - ✓ Multi-baryons : P^(*)NN, P^(*)a??
 - ✓ Anti-charm, bottom nuclei???

Thanks!

