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* Perturbation theory has proven to be an extremely successful tool

for investigating problems in particle physics

But by definition this procedure
is only valid in a weakly

interacting regime

— Non-convergence of perturbative series
— Observables: form factors, parton
distribution functions, hadronic properties, ...

— Confinement in QCD

* This emphasises the need for a non-perturbative approach!

— Local QFT is one such approach




Local QFT

* In the 1960s, A. Wightman and R. Haag pioneered an approach which
set out to answer the fundamental question “what is a QFT?”

* The resulting approach, Local QFT, defines a QFT using a core set of
physically motivated axioms

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert

space H which possesses a continuous unitary representation Ula, o) of the Poincaré

spinar group 7T i
_ o _ A. Wightman

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator

P* is confined to the closed forward light cone VY = {p* | p* = 0, p" = 0}, where [R. F. Streater and A. S. Wightman, PCT,

Ufa, 1) = e, Spin and Statistics, and all that (1964).]

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unigue translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields o' (z) (of type (k) ) which
have components p}":(.r} that are operator-valued tempered distributions in H, and the

vacuum state |0) is a cyclic vector for the fields.

Axiom 5 (Relativistic covariance). The fields ;}"'(:r} transform covariantly under
the action of & 1, :

Ula, )™ (x)U(a,0) " = S'T.[_:.":(r} 1),3_';":(.-'\(0),:' +a)

where S{«) is a finite dimensional matriz representation of the Lorentz spinor group

i IT and A(a) is the Loventz transformation corresponding to o € ).

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields o™, o) are space-like separated, then:
(). 080 ()]s = A0 (e (9) £ 8 ()0l () = 0 R. Haag
[R. Haag, Local Quantum
Physics, Springer-Verlag (1992).]

. . - v {8} (gt
when applied to any state in H, for any fields ¢, @<,




Local QFT

* Local QFT has led to many fundamental insights, including:
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— Relationship between Minkowski and Euclidean QFTs !
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— CPT is a symmetry of any QFT _in/2
— Connection between spin & particle statistics . . ;;E;;.;;D’.;.;.;F;[E';,;;’H’E"E;E’.’,;.;;Ig_;"\""._;’-’E;T”;
: L,g —— i : .£| _ﬁ_g.[& i
el S [
T T TR e
ﬁalllllllllmamlllﬁ§
Ee
— Existence of dispersion relations R————
| T I I

— Scattering theory @
o _—




Local QFT beyond the vacuum

* But... local QFT only describes particle dynamics in the vacuum state

— What about “extreme environments” where the system is either hot,
dense, or both?

[Brookhaven National Lab] [Skyworks Digital Inc.]

* Understanding local QFT in such environments is essential, and yet has
received relatively little attention. Particularly important progress was

made by J. Bros and D. Buchholz for non-vanishing temperature T

— See: [Z. Phys. C 55 (1992) 509, hep-th /9606046, hep-th /9807099, hep-ph/0109136]



Local QFT beyond the vacuum

* Idea: Look for a generalisation of the standard axioms that is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert
space H which possesses a continuous unitary representation Ula, o) of the Poincaré
spinor group ﬁT .

Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator

P* is confined to the closed forward light cone VY = {p* | p* > 0, p" >

> 0}, where
Ua, 1) = e,

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the
vacuum state) which is a unique translationally invariant state in H.

Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which

have components p} (x) that are operator-valued tempered distributions in ‘H, and the

vacuum state |0) is a cyclic vector for the fields.

N . e e . . , \ (k) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under
the action of 2 1, :

Ula, o)™ (2)U(a,0) " = 5'1.[:1'((} ').,;'_';"1'(;'1((1],:' +a)

where S(av) is a finite dimensional matriz representation of the Lorentz spinor group
£ ,T and A(a) is the Lorentz transformation corresponding to o € &

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields @™, o\5") are space-like separated, then:

(el (£). 2% ()] = o™ (Hel ) (g) £ i (9) el (f) = 0

when applied to any state in H, for any fields o™, o).
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Local QFT beyond the vacuum

* Idea: Look for a generalisation of the standard axioms that is

compatible with T > 0, and approaches the vacuum case for T— 0

Axiom 1 (Hilbert space structure). The states of the theory are rays in a Hilbert

[ —m e —
. |
, , , , , | — - H_is defined for fixed B=1/T .
space H which possesses a continuous unitary representation Ula, o) of the Poincaré I I
spinor group )ﬂT .
' .. |
Axiom 2 (Spectral condition). The spectrum of the energy-momentum operator | Replaced by the KMS condition |
- v . - T F v l ......................... -
P* is confined to the closed forward light cone VY = {p* | p* > 0. p" > 0}, where —> T T T T T T T T T T T T Tt
Ufa,1) = e §(QB|¢(I1)"'¢($/€)¢(I1«+1) ¢(%)|Q£>

Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

vacuum state) which is a unique translationally invariant state in H. —_

: Instead, thermal background state |S'ZB> |
Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which e
have components p}""(.r} that are operator-valued tempered distributions in H, and the
vacuum state |0) is a cyclic vector for the fields.

. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under
the action of J”1| :

Ula, o)™ (2)U(a,0) " = L‘i'f[:](n ').,;'_';"}(;'*L(n],r'—l-rr]

where S(ax) is a finite dimensional matriz representation of the Lorentz spinor group
,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of

+ 2 s .
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).
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Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which e
have components p}""(.r} that are operator-valued tempered distributions in H, and the /
vacuum state |0) is a cyclic vector for the fields.

. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under
the action of J”1| :
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+ 2 s .
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).
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Axiom 3 (Uniqueness of the vacuum). There exists a unit state vector |0) (the

i ctate ] which s n wnime fransdationalle mmmiant state m 4 e~ . |
vacunwm state) which is a wnique translotionally invariant state in H. o I Instead. thermal background state lQ > l
Axiom 4 (Field operators). The theory consists of fields ' (x) (of type (k) ) which e
have components p}":(.z'} that are operator-valued tempered distributions in ‘H, and the / __________________ |
vacuum state |0) is a cyclic vector for the fields. I Fields are still distributions
Axiom 5 (Relativistic covariance). The fields ?:J[“:(;r} transform covariantly under
the action o J’ﬂ : ] . N

7 : The fields no longer transform
(%) (&)y . —_ X .
Ula, o)™ (2)U(a,0) " = Sl (e e (Aa)z + a) . under general unitary Lorentz :
I .
where S{«) is a finite dimensional matriz representation of the Lorentz spinor group I transformations |

b O DD S OO OO o oo — — —

,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of
the fields @™, o\5") are space-like separated, then:

el ). 28N @) = e (F)e% (9) £ &% (@)™ (f) =0

when applied to any state in H, for any fields o™, o).
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. . (&) . .
Axiom 5 (Relativistic covariance). The fields ;" (x) transform covariantly under

the action af J’ﬂ : L _i

' : The fields no longer transform .

(k) (=) g4 , —_— . [

Ula, a)g;” (2)U(a, @)™ = S;7(a g (Ala)x + a) . under general unitary Lorentz |

| .
where S(e) is a finite dimensional matriz representation of the Lorentz spinor group I transformations |
,fT and A(a) is the Lorentz transformation corresponding to o € 728

Axiom 6 (Local (anti-)commutativity). If the support of the test functions f, g of e -I
the fields ?;}h.:., '{:‘ff] are space-like separated, then: / " Locality is unaffected by the -
L . _ | . |
AP0 0 ()]s = o (e (9) £ o) (@) (F) = 0 ! properties of the background state.
o : This is important! !
when applied to any state in H, for any fields o™, o=, fe o




Non-perturbative implications

* By demanding fields to be local ([®(x),®(y)]=0 for (x-y)’<0) this imposes

significant constraints on the structure of correlation functions

— For T=1/B >0, the scalar spectral function has the representation:

> d>u L ~
plro,7) = F (] [6(2), 000 19)] = [ ds [ 555 elo) 8o — (5 0° — 5) Di(i. o)
0 (2m) /
Note: this is a non-perturbative representation! }*J:ﬁ,;,;,;,*s;;:i;;,;;,;;i;yi'*i
* In the limit of vanishing temperature one recovers the well-known
Kallén-Lehmann spectral representation:

proc * g p(9)=(s ) f

00 2 e.g. p(s)=0(s-m’) for |

p(pogﬁ) 27 E(po)/o ds 5(p S) ,O(S) @ massive free theory |

Important question: what does the thermal spectral density Ds(u,s) look like?




Non-perturbative implications

* A natural decomposition [J. Bros, D. Buchholz, hep-ph/0109136] is:

— — pnng — 2 — —
Dg(t@,s) = Dy, (%) 6(s — m~) + D, g(u, s)
>
. “Damping factor” Continuous component
200
w0
| |
s T Peak broadening |
fffffffffffffffffffff ‘ [ ~ | e
| Causes T=0 mass | E? o L(iof?r?llefl, ljy PT'E(,LQJ ] } Fixes T-dependence
pole m to be screened _ / } of continuous spectral
by thermal effects | . contributions
0 m 5 10 15 20

— Damping factors hold the key to understanding in-medium effects!




Damping factors from asymptotic dynamics

* Since all observable quantities are computed using correlation functions,
which are characterised by damping factors, one can use these to gain
new insights into the properties of QF Ts when T>0

* It has been proposed [Bros, Buchholz, hep-ph/0109136] that these quantities

are controlled by the large-time x, dynamics of the theory

@
e @
_00 | > 00
X
0
C T T T e e e e e e e e e e e e e e e e e I
Important: | Interactions with the thermal background persist, even for large x,

— Need to take this into account in definition of scattering states!




Damping factors from asymptotic dynamics

* ldea: thermal scattering states are defined by imposing an asymptotic field
condition (hep-ph/0109136):

“Asymptotic coupling”
In @°theory b _—

...............................................

.~ Asymptotic fields &, are assumed to satisfy

' dynamical equations, but only at large X,

“Asymptotic mass”

* Given that the thermal spectral density has the decomposition

—~—

Dg(@t,s) = Dy g(@) 6(s — m?) 4+ D (@, s)

for large X,

2. The particle damping factor 5mﬁ(u) is uniquely fixed by the

asymptotic field equation

* This means that the non-perturbative thermal effects experienced by particle

states are entirely controlled by the asymptotic dynamics!



@®* theory for T > 0

* Applying the asymptotic field condition for ®* theory, the resulting damping
factors have the form [hep-ph/0109136]:

. — e_ﬁ‘f‘
— ForA<O: |p ~:M — ForA>0: |D x) = -
msl®) = = msl) =
h K i f . h = T: i K= (1), (r) = dgé‘ . :
wnere IS de |ned with r m/ E T/ |AK(r), K(r) J '/(27r)32\/f}2 + 2 Va2 +r? _ 15

— The parameter K has the interpretation of a thermal

width: K—0 for T—0, or equivalently k-1 is mean-free path

* Now that one has the exact dependence of D,,s5(x) on the external physical
parameters, in this case T, m and A, one can use this to calculate observables

analytically



Of particular interest is the shear viscosity n, which measures the resistance of

@®* theory for T > 0

a medium to sheared flow

— This quantity can be determined from the spectral function of the

spatial traceless energy-momentum tensor

. and n is recovered via the Kubo relation |7 = 5 lim

prr(Po) = }13.1_%}) f[(%l [Wij (m)aﬂij (”J)] |Qﬁ>] (p)

1 dprr

20 po—0 dpo

Using Dnp(x) for A < 0, the EMT spectral function p,__has the form:

- ]AI=0, m/T=0.1
Al=1, m/T=0.1
]AI=10, m/T=0.1

— ]I=20, m/T=0

— =20, m/T=0.5

— ]AI=20, m/T=1.0

~[3

* The presence of interactions causes resonant
peaks to appear — peaked when p, ~ k=1/4

* For A—0 the free-field result is recovered, as
expected
* The dimensionless ratio m/ T controls the

magnitude of the peaks




@®* theory for T > 0

* Applying Kubo's relation, the shear viscosity n, arising from the asymptotic

states can be written [P.L., R.-A. Tripolt, J. M. Pawlowski, D. H. Rischke, 2104.13413]

T3 | Ks (%, 0.00) m Ka( 3. VIV (3) VIE (%))
+VINKL (7. 0.00) + i

157 1/|)\|

o =

e L R :
| for small |A|

- - . .

et s — s — — — - — — —

,,,,,,,,,,,,, . Magnitude of large [A|
( Global minima / i | growth controlled by m/T |
: . !

— For fixed coupling, ny/ T’ is entirely controlled by functions of m/ T




@®* theory for T > 0

What about the case A > 0?7 — n, diverges!
Why? — The particle damping factor D,, ;(u) does not decay rapidly

enough at large momenta

This characteristic is related to the “bad” UV behaviour of the quartic
interaction, i.e. the triviality of ®*appears to have an impact beyond T=0!

In 2104.13413 it was shown more generally that the finiteness of n, is related

to the existence of thermal equilibrium

e e R I R e —

This procedure demonstrates that asymptotic dynamics can be used to
explore the non-perturbative properties of QF Ts when T>0

— Can also calculate other observables, e.g. transport

coefficients, entropy density, pressure, etc.



Damping factors from Euclidean data

* The constraints imposed by locality offer new ways in which to understand,

and compute, in-medium observables

* It turns out that these constraints also have significant implications in
Euclidean spacetime

— Important to understand, since many non-perturbative
techniques, e.g. lattice, functional methods (DSEs, FRG), are
restricted to, or optimised for, calculations in imaginary time T

* In many instances T>0 Euclidean data is used to extract observables, e.g.

spectral functions from WE 77777777777777777 =/ dgL'WE(TCL)
%y COsh [(g B ‘T‘) w] | - Determine p(w) given W, (T)
Wilr) = [ 5 plo) - Coremine pL) glven AT
0o <7 sinh (%w)
— Inverse problem!

* Problem is ill-conditioned, need additional information (see e.g. H. B. Meyer,

1104.3708 for review of different inversion approaches)



Damping factors from Euclidean data

* However, locality constraints imply that particle damping factors D, 5(x)
can be directly calculated from Euclidean data, avoiding the inverse

problem [P.L., 2201.12180]

e — — e — — — e s — — — - - o

- p-space Euclidean }

- > . = L ‘ :
Do (@)~ el [P aipisin(a0) Galoulg)| Propasater |
' J0 T '

Holds for large separation |x|

* Like with the asymptotic calculations, D, s(x) can then be used as input

for phenomenological calculations

* In [P.L., R-A. Tripolt, 2202.09142] pion propagator data from the quark-meson
model (FRG calculation) was used to compute the damping factor at

different values of T via the analytic relation above

* Fits to the resulting data were consistent with the form: |Dj (%) = ae ¥

— Both parameters a and y showed a significant T dependence



Damping factors from Euclidean data

* Using the T>0 spectral representation one finds:

Implies
— 2 2
2\ —|Z|y T 2 2\ dayy/w? —mz
Dﬂ,5($) = Qe ‘ P (w) = e(w)@(w - mﬁ) (w2 — m% T 72)2
1.2 — v/m,=1.0 ]
y/m,=1.5
1.0} .
yim.=2.0 ]
0.8+ — y/m_=2.5 ]
—————————————————— S oY — y/m.=3.0 1 e — i —— e —— e ——
! . . . L I . ‘
-~ m is minimal energy =~ |= 06 \ - Width y—0 as T—0,
| s| . .
' needed to create | 0.4 ' } causing increasingly }
| ‘ |
‘ 1 ] — o ] | '
| particle with p=0 L ool ~_ ] L 7p7erqlie7dib¢frgrv7/oiu7rwi |
- — cutoff at w=m_ | \\ N:
**************** 0.0} / -
0 1 2 3 4
w/m




Damping factors from Euclidean data

* Using the analytic relations derived in [2104.13413] for the shear viscosity
as a function of the damping factor, the numerically extracted values for
D, s(x) can be used to compute the shear viscosity

120} ]
m =106 MeV
100} ]
"= 80| ot
8 N
= Y “w | . |
2 60 / -, | n vanishes for T—0, and |
= / . !
= 40 ! S - appears to level out at large T |
20} I '
NI S
0 20 40 60 80 100 120 140
T [MeV]
120 ~
N
1ol | AN )
| N . chiral limit
* Can compare these results with those O L ey N

60 | ~~

7 [MeV/fm ]
/

obtained using chiral perturbation theory

40 my =140 MeV

— Veery similar qualitative features!

20

0 20 30 60 80 100 120 140

T[MeV]

[R. Lang, N. Kaiser, W. Weise, 1205.6648]



Damping factors from Euclidean data

* In the FRG analysis we used p-space data to extract D, z(x). Can we use

x-space data intead? Yes!

— A quantity of particular interest in lattice studies is the spatial

correlator of particle-creating operators, defined:

oo oo %
C(z):/ d:c/ dy/ﬁdTWE(T?f)

€.g. meson operators

Wa(r, T) = (Q[uT(x) $T4(0)|2s)

* Usually, the large-z behaviour of C(z) ~ exp(-m.,|z|) is used to extract

particle screening masses m.,

* This quantity is important for understanding R

phenomena such as quarkonium melting and |, N

(effective) chiral restoration in QCD

2.00
Mser. [GeV]
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Damping factors from Euclidean data

* Using an equivalent result to that in p-space, one obtains the following

general relation between the damping factor and spatial correlator

Dy, g(z) ~ _2€m|z|%(z) - Holds for large z
z |

* The implication of this relation is that the dependence of screening masses
m,., on the external physical parameters; T, m, etc. is dictated by the

damping factors D,,,
— Each particle experiences different in-medium effects!

* The advantage of using spatial correlator data is that one can obtain

systematically improvable data, i.e. use larger lattice sizes!

* Using this approach one can proceed to analyse the properties of

meson /baryon damping factors in QCD, and use this for phenomenology

— Work in progress!



Framework generalisations

* So far we have only discussed the simplest situation: a real scalar field
&(x) with T>0

— What about fields/states with higher spin?

— What about regimes where the background environment is dense,
characterised by a ground state with uz07?

* Answering these questions is essential for fully understanding the properties
of particles in extreme environments, and in particular, unravelling the

characteristics of the QCD phase diagram
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Summary & outlook

* Local QFT is an analytic framework that attempts to address the fundamental

question “what is a QFT?”

* The framework can be extended to T >0, and this has important

implications, including:
— Connection to asymptotic dynamics
— Extraction of in-medium observables from Euclidean data
— Interpretation of screening masses
* So far only real scalar fields &(x) with T> 0 considered, but this approach

can be extended (higher spin, p # 0). Work in progress!

— This framework provides a way of obtaining
non-perturbative insights into the phase structure
of QFTs, and the resulting in-medium phenomena

[Brookhaven National Lab]



