Constraining the properties of <u>a parity doublet model</u> with a <u>quark-hadron-crossover</u> equation of state and the observations for neutron stars

based on our papers:

[1] PhysRevC.103.045205 (T.M., M.H., T.K.)

[2] PhysRevC.104.065201 (T.M., M.H., T.K.)

T. Minamikawa (Nagoya Univ.)

collaborators: M. Harada (Nagoya Univ.) and T. Kojo (Tohoku Univ.)

21-23 Feb 2022 Reimei Workshop "Hadrons in dense matter at J-PARC"

Fate of Nucleon Mass

2

13

relevant for the physics of heavy ion collisions and Neutron Stars (NSs)

NSs as Cosmic Laboratories³/¹³

Latest Observ. of NSs

/ 13

4

5

13

considering NSs data, a recent trend of EOS is: from soft to stiff

5

13

considering NSs data, a recent trend of EOS is: from soft to stiff

5

13

considering NSs data, a recent trend of EOS is: from soft to stiff

5

13

considering NSs data, a recent trend of EOS is: from soft to stiff

5

13

considering NSs data, a recent trend of EOS is: from soft to stiff

⁶ / ¹³ Crossover Model for Unified EOS

3-window (Masuda+'II; ...)

quark & nuclear EOS constrain each other

7 / 13 Parity Doublet Model for Nucleons

$$\mathscr{L}_{\text{PDM}} = \mathscr{L}_{\text{Nucleon}} + \mathscr{L}_{\text{Meson}}(\sigma, \omega, \rho)$$

nucleons N(939)[N_+] and N*(1535)[N_-] are degenerate

$$M_{N\pm} = \sqrt{m_0^2 + g_+^2 \sigma^2} \mp g_- \sigma \xrightarrow{\sigma \to 0} m_0 (\gtrsim 500 \,\mathrm{MeV})$$

 \mathcal{M}_{0} : the chiral invariant mass

 $m_0(\bar{\psi}_1\gamma_5\psi_2-\bar{\psi}_2\gamma_5\psi_1)$

large m0 $\leftarrow \rightarrow$ soft EOS

if m0 is large \rightarrow small coupling b/w σ & nucleons

ightarrow small coupling for omega (balance b/w σ & ω)

 \rightarrow small interaction, soft EOS, light&small NS

NJL Model for Quarks

chiral color-mag. nB-nB int. $\mathcal{H} = \mathcal{H}_{\mathsf{N},\mathsf{III}} - \underline{H}(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + \underline{g}_V (\bar{q} \gamma^0 q)^2$

8

13

NJL: parameters of Hatsuda-Kunihiro

(H,gV): not well-constrained before \rightarrow survey wide range for given nuclear EOS + NS constraints

NJL Model for Quarks

chiral color-mag. nB-nB int. $\mathcal{H} = \mathcal{H}_{\text{NLII}} - \underline{H}(q^T \Gamma_A q)(\bar{q} \Gamma^A \bar{q}^T) + \underline{g}_V (\bar{q} \gamma^0 q)^2$

8

13

NJL: parameters of Hatsuda-Kunihiro

(H,gV): not well-constrained before \rightarrow survey wide range for given nuclear EOS + NS constraints

Unified EOS and its MR

[1] PhysRevC.103.045205 (T.M.,M.H.,T.K.)

9

13

[2] PhysRevC.104.065201 (T.M., M.H., T.K.)

10 / 13

[2] PhysRevC.104.065201 (T.M.,M.H.,T.K.) $\langle \bar{q}q \rangle = \frac{\partial \Omega}{\partial m_q}$ (Hellmann-Feynman Thm.) extend $P(\mu_B) = \sum a_n \mu_B^n \to P(\mu_B, m_q) = \sum a_n (m_q) \mu_B^n$

[2] PhysRevC.104.065201 (T.M., M.H., T.K.)

10 / 13

causality→ match w/ both Hadronic & Quark matter

Inhomogeneous $\langle \bar{q}q \rangle$

[2] PhysRevC.104.065201 (T.M.,M.H.,T.K.)

Linear Density Approx. inside a nucleon

12 / 13

 σ and pions make forms like a wave in nucleons

Summary and Outlook

- unified EOSs for NS constructed by using PDM for nucleons and NJL for quarks
- PDM-EOS & NJL-EOS are constraining each other; the understanding of one EOS improves the other

• observational constraints $\rightarrow 600 \,\mathrm{MeV} \lesssim m_0 \lesssim 900 \,\mathrm{MeV}$

• we calculated the chiral quark condensate $\langle \bar{q}q \rangle$. the interpolation of $\langle \bar{q}q \rangle_{PDM}$ and $\langle \bar{q}q \rangle_{NIL}$ is shallow(smooth).

outlook (work in progress):

- extend the PDM to SU(3) (include hyperons)
- effects of the U(1)A anomaly