<u>Study of dense nuclear matter</u> <u>using parity doublet models</u>

Masayasu Harada (Nagoya University)

@ Reimei Workshop "Hadrons in dense matter at J-PARC" (February 23, 2022)

Based on

- Y. Motohiro, Y. Kim, M. Harada, Phys. Rev. C 92, 025201 (2015); Erratum: Phys. Rev. C 95, 059903 (2017).
- Y. Takeda, Y. Kim and M. Harada, Phys. Rev. C 97, 065202 (2018).
- Y. Takeda, H. Abuki and M. Harada, Phys. Rev. D 97, 094032 (2018).
- T. Yamazaki and M. Harada, Phys. Rev. D 99, 034012 (2018).
- T. Yamazaki and M. Harada, Phys. Rev. C 100, 025205 (2019).
- T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021).
- T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

Introduction

One of the Interesting problems of QCD

spontaneous chiral symmetry breaking

2022/2/23

spontaneous chiral symmetry breaking

- The spontaneous chiral symmetry breaking is expected to generate a part of hadron masses.
- It causes mass difference between chiral partners.

spontaneous chiral symmetry breaking

- The spontaneous chiral symmetry breaking is expected to generate a part of hadron masses.
- It causes mass difference between chiral partners.
- How much mass of nucleon is from the spontaneous chiral symmetry breaking ?
- What is the chiral partner of the nucleon ?

Parity Doublet models for nucleons

- How much mass of nucleon is from the spontaneous chiral symmetry breaking ?
- What is the chiral partner of nucleon ?
- A Parity doublet model for light baryons
 - In [C.DeTar, T.Kunihiro, PRD39, 2805 (1989)],
 N(1535) is regarded as the chiral partner to the N(939) having the chiral invariant mass.

$$m_N = m_0 + m_{\langle \overline{q}q \rangle}$$

chiral invariant mass spontaneous chiral symmetry breaking

• This model can be extended to include different excited nucleons.

Nuclear matter in parity doublet models

 A parity doublet model including omega meson with 4-point interaction is used in a Walecka-type mean field analysis.

D.Zschiesche et al., PRC75, 055202 (2007)

- Large value of m_0 is needed to reproduce the incompressibility.
- Rho meson is further included with 4-point interaction.
 - m_0 > 800 MeV is needed to have 100 < K < 400 MeV

V.Dexheimer et al., PRC77, 025803 (2008)

Nuclear matter in parity doublet models

 A parity doublet model including omega meson with 4-point interaction is used in a Walecka-type mean field analysis.

D.Zschiesche et al., PRC75, 055202 (2007)

- Large value of m_0 is needed to reproduce the incompressibility.
- Rho meson is further included with 4-point interaction.
 - m_0 > 800 MeV is needed to have 100 < K < 400 MeV
- In our analysis [Y.Motohiro, Y.Kim, M.Harada, Phys. Rev. C 92, 025201 (2015)], we constructed a model with a 6-point interaction of sigma, but without 4-point interaction for vector mesons.
- Our results show that K = 240 MeV is reproduced for $m_0 = 500 900 \text{ MeV}$.

V.Dexheimer et al., PRC77, 025803 (2008)

Study of dense nuclear matter using parity doublet models (PDMs)

- Construction of nuclear matter from a PDM
 - Y.Motohiro, Y.Kim, M.Harada, Phys. Rev. C 92, 025201 (2015)
- Study of effect of Δ (1232) to the chiral symmetry breaking in a PDM
 - Y. Takeda, Y. Kim and M. Harada, Phys. Rev. C 97, 065202 (2018).
- Study of a new dual chiral density wave (DCDW) in a PDM.
 - Y. Takeda, H. Abuki and M. Harada, Phys. Rev. D 97, 094032 (2018).
- Study of a constraint to the chiral invariant mass in a PDM from the neutron star properties
 - T. Yamazaki and M. Harada, Phys. Rev. C 100, 025205 (2019).
- Construction of a unified EOS connecting a PDM and an NJL-type quark model
 - T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021).
- Study of density dependence of the chiral condensate from the unified EOS.
 - T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

<u>Outline</u>

- 1. Introduction
- 2. Construction of nuclear matter from a PDM
- 3. Effect of Δ (1232) to nuclear matter based on parity doublet structure
- 4. A new Dual Chiral Density Wave (DCDW) in a PDM
- 5. A constraint to the chiral invariant mass in a PDM from the neutron star properties
- 6. A unified EOS for NS connecting a PDM and an NJL-type quark model
- 7. Summary

<u>2. Construction of nuclear matter from</u> <u>a Parity Doublet Model (PDM)</u>

Y.Motohiro, Y.Kim, M.Harada, Phys. Rev. C 92, 025201 (2015)

chiral representation of baryons

C.DeTar, T.Kunihiro, PRD39, 2805 (1989) D.Jido, M.Oka, A.Hosaka, PTP106, 873 (2001)

• representation of quark under $SU(2)_{R} \times SU(2)_{L}$

 $q \sim q_r + q_l \sim (2,1) \oplus (1,2)$

• representation of baryon under $SU(2)_{R} \times SU(2)_{L}$

$$\psi \sim q \otimes q \otimes q \sim \left[\left(2, 1 \right) \oplus \left(1, 2 \right) \right]^{3}$$
$$= 5 \left[\left(2, 1 \right) \oplus \left(1, 2 \right) \right] \oplus 3 \left[\left(3, 2 \right) \oplus \left(2, 3 \right) \right] \oplus \left[\left(4, 1 \right) \oplus \left(1, 4 \right) \right]$$

chiral representation of baryons

C.DeTar, T.Kunihiro, PRD39, 2805 (1989) D.Jido, M.Oka, A.Hosaka, PTP106, 873 (2001)

• representation of quark under $SU(2)_R \times SU(2)_L$

 $q \sim q_r + q_l \sim (2,1) \oplus (1,2)$

• representation of baryon under $SU(2)_{R} \times SU(2)_{L}$

A Parity Doublet model

C.DeTar, T.Kunihiro, PRD39, 2805 (1989) D.Jido, M.Oka, A.Hosaka, PTP106, 873 (2001) Y.Motohiro, Y.Kim, M.Harada, Phys. Rev. C 92, 025201 (2015)

- N(1535) = chiral partner to N(939)
- chiral transformations:

$$\begin{split} & \succ \psi_{1l} \rightarrow g_L \psi_{1l}, \psi_{1r} \rightarrow g_R \psi_{1r}, \psi_{2l} \rightarrow g_R \psi_{2l}, \psi_{2r} \rightarrow g_L \psi_{2r}; g_L \in \mathrm{SU}(2)_L, g_R \in \mathrm{SU}(2)_R \end{split}$$

- A chiral invariant mass:
 - $\succ m_0 [\bar{\psi}_{1l} \psi_{2r} + \bar{\psi}_{2r} \psi_{1l} + \bar{\psi}_{1r} \psi_{2l} + \bar{\psi}_{2l} \psi_{1r}]$
- Yukawa interactions

$$\geq -g_1 [\bar{\psi}_{1l} M \psi_{1r} + \bar{\psi}_{1r} M^{\dagger} \psi_{1l}] - g_2 [\bar{\psi}_{2r} M \psi_{2l} + \bar{\psi}_{2l} M^{\dagger} \psi_{2r}]$$

- $M = \sigma + i \, \vec{\tau} \cdot \vec{\pi}$ transforms $M \to g_L M g_R^{\dagger}$
- $\langle M \rangle = \bar{\sigma} \neq 0$ causes the spontaneous chiral symmetry breaking.

$$m_{\pm} = \frac{1}{2} \left[\sqrt{\left(g_1 + g_2\right)^2 \bar{\sigma}^2 + 4m_0^2} \mp \left(g_2 - g_1\right) \bar{\sigma} \right]$$

$$m_{-}=m\big(N(1535)\big)$$

 $m_+ = m(N(939))$

Nuclear Matter at normal nuclear density

Y. Motohiro, Y. Kim, M. Harada, Phys. Rev. C 92, 025201 (2015); Erratum: Phys. Rev. C 95, 059903 (2017).

3. Effect of $\Delta(1232)$ to nuclear matter based on parity doublet structure

Y. Takeda, Y. Kim and M. Harada, Phys. Rev. C 97, no. 6, 065202 (2018).

Chiral Partner Structure of Delta Baryons

D.Jido, T.Hatsuda, T.Kunihiro, PRL84, 3252 (2000) D.Jido, M.Oka, A.Hosaka, PTP106, 873 (2001)

• Δ (1700) = chiral partner to Δ (1232)

$$m_{\Delta^{\pm}} = \sqrt{(g_{\Delta 1} + g_{\Delta 2})^2 \bar{\sigma}^2 + m_{\Delta 0}^2} \mp (g_{\Delta 1} - g_{\Delta 2}) \bar{\sigma}$$

- $m_{\Delta 0}$ = chiral invariant mass for Δ .
- Masses of $\Delta(1232)$ and $\Delta(1700)$ = inputs

Phase structure & Density

$m_{N0} = 500 \text{ MeV}$

 $g_{\omega \Lambda \Lambda} = g_{\omega NN}$

N liquid-gas coexistence

- stable N phase
- coexistence of Delta-N matter and nuclear matter
- stable N-Delta matter
- stable N-Delta, N(1535) matter
- stable N-Delta, N(1535), Delta(1700) matter
- Stable N-N(1535) matter

 $m_{\Lambda 0} = 550 \text{ MeV}$ 4 3

<u>M-R relation of NS with Δ matter</u>

M. Marczenko, K. Redlich and C. Sasaki, Astrophys. J. Lett. 925, L23 (2022). $M [M_{\odot}]$ $m_0^N = 600 \,\,\mathrm{MeV}$ Δ matter appears 2.5smoothly. **PSR J0**740+6620 $\mathbf{2}$ solid curve: $m_0^N = m_0^\Delta$ PSR J0030+0451 1.5GW170817 Δ matter appears via first-order dashed curve: phase transition. pure nucleon matter 0.5

 $13 \ 14 \ 15 \ [\text{km}]$

 Δ matter softens the EOS, but pure hadronic matter can survive the observational constraints.

12

10

11

Constraint to chiral invariant masses from NS data

M. Marczenko, K. Redlich and C. Sasaki, Astrophys. J. Lett. 925, L23 (2022)

• allowed by PSR J0740+6620 $M_{\rm max} = (2.08 \pm 0.07) M_{\odot}$

Gray area: Δ matter is consistent with NS data.

4. A new Dual Chiral Density Wave (DCDW) in a PDM

Y. Takeda, H. Abuki and M. Harada, Phys. Rev. D 97, no. 9, 094032 (2018).

Dual Chiral Density Wave in NJL-type quark model

E.Nakano and T.Tatsumi, PRD71, 114006 (2005)

$$\langle M \rangle = \bar{\sigma} + i\tau_3 \bar{\pi}_3 = \sigma_0 (\cos 2fz + i\tau_3 \sin 2fz)$$

2022/2/23

Reimei Workshop "Hadrons in dense matter at J-PARC"

DCDW in a Parity Doublet Model

A.Heinz, F.Giacosa, D.H.Rischke, NPA933, 34 (2015)

- Phase transition to DCDW at $\mu_B = 973 \text{MeV}$.
- Onset density : $\rho_B = 2.4\rho_0$

shifted DCDW (sDCDW)

Y.Takeda, H.Abuki, M.Harada, PRD97, 094032 (2018)

 $\langle M \rangle = \delta \sigma + \sigma_0 (\cos 2fz + i\tau_3 \sin 2fz)$ note: $\int d^3x \langle M \rangle = \delta \sigma$

Homogeneous phase : $f = 0, \delta \sigma + \sigma_0 \neq 0$ 850 homogeneous phase 800 \] 750 \] 100 \] 100 DCDW sDCDW $f \neq 0, \delta \sigma \neq 0$ DCDW $\neq 0, \delta \sigma = 0$ **sDCDW** 650 600 900 1000 1100 1200 µ_B [MeV]

stability of normal nuclear matter $\implies m_0 \ge 780 \text{ MeV}$

5. A constraint to the chiral invariant mass in a PDM from the neutron star properties

T. Yamazaki and M. Harada, Phys. Rev. D 99, 034012 (2018)

T. Yamazaki and M. Harada, Phys. Rev. C 100, 025205 (2019)

<u>A Parity doublet model with $[(1,2)\oplus(2,1)]$ </u> and $[(2,3)\oplus(3,2)]$ representations

T. Yamazaki and M.Harada, Phys. Rev. D99, 034012 (2018)

- 2 representations, [(1,2)⊕(2,1)] and [(2,3)⊕(3,2)] to study N(939), N(1440), N(1535), N(1650).
- 2 chiral invariant masses.

 $\geq -m_0^{(1)} [\bar{\psi}_1 \gamma_5 \psi_2 - \bar{\psi}_2 \gamma_5 \psi_1] - m_0^{(2)} [\bar{\Psi}_1 \gamma_5 \Psi_2 - \bar{\Psi}_2 \gamma_5 \Psi_1]$

• 6 Yukawa Interactions

 $\geq -g_1 \left[\bar{\psi}_{1l} M \psi_{1r} + \bar{\psi}_{1r} M^{\dagger} \psi_{1l} \right] - g_2 \left[\bar{\psi}_{2r} M \psi_{2l} + \bar{\psi}_{2l} M^{\dagger} \psi_{2r} \right]$ etc.

• We also have 4 terms with one derivative.

$$\succ a_1 \left[\bar{\psi}_{1l} \gamma^{\mu} \partial_{\mu} M \psi_{2l} - \bar{\psi}_{1r} \gamma^{\mu} \partial_{\mu} M^{\dagger} \psi_{2r} \right] \text{etc}$$

Physical inputs

- Fix the values of $m_0^{(1)}$ and $m_0^{(2)}$.
- Use the following 10 physical inputs to determine 10 parameters (10 couplings).

	Mass (MeV)	Width $[\Gamma_{N^* o N \pi}]$ (MeV)	axial charge
N(939)	939	-	1.272
N(1440)	1430	228	-
N(1535)	1535	68	$-0.25 \le g_A \le 0.25$
N(1650)	1655	84 [to <i>N</i> (939)]	0.55
		22 [to <i>N</i> (1440)]	

Constraint from vacuum properties

Constraint from saturation propeties

Please note that the parameter choices in Group 1 are all excluded.

Constraint from Neutron Star Properties

Constraint from the tidal deformability: $\tilde{\Lambda} \leq 800$ with $M_{\rm chirp} = 1.188 M_{\odot}$

GW170817 (LIGO & Virgo)

- (yellow dots) are excluded
- (red dots) are allowed.

$$m_{\pm} = \frac{1}{2} \left[\sqrt{(g_1 + g_2)^2 \bar{\sigma}^2 + 4m_0^2} \mp (g_2 - g_1) \bar{\sigma} \right]$$

	m_0	σ –interaction	Attractive force by σ	Repulsive force by ω	EOS
	small	large	strong	strong	stiff
2022/2	large	small	weak	weak	soft

6. A unified EOS for NS connecting a PDM and an NJL-type quark model

T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 103, 045205 (2021). T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

Unified EOS for NS in 3-window picture

G. Baym et al., Rept. Prog. Phys. 81, 056902 (2018).T. Minamikawa, T. Kojo and M.H., Phys. Rev. C 103, 045205 (2021).

M-R relation

T. Minamikawa, T. Kojo and M.H., Phys. Rev. C 103, 045205 (2021).

Density dependence of chiral condensate

T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).

See Minamikawa's talk

<u>7. Summary</u>

- I have introduced our study of dense matter based on parity doublet models.
- Although Δ baryon can enter the matter, the EOS still satisfy the constraints from NS.
- There could exist a new type of inhomogeneous condensate: shifted DCDW.
- Comparison of our EOS with constraints from NS implies that more than half of nucleon mass is the chiral invariant mass.
 - See Minamikawa's talk.

Origin of chiral invariant mass ?

- Dilaton (Gluon condensate and/or 4-quark condensate)
 - S. Gallas, F. Giacosa, G. Pagliara, Nucl. Phys. A 872, 13 (2011).
 - W. G. Paeng, H. K. Lee, M. Rho and C. Sasaki, Phys. Rev. D 85, 054022 (2012).
 - Y. L. Ma, H. K. Lee, W. G. Paeng and M. Rho, Sci. China Phys. Mech. Astron. 62, 112011 (2019).
- Gluon background in vacuum
 - Y. Kim, I. A. Mazur, M. Harada and H. K. Lee, arXiv:2009.02839 [hep-ph].
- Chiral Scalar density
 - T. Minamikawa, T. Kojo and M. Harada, Phys. Rev. C 104, 065201 (2021).
 - See Minamikawa's talk

