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• correlation function approach 
a correlation function (axial vector )in medium 

        

     axial current ,   pseudoscalar field  

in soft limit, according to chiral Ward identity 

        

Πab
5 (q) = F . T . ∂μ⟨Ω |T[Aa

μ(x)ϕb
5(0) |Ω⟩

Aa
μ = 1

2 q̄γμγ5τaq ϕa
5 = q̄iγ5τaq

Πab
5 (0) = ⟨Ω | [Qa

5 , ϕb
5] |Ω⟩ = − iδab⟨q̄q⟩*

DJ, Hatsuda, Kunihiro, PLB 670 (2008), 109.
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• correlation function approach 
a correlation function (axial vector )in medium 

        

     axial current ,   pseudoscalar field  

in soft limit, according to chiral Ward identity 

        

• if we calculate the correlation function in medium and take soft limit, 
we obtain the quark condensate in nuclear medium 

• in-medium chiral perturbation theory provides diagrammatical calculation 

etc
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FIG. 4. Feynman diagrams contributing to the in-medium chiral
condensate. The wavy lines denote the pseudoscalar densities, the
solid lines are the free nucleon propagators appearing as the first
term of Eq. (15), and the thick solid lines denote the Fermi sea
insertions, which are represented by the second term in Eq. (15)
for the Pauli blocking effect. The solid circles represent the vertices
in the leading order, while the open circles are the vertices coming
from the in-vacuum subleading πN chiral Lagrangian L(2)

πN . (a) The
Feynman diagrams for O(p4). (b) The Feynman diagrams for the
linear-density order O(ρ). (c) The Feynman diagrams for the NLO in
density O(ρ4/3). Three diagrams at the bottom row give the double-
scattering term.

the chiral limit and the interaction between pion and nucleon
is p wave in the leading order. We see that #ab

5 (0) also has the
same momentum dependence as the leading term of Dab(0)
up to the NLO corrections in Sec. IV B. Thus, #ab

5 (0) does not
contribute to the in-medium chiral condensate.

In Fig. 4(b), we show all the diagrams of the leading
order (LO) contribution in the density expansion, in which
there are three diagrams. We write the LO contribution
for the in-medium chiral condensate as 〈ūu + d̄d〉∗LO and
evaluate the diagrams in Fig. 4(b) by the expansion of 1/mN

at the final state. In the following we first calculate the
left diagram in Fig. 4(b) in the soft limit of the external
momentum qµ:

Dab
LO1(0) = (−i)2 lim

q→0
[(2if B0)iDπ (q)δab](−1)

×
∫

d4p

(2π )4
Tr

[
iD−1

m (p)
8ic1B0

f

]
(24)

= −16ic1B
2
0

m2
π

δab
[
%1

p(0) + %1
n(0)

]
(25)

= −16ic1B
2
0

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (26)

Here we have used the result of the tadpole nucleon loop %1
Ni

(k)
given in Eq. (C1), in which we have expanded the result in
terms of 1/mN and taken the first two terms, and assumed the
symmetric nuclear matter by taking k

p
F = kn

F = kF .
Next we calculate the middle and right graphs in

Fig. 4(b). These contributions denote Dab
LO2(0) and Dab

LO3(0),

respectively:

Dab
LO2(0) = (−i)2 lim

q→0
(2if B0)2[iDπ (q)]2δab(−1)

×
∫

d4p

(2π )4
Tr

{
iD−1

m (q)(−i)

×
[

8B0c1mq

f 2
+ 4c2

f 2m2
N

(q · p)2 − 2c3

f 2
q2

]}

= −32iB3
0c1mq

m4
π

δab

∫
d4p

(2π )4
Tr

[
iD−1

m (q)
]

(27)

= 16iB2
0c1

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (28)

Here we have used again the calculation of the tadpole nucleon
loop (C1) and the kF expansion has been made up to k5

f .
We have also used the relation m2

π = 2mqB0. It is important
to notice that the contributions coming from the c2 and c3
low-energy constants do vanish in the soft limit. Dab

LO3(0) can
be calculated in the same way as Dab

LO1(0)

Dab
LO3 = Dab

LO1 = −
16ic1B

2
0

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (29)

The leading contribution in the density expansion Dab
LO is

given by the sum of Dab
LO1,D

ab
LO2,D

ab
LO3. We obtain the linear-

density contribution of the in-medium condensate together
with the Fermi motion correction up to k5

f :

Dab
LO = Dab

LO1 + Dab
LO2 + Dab

LO3 (30)

= −
16iB2

0c1

m2
π

δabρ

(
1 − 3k2

F

10m2
N

)
. (31)

With this result we obtain the in-medium condensate in the
normalization of the in-vacuum condensate as

〈ūu + d̄d〉∗LO

〈ūu + d̄d〉0
= 4c1

f 2
ρ

(
1 − 3k2

F

10m2
N

)
. (32)

Here c1 is one of the low-energy constants (LECs) in L(2)
πN and

can be determined by the πN σ term σπN .
As we mentioned before, we presume that the quantum

corrections in vacuum are already accounted for in the LECs
and the renormalization procedure is supposed to be done.
Thus, the loop contributions are renormalized into the LECs
in the Lagrangian that we consider and we do not have to
calculate the in-vacuum loop contributions in the in-medium
calculation. For instance, we show in Fig. 5 two diagrams that
have ultraviolet divergences and are to be counted as higher
chiral orders but with the same density counting. The left
diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet
divergences and are counted as higher chiral orders but with the
linear-density order.
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the chiral limit and the interaction between pion and nucleon
is p wave in the leading order. We see that #ab

5 (0) also has the
same momentum dependence as the leading term of Dab(0)
up to the NLO corrections in Sec. IV B. Thus, #ab
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contribute to the in-medium chiral condensate.

In Fig. 4(b), we show all the diagrams of the leading
order (LO) contribution in the density expansion, in which
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for the in-medium chiral condensate as 〈ūu + d̄d〉∗LO and
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Here we have used again the calculation of the tadpole nucleon
loop (C1) and the kF expansion has been made up to k5

f .
We have also used the relation m2

π = 2mqB0. It is important
to notice that the contributions coming from the c2 and c3
low-energy constants do vanish in the soft limit. Dab
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The leading contribution in the density expansion Dab
LO is

given by the sum of Dab
LO1,D

ab
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ab
LO3. We obtain the linear-

density contribution of the in-medium condensate together
with the Fermi motion correction up to k5
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With this result we obtain the in-medium condensate in the
normalization of the in-vacuum condensate as
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F
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Here c1 is one of the low-energy constants (LECs) in L(2)
πN and

can be determined by the πN σ term σπN .
As we mentioned before, we presume that the quantum

corrections in vacuum are already accounted for in the LECs
and the renormalization procedure is supposed to be done.
Thus, the loop contributions are renormalized into the LECs
in the Lagrangian that we consider and we do not have to
calculate the in-vacuum loop contributions in the in-medium
calculation. For instance, we show in Fig. 5 two diagrams that
have ultraviolet divergences and are to be counted as higher
chiral orders but with the same density counting. The left
diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet
divergences and are counted as higher chiral orders but with the
linear-density order.
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The leading contribution in the density expansion Dab
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given by the sum of Dab
LO1,D

ab
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ab
LO3. We obtain the linear-

density contribution of the in-medium condensate together
with the Fermi motion correction up to k5

f :
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normalization of the in-vacuum condensate as
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Here c1 is one of the low-energy constants (LECs) in L(2)
πN and

can be determined by the πN σ term σπN .
As we mentioned before, we presume that the quantum

corrections in vacuum are already accounted for in the LECs
and the renormalization procedure is supposed to be done.
Thus, the loop contributions are renormalized into the LECs
in the Lagrangian that we consider and we do not have to
calculate the in-vacuum loop contributions in the in-medium
calculation. For instance, we show in Fig. 5 two diagrams that
have ultraviolet divergences and are to be counted as higher
chiral orders but with the same density counting. The left
diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet
divergences and are counted as higher chiral orders but with the
linear-density order.
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Here c1 is one of the low-energy constants (LECs) in L(2)
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As we mentioned before, we presume that the quantum

corrections in vacuum are already accounted for in the LECs
and the renormalization procedure is supposed to be done.
Thus, the loop contributions are renormalized into the LECs
in the Lagrangian that we consider and we do not have to
calculate the in-vacuum loop contributions in the in-medium
calculation. For instance, we show in Fig. 5 two diagrams that
have ultraviolet divergences and are to be counted as higher
chiral orders but with the same density counting. The left
diagram is the loop correction for the nucleon mass and the

FIG. 5. Two examples of the diagrams which have ultraviolet
divergences and are counted as higher chiral orders but with the
linear-density order.
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Here we abbreviated:

pµkµ = p0k0 − pk cos θ , (36a)

a1 = 2(p − k)2 + m2
π , (36b)

a2 = −2(p − k)2 + 4m2
π , (36c)

and can simplify (p − k)2 = 2m2
N − 2p0k0 + 2pk cos θ .

The next set of diagrams cancel each other in the soft limit,
where the external pion momentum goes to zero:

Π3 = 2 2

+ 2
2

i=1

22 i

+
2

i,j=1

2 2i j

(37)

The last diagram we consider for the next-to-leading order in
the density expansion is as follows:

Π4 =
2 21

1
(38)

which results in:

m#ab
4 (0)

〈q̄q〉0
= i

g2
Am2

N

10(2π f )4m2
π

∫
d pdkd cos θ

p2k2

p0k0

× pµkµ − m2
N

(p − k)2 − m2
π

×
(
$p

p − $n
p

)(
$

p
k − $n

k

)

× (−2δab + 6δa3δb3). (39)

According to Eq. (7), the pseudoscalar correlation function
#ab is only proportional to δab. Still, we also found contri-
butions proportional to δa3δb3 in Eqs. (35) and (39), but after
adding all diagrams, the contributions proportional to δa3δb3

exactly cancel each other, in accordance with chiral symmetry.
Otherwise, this would violate the chiral SU(2) symmetry be-
cause the third isospin component of the pseudoscalar current
Pa would behave in a different way compared to the other two
components: #11 = #22 %= #33.

III. RESULTS

In this section, we show our numerical results. In our
calculations, we use the following numerical values for the
low-energy constant c1 = −0.59 GeV−1, the pion decay con-
stant fπ = 92.4 MeV, and the axial coupling gA = 1.26 [8].
We also use isospin-averaged values for the pion mass, mπ =
138 MeV, and the nucleon mass, mN = 939 MeV.

For the in-medium quark condensate, the integrals in
Eqs. (31), (35), and (39) are solved numerically and the
result yields the density dependence of the quark conden-
sate, which is presented in Fig. 1. Our computed value

0.0 0.5 1.0 1.5 2.0
ρ/ρ0

0.0

0.2

0.4

0.6

0.8

1.0
〈 q̄

q〉
∗ /
〈 q̄

q〉
0

ρn/ρp = 1.5

FIG. 1. Density dependence of the in-medium quark condensate,
normalized to the vacuum condensate. The ratio of neutrons to pro-
tons is given by ρn/ρp. At normal nuclear density, ρ = ρ0, the quark
condensate is reduced by about 35% compared to its vacuum value.

of the quark condensate at normal nuclear density, which
shows a reduction of 34.3% shows good agreement with
Ref. [5], where the in-medium behavior of the quark conden-
sate was shown to be: 〈q̄q〉∗/〈q̄q〉0 ≈ (b1/b∗

1)1/2[1 − 1
2βρ] ≈

1 − 0.37 ρ/ρ0. Here the parameters take on the following
values b1/b∗

1|ρ=ρ0 ≈ 0.79 ± 0.05 and β ≈ (2.17 ± 0.04) fm3,
which were obtained from experimental data from deeply
bound pionic atoms and isospin-singlet πN-scattering ampli-
tudes, respectively. Our results are also in good agreement
with results obtained in Ref. [12] which are summarized by
Ref. [23]. They are also consistent with Ref. [24].

The density dependence of the in-medium quark conden-
sate shows a linear behavior, since the next-to-leading order
contributions in the density expansion, which lead to O(ρ4/3)
and O(ρ5/3) behavior, are much smaller. The contributions
of the individual diagrams are shown in Fig. 2. The right
two figures show that the next-to-leading order diagrams have
rather tiny contributions to the quark condensate. This is be-
cause the Fermi momentum is small compared to the nucleon
mass in low densities and the Fermi motion expansion could
be convergent. In this sense, the nucleon-nucleon correlation,
which plays a role from O(ρ2), should be important and bring
a new scale parameter.

This work is built on the foundation of Ref. [8], where
the in-medium quark condensate was calculated for isospin-
symmetric nuclear matter. In this work, we found several new
diagrams which are necessary contributions to the in-medium
quark condensate. In particular, the first diagram in Eq. (26)
with i = 1, the second diagram in Eq. (37) with i = 1 as well
as the third diagram in Eq. (37) with i %= j. Furthermore,
diagrams like the one in Eq. (38) were not considered at
all in Ref. [8]. Comparing to Ref. [12] and related works,
we include interactions from A(2), but omit 2π -exchange and
(-excitation processes, as they contribute beyond O(ρ5/3).
In order to include such processes, Ref. [12] uses a nucleon-
nucleon potential obtained from lattice QCD data.

Despite being a small contribution, the isospin-asymmetry
of the surrounding nuclear matter plays a role in the

015202-5
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See also, Kaiser, Homont, Weise, PRC 77 (2008), 025204.
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• extended to SU(3), we can calculate the strange quark condensate 

　　　  

taking a,b = 4,5 for kaon sector 

　　　  

Πab
5 (q) = F . T . ∂μ⟨Ω |T[Aa

μ(x)ϕb
5(0) |Ω⟩

Π4+i5,4−i5
5 (0) = − i⟨ūu + s̄s⟩*

S. Hübsch,
PhD Thesis (2021)

Iizawa, Hübsch, DJ, in preparation
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• extended to SU(3), we can calculate the strange quark condensate 

　　　  

taking a,b = 4,5 for kaon sector 

　　　  

• at leading order (SU(3) symmetric) 

         

SU(3) chiral Lagrangian 

       
it provides baryon mass terms and meson-baryon contact interactions

Πab
5 (q) = F . T . ∂μ⟨Ω |T[Aa

μ(x)ϕb
5(0) |Ω⟩

Π4+i5,4−i5
5 (0) = − i⟨ūu + s̄s⟩*

⟨s̄s⟩*
⟨s̄s⟩0

= 4ρ
f 2 (b0 + bD − bF)

Details on the SU(3) extension 143

so that we finally have:

Èūu ≠ d̄dÍú = ≠imÈ�|P 3P 8|�Íú, (A.17a)

Èūu + d̄dÍú = ≠imÈ�|P 3P 3|�Íú, (A.17b)

Èūu + s̄sÍú = ≠im + ms

2

KA

P4 + iP5Ô
2

B A

P4 ≠ iP5Ô
2

BLú

, (A.17c)

Èd̄d + s̄sÍú = ≠im + ms

2

KA

P6 + iP7Ô
2

B A

P6 ≠ iP7Ô
2

BLú

. (A.17d)

These combinations of pseudoscalar currents in Eqs. (A.17c) and (A.17d) makes it convenient
to perform calculations using kaons.

A.1.3. SU(3) chiral perturbation theory
We use the following SU(3) chiral Lagrangian [78, 123] with a meson-only part and meson-
baryon interactions:

L = L(2)

�
+ L(1)

MB
+ L(2)

MB
, (A.18)

where:

L(2)

�
= f 2

4 Tr
Ó

DµU †DµU + ‰†U + ‰U †
Ô

, (A.19a)

L(1)

MB
= Tr

Ó

B̄(i /D ≠ M0)B)
Ô

≠ D

2 Tr
Ó

B̄“µ“5{uµ, B}
Ô

≠ F

2 Tr
Ó

B̄“µ“5[uµ, B]
Ô

, (A.19b)

L(2)

MB
= bD Tr

Ó

B̄{‰+, B}
Ô

+ bF Tr
Ó

B̄[‰+, B]
Ô

+ b0 Tr
Ó

B̄B
Ô

Tr {‰+} + . . . (A.19c)

There are many more terms that would be allowed by chiral symmetry to enter L(2)

MB
, however

those are not relevant to the present calculations.
The meson octet � = �a⁄a/

Ô
2 is given in terms of the chiral field U = exp

1

i
Ô

2�/f
2

:

U = 1 + i
Ô

2
f

� ≠ 1
f 2

�2 + . . . , U † = 1 ≠ i
Ô

2
f

� ≠ 1
f 2

�2 + . . . , (A.20)

where we identify the physical fields as follows:

� =

Q

c

c

c

c

c

a

�3Ô
2

+ �8Ô
6

�1≠i�2Ô
2

�4≠i�5Ô
2

�1+i�2Ô
2

≠ �3Ô
2

+ �8Ô
6

�6≠i�7Ô
2

�4+i�5Ô
2

�6+i�7Ô
2

≠ 2Ô
6
�8

R

d

d

d

d

d

b

=

Q

c

c

c

c

c

a

fi
0

Ô
2

+ ÷Ô
6

fi+ K+

fi≠ ≠ fi
0

Ô
2

+ ÷Ô
6

K0

K≠ K̄0 ≠ 2Ô
6
÷

R

d

d

d

d

d

b

. (A.21)

These fields are related by:

�1 = 1Ô
2

(fi+ + fi≠), fi+ = 1Ô
2

(�1 ≠ i�2), (A.22a)

S. Hübsch,
PhD Thesis (2021)

Iizawa, Hübsch, DJ, in preparation
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Figure 4.7.: Linear density approximation of the density dependence of the strange quark con-
densate in nuclear matter. According to Eq. (4.196), all results are independent
of the nucleon ratio r = fln/flp in the linear density approximation.

not distinguish between quark flavors, the strange quark cannot distinguish a proton from a
neutron, hence the ratio does not play a role.

Looking at Fig. 4.7, we see that the results strongly depend on the choice of the low-energy
constants. There are two main ways to determine the low-energy constants of an SU(3) chiral
Lagrangian. First, one can calculate expressions for e.g. the octet baryon masses and fit them
to either experimentally obtained data, or data obtained via lattice QCD calculations. Second,
one can calculate certain quantities and fit them to scattering data. In fact, future research is
planned to pursue the second option: By fitting to K+N scattering data3, we aim to determine
a set of SU(3) LECs.

3K+N scattering is preferable over K≠N scattering, since in K+N scattering there cannot be a �(1405)
resonance due to baryon number conservation.

set 3 determined by 
baryon mass (LO) 

set 1,2 determined by 
baryon mass (NNNLO) 
+ lattice QCD 

set 4 determined by 
KN scattering  
(incomplete NLO)

• Set 1, 2: X. L. Ren, L. S. Geng, J. M. Camalich, J. Meng, and H. Toki, Octet baryon masses in next-to-next-to-next-
to-leading order covariant baryon chiral perturbation theory, JHEP 2012, 73 (2012) 

• Set 3: B. Kubis and U. G. Meißner, Baryon form factors in chiral perturbation theory, Eur. Phys. J. C18, 747 (2001) 

• Set 4: K. Aoki and D. Jido, K+–nucleus elastic scattering revisited from the perspective of partial restoration of 
chiral symmetry, PTEP 2017, 103D01 (2017) 

S. Hübsch,
PhD Thesis (2021)

Iizawa, Hübsch, DJ, in preparation
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• KN elastic scattering in chiral perturbation theory 
LO + NLO, 4 LECs, (incomplete, some terms missing) 

　　　　  
 
experimental data 

      elastic differential cross sections, I=0 total cross section 

     I=0 LECS determined with baryon masses 
 

 

PTEP 2017, 103D01 K. Aoki and D. Jido

(a) (b) (c)

Fig. 2. Feynman diagrams for K+p elastic scattering. (a) Weinberg–Tomozawa interaction. (b) Crossed Born
interaction with the intermediate !0 or ". (c) NLO interaction.

chiral perturbation theory is calculated as

T K+n
(2) =

[
2B0

f 2
K

(m̂ + ms)(2b0 + bD − bF) + 2
f 2
K

(d1 − d2 − 2d4)(p1p3)

]

ū( "p4, s4)u( "p2, s2).

(23)

For the K+p elastic scattering, we calculate the Feynman diagrams shown in Fig. 2. Since there
is no baryon with S = +1 and Q = 2, we have no direct Born terms. In the crossed Born term, the
!0 baryon and " baryon are possible intermediate one-particle states with S = −1 and Q = 0. The
K+p invariant amplitude at the leading-order chiral perturbation theory is obtained as

T K+p
WT = 1

2f 2
K

ū( "p4, s4)(#p1+ #p3)u( "p2, s2), (24)

T K+p
Born = −

(
D − F

2fK

)2

ū( "p4, s4) #p1γ5
M! + (#p2− #p3)

M 2
! − (p2 − p3)2 − iε

#p3γ5u( "p2, s2)

−
(

3F + D

2
√

3fK

)2

ū( "p4, s4) #p1γ5
M" + ( #p2− #p3)

M 2
" − (p2 − p3)2 − iε

#p3γ5u( "p2, s2) (25)

with the " mass M". The K+p invariant amplitude at the next-to-leading-order chiral perturbation
theory is calculated as

T K+p
(2) =

[
4B0

f 2
K

(m̂ + ms)(b0 + bD) − 2
f 2
K

(2d2 + d3 + 2d4)(p1p3)

]

ū( "p4, s4)u( "p2, s2). (26)

The K+N scattering amplitudes in the particle basis, T K+p and T K+n, are decomposed into the
amplitude in the isospin basis T I (I = 0, 1) as

T K+p = T I=1, (27)

T K+n = 1
2
(T I=1 + T I=0). (28)

We work in the center of mass (c.m.) frame, where we perform the partial wave decomposition. In
the c.m. frame, the invariant amplitude T I is written by the non-spin–flip and spin–flip amplitudes,
f I and gI , as

T I (s, θc.m.) = f I (s, θc.m.) − i"σ · n̂ gI (s, θc.m.) (29)
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Table 1. Determined parameters for the tree-level amplitude. bI=0 can be fixed by bI=1, bD, and bF .

bI=1 1.01 × 10−5 MeV−1 χ 2/N = 0.83
dI=1 4.33 × 10−4 MeV−1

bI=0 1.55 × 10−4 MeV−1

dI=0 3.91 × 10−4 MeV−1 χ 2/N = 12.0

Ref. [23]:

D = 0.80, F = 0.46. (52)

The low-energy constants bD and bF can be determined by the baryon masses using Eqs. (17) to
(20). These parameters shift the chiral-limit baryon mass M0 to their physical masses. Using the
isospin-averaged masses, we have

bD = 3 (M" − M#)

16M 2
K

1 + m̂
ms

1 − m̂
ms

= 6.41 × 10−5 MeV−1, (53)

bF = −M$ − MN

8M 2
K

1 + m̂
ms

1 − m̂
ms

= −2.09 × 10−4 MeV−1 (54)

with

m̂
ms

= M 2
π

2M 2
K − M 2

π

= 0.040. (55)

The rest of the low-energy constants are determined so as to reproduce the observed cross section
by using the χ2 fit. The value of χ2 is given by

χ2 =
N∑

i

(
yi − f (xi)

σi

)2

, (56)

where yi, f (xi), σi, and N are the experimental data, the theoretical calculations that include the
parameters, the errors of the data, and the number of data, respectively. We use the partial wave series
up to the G-wave (l = 4), and we have confirmed the convergence of the partial wave expansion. In
the isospin basis, we define

bI=1 = b0 + bD, (57)

dI=1 = 2d2 + d3 + d4, (58)

bI=0 = b0 − bF , (59)

dI=0 = 2d1 − 2d4 + d3. (60)

First, to determine the low-energy constants for I = 1, bI=1, dI=1, we carry out the χ2 fit for
the K+p elastic differential cross section using the data at the laboratory momentum plab = 205
MeV/c (N = 21) [24], where chiral perturbation theory may be applicable. The best fit of the
parameters for K+p is summarized in Table 1. At this time, we can determine b0 from bI=1 with
Eq. (57) as b0 = −5.40 × 10−5 MeV−1. Using the values of b0 and bF , the parameter bI=0 is
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• I=1 ( ) cross sections are reproduced well  

         

K+pPTEP 2017, 103D01 K. Aoki and D. Jido

Fig. 3. The I = 1 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [24–27,30,31]. The partial wave contributions are plotted by dashed lines. The
horizontal axis means the K+ meson incident momentum in the lab frame plab in units of MeV/c and the
vertical axis means the total cross section σ in units of mb.

Fig. 4. The I = 0 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [25–27].

calculated by Eq. (59) in Table 1. Then, we carry out the χ2 fit for the I = 0 total cross section
to determine only dI=0 using the data from plab = 366 to 799 MeV/c (N = 27) [25–27]. The
best fit of the parameters for I = 0 is found in Table 1. One should not compare these low-energy
constants with those determined by fitting the unitarized amplitude to experiments, such as the
low-energy constants obtained in Ref. [28] for the S = −1 sector. As discussed in Ref. [29], once
unitarization is performed, the loop contribution requires us to renormalize the tree-level amplitude.
In the renormalization procedure, once the parameters are determined from the experimental values,
the contributions beyond perturbation are implicitly included in the low-energy constants, and also
the low-energy constants become dependent on the renormalization scheme. Thus, the low-energy
constants are not common in different channels any more.

In the following, we compare our results with the experimental values for energies up to 800 MeV/c,
from which inelastic contributions like pion production start to be significant. In Figs. 3 and 4, we
show the results of the total cross sections calculated with the tree-level amplitude, obtained by
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• I=1 ( ) cross sections are reproduced well  

 

K+p
PTEP 2017, 103D01 K. Aoki and D. Jido

Fig. 5. The differential cross section of K+p elastic scattering at several lab momenta plab compared with the
experimental data of Ref. [24]. The differential cross section dσ/d" is shown in units of mb/sr as a function
of cosθc.m..
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Fig. 3. The I = 1 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [24–27,30,31]. The partial wave contributions are plotted by dashed lines. The
horizontal axis means the K+ meson incident momentum in the lab frame plab in units of MeV/c and the
vertical axis means the total cross section σ in units of mb.

Fig. 4. The I = 0 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [25–27].

calculated by Eq. (59) in Table 1. Then, we carry out the χ2 fit for the I = 0 total cross section
to determine only dI=0 using the data from plab = 366 to 799 MeV/c (N = 27) [25–27]. The
best fit of the parameters for I = 0 is found in Table 1. One should not compare these low-energy
constants with those determined by fitting the unitarized amplitude to experiments, such as the
low-energy constants obtained in Ref. [28] for the S = −1 sector. As discussed in Ref. [29], once
unitarization is performed, the loop contribution requires us to renormalize the tree-level amplitude.
In the renormalization procedure, once the parameters are determined from the experimental values,
the contributions beyond perturbation are implicitly included in the low-energy constants, and also
the low-energy constants become dependent on the renormalization scheme. Thus, the low-energy
constants are not common in different channels any more.

In the following, we compare our results with the experimental values for energies up to 800 MeV/c,
from which inelastic contributions like pion production start to be significant. In Figs. 3 and 4, we
show the results of the total cross sections calculated with the tree-level amplitude, obtained by
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• I=0 cross sections are not reproduced so well  
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Fig. 6. The differential cross section of K+n elastic scattering compared with the experimental data of Ref. [32].

Table 2. The wavefunction renormalization factor without the Fermi motion Zw/o and with the Fermi motion
Z obtained by chiral perturbation theory up to the next-to-leading order. pK+ is the K+ momentum in the
nuclear-matter rest frame.

pK+ [MeV/c] Zw/o Z

0.0 1.05 1.06
130.0 1.05 1.05
488.0 1.03 1.03
531.0 1.03 1.03
656.0 1.02 1.02
714.0 1.02 1.02

Now let us show the wavefunction renormalization factor obtained from the K+N scattering cal-
culated by chiral perturbation theory up to the next-to-leading order. The results for the wavefunction
renormalization factor are summarized in Table 2. In the middle columns, we show the results with-
out Fermi motion of the nucleons, which is calculated by Eq. (3), while in the right columns we
have the results with the Fermi motion calculated by Eq. (2). The table shows that the wavefunction
renormalization factor gives 2 to 6% enhancement for the in-medium self-energy at the saturation
density. This shows that the wavefunction renormalization could explain part of the breakdown of
the linear density approximation for the K+–nucleus scattering. We also find in Table 2 that the effect
of the Fermi motion for the nucleons is minor. In Fig. 7, we also show the density dependence of the
wavefunction renormalization factor with the Fermi motion at pK+ = 488 MeV/c. Because of the
minor contribution of the Fermi motion, the density dependence is almost linear in this approxima-
tion. For further detailed study of the medium effects on K+, we need to develop an in-medium chiral
perturbation theory for the K meson similar to that developed for the pion in, e.g., Refs. [33,34].

4.3. Unitarized amplitude and possible resonance in I = 0
We also see the unitarized amplitude of the tree-level amplitude by following the method developed
for the K̄N scattering where !(1405) is dynamically generated [6,35–37]. The way to perform the
unitarization is summarized in Appendix.

First, to determine the the low-energy constants for I = 1, bI=1, dI=1 and the subtraction constant
aI=1, we carry out the χ2 fit for the K+p elastic differential cross section using the data at plab =
726 MeV/c (N = 20) [24], where the P-wave contribution is well constrained. From the point of
view of chiral perturbation theory, one may think that the momentum plab = 726 MeV/c would be
out of the applicable energies of chiral perturbation theory, while carrying out unitarization makes
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• self-energy of  in Fermi gas approximation 

　　　　　　  

• wavefunction renormalization  
can be one of the corrections beyond linear density 
- energy dependence of self-energy provides WFR 

　　　 　　 

　　　wavefunction renormalization  

ChPT leading order calculation of KN scattering amplitude　      

K+

Π(ω, ⃗p ) = 4∫
kF d3q

(2π)3 TK+N(p, q)

Π = 2mK+Vopt ≃ − ZρTK+N

Z ≡ 1 + ∂Π
∂ω2

ω=mK+

Aoki, DJ, 
PTEP2017,103D01(17)

Kolomeitsev, Kaiser, Weise, 
PRL90, 092501 (03)
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• leading order (Weinberg-Tomozawa term) 

　　　　　 ,　　8% enhancement at  

• + next-to-leading order (without medium modification on kaon) 
 

　　　　　　 　　 

a few % enhancement with 

Z = 1 + 3ρ0
8MK f 2

K

ρ
ρ0

= 1 + 0.082 ρ
ρ0

ρ = ρ0

PTEP 2017, 103D01 K. Aoki and D. Jido

Fig. 7. The density dependence of the wavefunction renormalization factor Z with Fermi motion at pK+ = 488
MeV/c using the tree-level amplitude.

Table 3. Determined parameters for the unitarized amplitude.

bI=1 6.18 × 10−4 MeV−1

dI=1 3.00 × 10−4 MeV−1 χ 2/N = 0.68
aI=1 −1.224

bI=0 4.12 × 10−4 MeV−1

dI=0 −9.78 × 10−4 MeV−1 χ 2/N = 6.85
aI=0 −1.231

the applicable region wider. If we carry out χ2 fitting at a low energy, such as plab = 205 MeV/c,
the reproduction of the data above plab = 385 MeV/c gets worse. The best fit of the parameters for
K+p is summarized in Table 3. To determine the low-energy constants for I = 0, bI=0, dI=0 and the
subtraction constant aI=0, we carry out the χ2 fit for the I = 0 total cross section from plab = 336 to
799 MeV/c (N = 27) using the data [25–27]. Since the relations (53) and (54) are realized in the tree
level, we should treat the low-energy constants bI=0 and dI=0 as free parameters for the unitarized
amplitude. The best fit of the parameters for I = 0 is found in Table 3.

In the following, we compare our results with the experimental values. The results for the total cross
section are shown in Figs. 8 and 9. As we expected, the reproduction of the data for higher momenta
is better than the tree-level amplitude in Figs. 3 and 4. In Fig. 10, we show the differential cross
section of the K+p elastic scattering together with the experimental data [24]. Although we have
used only the data at plab = 726 MeV/c to determine the parameters, surprisingly, we obtain great
reproduction of the differential cross sections for lower energies. In Fig. 11, we show the differential
cross section of the K+n elastic scattering with the experimental data taken from Refs. [32,38].
We find a fairly good reproduction, especially for plab = 640, 720, and 780 MeV/c; the agreement
between the calculation and data is quite good both in magnitude and angular dependence. These data
are from the same experiment [38]. For the other lab momenta, which are from a different experiment
[32], the agreement is marginal, especially for lower energies. We can use these data to determine
the parameter and find a solution that provides a much better reproduction for the differential cross
sections, but with this solution we cannot reproduce the I = 0 total cross section.
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• I=0 cross sections are not reproduced so well  

         

In particular, increase at  is not reproduced
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Fig. 3. The I = 1 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [24–27,30,31]. The partial wave contributions are plotted by dashed lines. The
horizontal axis means the K+ meson incident momentum in the lab frame plab in units of MeV/c and the
vertical axis means the total cross section σ in units of mb.

Fig. 4. The I = 0 total cross section from chiral perturbation theory up to the next-to-leading-order comparison
with the experimental data [25–27].

calculated by Eq. (59) in Table 1. Then, we carry out the χ2 fit for the I = 0 total cross section
to determine only dI=0 using the data from plab = 366 to 799 MeV/c (N = 27) [25–27]. The
best fit of the parameters for I = 0 is found in Table 1. One should not compare these low-energy
constants with those determined by fitting the unitarized amplitude to experiments, such as the
low-energy constants obtained in Ref. [28] for the S = −1 sector. As discussed in Ref. [29], once
unitarization is performed, the loop contribution requires us to renormalize the tree-level amplitude.
In the renormalization procedure, once the parameters are determined from the experimental values,
the contributions beyond perturbation are implicitly included in the low-energy constants, and also
the low-energy constants become dependent on the renormalization scheme. Thus, the low-energy
constants are not common in different channels any more.

In the following, we compare our results with the experimental values for energies up to 800 MeV/c,
from which inelastic contributions like pion production start to be significant. In Figs. 3 and 4, we
show the results of the total cross sections calculated with the tree-level amplitude, obtained by
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• unitarized amplitude T 
　　　　　　  

  V: interaction kernel, given by ChPT 
  G: KN loop function (I=0, I=1) 
one subtraction constant is fixed as a natural value 

• chiral Lagrangian 
most general form up to next-leading-order 
8 LECs (4 LECs for I=1, 4 LECs for I=0)  

• data 
up to 800 MeV, where inelastic contributions start to be significant 

, total and differential cross sections, plab =145 to 726 MeV,  

which determine I=1 amplitudes very well 

, differential cross sections, plab =526, 604, 640 MeV,  

total cross section I=0 

T = V + VGT

K+p → K+p

K+n → K+n, K0p

L.-S. Geng, Frontiers of Physics 8, 328 (2013)
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• we have two solutions 
 

  
 
good agreements 
solution 1 is consistent with Martin’ amplitude and SAID
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Fig. 1. The calculated I = 1 total cross sections using Solutions 1 and 2 in comparison with the experimental
data [4,14,19,41–43]. The partial wave components are also described by the dashed line. The horizontal axis
means the K+ meson incident momentum in the lab frame plab in the unit of MeV/c and the vertical axis is the
total cross section σ in the unit of mb.

Table 1. The values of the fixed parameters. We take the isospin averaged masses.

MN MK M" M# fK D F

938.9 MeV 495.6 MeV 1115.7 MeV 1193.2 MeV 110.0 MeV 0.80 0.46

Table 2. The determined parameters for the I = 1 and I = 0 amplitudes. There are two parameter sets.
Solutions 1 and 2 are characteristic in reproduction of the experimental data. (See text for details.) The values
of the parameters bI , dI , gI , and hI are shown in units of 10−3 MeV−1. The subtraction constants for I = 0 and
I = 1 are fixed at aI=0,1 = −1.150.

Solution 1 Solution 2

bI=1 0.54 0.30
dI=1 −0.29 −0.24

I = 1 gI=1 0.05 0.72
hI=1 0.03 1.05
χ 2/N 2.96 2.97

bI=0 0.11 −0.46
dI=0 0.33 0.73

I = 0 gI=0 −0.42 0.56
hI=0 1.14 −3.54
χ 2/N 4.54 4.06
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Fig. 1. The calculated I = 1 total cross sections using Solutions 1 and 2 in comparison with the experimental
data [4,14,19,41–43]. The partial wave components are also described by the dashed line. The horizontal axis
means the K+ meson incident momentum in the lab frame plab in the unit of MeV/c and the vertical axis is the
total cross section σ in the unit of mb.

Table 1. The values of the fixed parameters. We take the isospin averaged masses.

MN MK M" M# fK D F

938.9 MeV 495.6 MeV 1115.7 MeV 1193.2 MeV 110.0 MeV 0.80 0.46

Table 2. The determined parameters for the I = 1 and I = 0 amplitudes. There are two parameter sets.
Solutions 1 and 2 are characteristic in reproduction of the experimental data. (See text for details.) The values
of the parameters bI , dI , gI , and hI are shown in units of 10−3 MeV−1. The subtraction constants for I = 0 and
I = 1 are fixed at aI=0,1 = −1.150.

Solution 1 Solution 2

bI=1 0.54 0.30
dI=1 −0.29 −0.24

I = 1 gI=1 0.05 0.72
hI=1 0.03 1.05
χ 2/N 2.96 2.97

bI=0 0.11 −0.46
dI=0 0.33 0.73

I = 0 gI=0 −0.42 0.56
hI=0 1.14 −3.54
χ 2/N 4.54 4.06
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PTEP 2019, 013D01 K. Aoki and D. Jido

Fig. 2. The calculated differential cross sections of the K+p elastic scattering using Solutions 1 and 2 in
comparison with the experimental data of Ref. [4].

section between plab = 145 and 726 MeV/c [4] and the total cross section between plab = 145 and
788 MeV/c [4,14,19,41–43]. The fitted values of the parameters are summarized in Table 2. We find
two solutions for I = 1, which equivalently reproduce the cross sections. In Fig. 1 we present the total
cross sections of the I = 1 KN elastic scattering obtained with the fitted parameters and compare
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Fig. 2. The calculated differential cross sections of the K+p elastic scattering using Solutions 1 and 2 in
comparison with the experimental data of Ref. [4].
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• increase at plab ~ 500 MeV is reproduced 

 

• solution 1: P01 amplitude dominate 

• solution 2: P03 amplitude largely contributed 

PTEP 2019, 013D01 K. Aoki and D. Jido

Fig. 3. The I = 0 total cross sections calculated using Solutions 1 and 2 in comparison with the experimental
data [19,41,43]. The solid line shows the best-fit solution. The shaded area shows the allowable region of the
parameter around the vicinity of the best-fit solution.

with the experimental data [4,14,19,41–43]. The calculated amplitude gives a good reproduction
of the data up to plab = 800 MeV/c. It shows that the S-wave contribution is dominated and the
contributions from the partial waves higher than the P-wave are negligibly small. This is consistent
with the old observation. In Fig. 2 we show the calculated differential cross sections compared with
the experimental data. The figure shows that the obtained amplitudes reproduce the experimental
data well for all the energies considered here.

Next, we determine the I = 0 low-energy constants bI=0, dI=0, gI=0, and hI=0 using the data of the
K+n → K+n and K+n → K0p differential cross sections at plab = 526, 604, and 640 MeV/c given
in Refs. [16,18,44] together with the I = 0 total cross section of Ref. [41] between plab = 366 and
717 MeV/c, which is referred as Bowen 1970 in Fig. 3. We have confirmed that even if we include the
I = 0 total cross section of Ref. [19], referred as Carroll 1973 in Fig. 3, we obtain similar parameter
sets with much worse χ2 values. This would imply that our model prefers the data of Bowen 1970
[41] and 1973 [43]. As a fine-tuning, we use the data of Bowen 1970 as the I = 0 total cross section
data. The K+n elastic and charge exchange scattering amplitudes are linear combinations of the I = 0
and I = 1 amplitudes, as shown in Eqs. (13) and (14). The I = 1 amplitude is already determined
with the K+p elastic scattering. The I = 1 parameters are fixed when the I = 0 parameters are
determined. The fitted results for the I = 0 parameters are summarized in Table 2. Here we propose
two solutions which have different characters in the I = 0 total cross section, as we will discuss in
detail later. In Fig. 3 we show the I = 0 total cross sections calculated with Solutions 1 and 2, and
find that these two solutions reproduce well the observed total cross section. The band shown in the
figure shows the allowable region of each solution around the vicinity of the local minimum of χ2,
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Fig. 3. The I = 0 total cross sections calculated using Solutions 1 and 2 in comparison with the experimental
data [19,41,43]. The solid line shows the best-fit solution. The shaded area shows the allowable region of the
parameter around the vicinity of the best-fit solution.

with the experimental data [4,14,19,41–43]. The calculated amplitude gives a good reproduction
of the data up to plab = 800 MeV/c. It shows that the S-wave contribution is dominated and the
contributions from the partial waves higher than the P-wave are negligibly small. This is consistent
with the old observation. In Fig. 2 we show the calculated differential cross sections compared with
the experimental data. The figure shows that the obtained amplitudes reproduce the experimental
data well for all the energies considered here.

Next, we determine the I = 0 low-energy constants bI=0, dI=0, gI=0, and hI=0 using the data of the
K+n → K+n and K+n → K0p differential cross sections at plab = 526, 604, and 640 MeV/c given
in Refs. [16,18,44] together with the I = 0 total cross section of Ref. [41] between plab = 366 and
717 MeV/c, which is referred as Bowen 1970 in Fig. 3. We have confirmed that even if we include the
I = 0 total cross section of Ref. [19], referred as Carroll 1973 in Fig. 3, we obtain similar parameter
sets with much worse χ2 values. This would imply that our model prefers the data of Bowen 1970
[41] and 1973 [43]. As a fine-tuning, we use the data of Bowen 1970 as the I = 0 total cross section
data. The K+n elastic and charge exchange scattering amplitudes are linear combinations of the I = 0
and I = 1 amplitudes, as shown in Eqs. (13) and (14). The I = 1 amplitude is already determined
with the K+p elastic scattering. The I = 1 parameters are fixed when the I = 0 parameters are
determined. The fitted results for the I = 0 parameters are summarized in Table 2. Here we propose
two solutions which have different characters in the I = 0 total cross section, as we will discuss in
detail later. In Fig. 3 we show the I = 0 total cross sections calculated with Solutions 1 and 2, and
find that these two solutions reproduce well the observed total cross section. The band shown in the
figure shows the allowable region of each solution around the vicinity of the local minimum of χ2,
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PTEP 2019, 013D01 K. Aoki and D. Jido

Fig. 4. The differential cross sections of K+n elastic scattering using Solution 1 in comparison with the
experimental data of Refs. [18,44]. The momenta at plab = 640, 720, and 780 MeV/c are from Ref. [18]; the
others are from Ref. [44].

that is, 4.54 < χ2/N < 5.53 for Solution 1 and 4.06 < χ2/N < 5.01 for Solution 2. As one can see,
the I = 0 total cross section rapidly increases around plab = 500 MeV/c. In the two solutions, the
partial wave responsible for the rapid increase of the cross section is different. Actually, as we shall
see later, this feature links to the property of a possible resonance appearing in I = 0 with a large
width. In Solution 1, the P01 amplitude1 contributes dominantly, and thus the rapid increase is caused

1 We use the partial wave convention LI 2J with orbital angular momentum L, isospin I , and total angular
momentum J = L ± 1/2.
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Fig. 5. The differential cross sections of K+n elastic scattering using Solution 2.

by the P01 amplitude. In Solution 2, both P01 and P03 amplitudes provide contributions for the I = 0
total cross section, and the P03 amplitude is responsible for the rapid increase. In this way, these
two solutions have their own characteristic features in the I = 0 total cross section. In summary,
we would say that Solution 1 is a “P01-dominant solution,” while Solution 2 is a “P03-dominant
solution.” In the following figures we show the result of the differential cross sections using the
I = 0 and 1 amplitudes. Similar to the I = 0 total cross section, we show the allowable region of
solutions as a band. Figures 4 and 5 show the K+n elastic differential cross section for Solutions 1
and 2. Solutions 1 and 2 are mostly consistent with the experimental data. Figures 6 and 7 show the
K+n charge exchange differential cross section. Solutions 1 and 2 show relatively good reproduction
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solution 1 solution 2PTEP 2019, 013D01 K. Aoki and D. Jido

Fig. 6. The differential cross sections of K+n charge exchange scattering using Solution 1 in comparison with
the experimental data of Refs. [16,44]. The momenta at the plab = 640, 720, and 780 MeV/c are from Ref. [16];
the others are from Ref. [44].

except for the forward and backward scattering. We cannot find sizable contradictions for Solutions 1
and 2 with the experimental data. As will be seen, other analyses support Solution 1.

3.2. Possible broad resonances
We have constructed KN amplitudes that reproduce the experimental data well. In the following,
we concentrate on the KN partial wave amplitudes with I = 0 and discuss the outcome from the
obtained amplitude. First of all, we look for poles of the scattering amplitude in the complex energy
plane. Having the KN scattering amplitude in an analytic form, we can perform analytic continuation
of the scattering amplitude into the complex energy plane. We find a pole in the P01 amplitude of
Solution 1 at z = 1617−153i MeV, which corresponds to a resonance state with mass 1617 MeV/c2,
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Fig. 7. The differential cross sections of K+n charge exchange scattering using Solution 2.

Fig. 8. The distribution of the poles of the amplitude in the complex energy plane z. The red stars show the
best-fit values.
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• a resonance pole around 1650 MeV (plab = 500 MeV) with a large width 
 

　　　　　　　　  
 

　　　　　　　　

PTEP 2019, 013D01 K. Aoki and D. Jido

Table 3. The resonance states of Solutions 1 and 2.

amplitude (J P) mass [MeV] width [MeV]

Solution 1 P01

(
1
2

+
)

1617 305

Solution 2 P03

(
3
2

+
)

1678 463

Fig. 9. Fano resonance. Cross sections of amplitudes composed of a resonance and a continuum background
with relative phase δ are shown. The resonance is assumed to have 1600 MeV mass and 300 MeV width. The
resonance shape is dependent on the relative phase δ. The vertical axis is in arbitrary units.

width 305 MeV, and J p = (1/2)+. The resonance has quite a large width and it could be hard to
pin down the resonance in production experiments. Similarly, we find a pole of the P03 amplitude of
Solution 2 in the complex energy plane at z = 1678 − 232i MeV corresponding to a resonance state
with mass 1678 MeV/c2, width 463 MeV, and J p = (3/2)+. Since this resonance state is located
far from the real axis, it is not constrained well by experimental observation appearing in the real
axis; the theoretical uncertainty should be large, and this solution could be unstable against small
deviations of experimental data. These results are summarized in Table 3. These resonances could
be compared with the state found in the chiral soliton model [27] with around 1700 MeV/c2 mass
even though it has a narrow width. In Fig. 8 we show the distribution of the poles in the vicinity of
the best-fit value.

Even though we find the resonance state as a pole of the scattering amplitude, there are no peak
structures in the scattering amplitude around the resonance energy. One usually expects resonance
states to appear as a peak in the cross section. It is not necessarily true when the resonance has a
large width and substantial coupling to a non-resonance background. We demonstrate this situation
by using a simple amplitude in which a resonance pole is embedded in a constant background with
a relative phase δ:

f (E) = i
E − M + i"/2

+ beiδ . (54)

In Fig. 9 we show the cross sections of the amplitudes in Eq. (54) with δ = 0, π
2 , π , 3π

2 for
M = 1600 MeV, " = 300 MeV, and b = 0.01 MeV−1. As one can see in the figure, the reso-
nance shape depends on the relative phase. For δ = 0, the resonance and background contributions
interfere constructively, and a resonance peak appears in the cross section, while for δ = π , the
resonance and background contribute deconstructively and the resonance is seen as a dip. It is
very interesting to see that, for the case of δ = π/2, a rapid increase takes place at the resonance
energy. This is also one of the resonance shapes. These kinds of resonances are known as Fano
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Fig. 7. The differential cross sections of K+n charge exchange scattering using Solution 2.

Fig. 8. The distribution of the poles of the amplitude in the complex energy plane z. The red stars show the
best-fit values.
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• increase around plab = 500 MeV is explained by a resonance 

 

• resonance does not always have a peak structure 
→ Fano resonance
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Fig. 3. The I = 0 total cross sections calculated using Solutions 1 and 2 in comparison with the experimental
data [19,41,43]. The solid line shows the best-fit solution. The shaded area shows the allowable region of the
parameter around the vicinity of the best-fit solution.

with the experimental data [4,14,19,41–43]. The calculated amplitude gives a good reproduction
of the data up to plab = 800 MeV/c. It shows that the S-wave contribution is dominated and the
contributions from the partial waves higher than the P-wave are negligibly small. This is consistent
with the old observation. In Fig. 2 we show the calculated differential cross sections compared with
the experimental data. The figure shows that the obtained amplitudes reproduce the experimental
data well for all the energies considered here.

Next, we determine the I = 0 low-energy constants bI=0, dI=0, gI=0, and hI=0 using the data of the
K+n → K+n and K+n → K0p differential cross sections at plab = 526, 604, and 640 MeV/c given
in Refs. [16,18,44] together with the I = 0 total cross section of Ref. [41] between plab = 366 and
717 MeV/c, which is referred as Bowen 1970 in Fig. 3. We have confirmed that even if we include the
I = 0 total cross section of Ref. [19], referred as Carroll 1973 in Fig. 3, we obtain similar parameter
sets with much worse χ2 values. This would imply that our model prefers the data of Bowen 1970
[41] and 1973 [43]. As a fine-tuning, we use the data of Bowen 1970 as the I = 0 total cross section
data. The K+n elastic and charge exchange scattering amplitudes are linear combinations of the I = 0
and I = 1 amplitudes, as shown in Eqs. (13) and (14). The I = 1 amplitude is already determined
with the K+p elastic scattering. The I = 1 parameters are fixed when the I = 0 parameters are
determined. The fitted results for the I = 0 parameters are summarized in Table 2. Here we propose
two solutions which have different characters in the I = 0 total cross section, as we will discuss in
detail later. In Fig. 3 we show the I = 0 total cross sections calculated with Solutions 1 and 2, and
find that these two solutions reproduce well the observed total cross section. The band shown in the
figure shows the allowable region of each solution around the vicinity of the local minimum of χ2,
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Table 3. The resonance states of Solutions 1 and 2.

amplitude (J P) mass [MeV] width [MeV]

Solution 1 P01

(
1
2

+
)

1617 305

Solution 2 P03

(
3
2

+
)

1678 463

Fig. 9. Fano resonance. Cross sections of amplitudes composed of a resonance and a continuum background
with relative phase δ are shown. The resonance is assumed to have 1600 MeV mass and 300 MeV width. The
resonance shape is dependent on the relative phase δ. The vertical axis is in arbitrary units.

width 305 MeV, and J p = (1/2)+. The resonance has quite a large width and it could be hard to
pin down the resonance in production experiments. Similarly, we find a pole of the P03 amplitude of
Solution 2 in the complex energy plane at z = 1678 − 232i MeV corresponding to a resonance state
with mass 1678 MeV/c2, width 463 MeV, and J p = (3/2)+. Since this resonance state is located
far from the real axis, it is not constrained well by experimental observation appearing in the real
axis; the theoretical uncertainty should be large, and this solution could be unstable against small
deviations of experimental data. These results are summarized in Table 3. These resonances could
be compared with the state found in the chiral soliton model [27] with around 1700 MeV/c2 mass
even though it has a narrow width. In Fig. 8 we show the distribution of the poles in the vicinity of
the best-fit value.

Even though we find the resonance state as a pole of the scattering amplitude, there are no peak
structures in the scattering amplitude around the resonance energy. One usually expects resonance
states to appear as a peak in the cross section. It is not necessarily true when the resonance has a
large width and substantial coupling to a non-resonance background. We demonstrate this situation
by using a simple amplitude in which a resonance pole is embedded in a constant background with
a relative phase δ:

f (E) = i
E − M + i"/2

+ beiδ . (54)

In Fig. 9 we show the cross sections of the amplitudes in Eq. (54) with δ = 0, π
2 , π , 3π

2 for
M = 1600 MeV, " = 300 MeV, and b = 0.01 MeV−1. As one can see in the figure, the reso-
nance shape depends on the relative phase. For δ = 0, the resonance and background contributions
interfere constructively, and a resonance peak appears in the cross section, while for δ = π , the
resonance and background contribute deconstructively and the resonance is seen as a dip. It is
very interesting to see that, for the case of δ = π/2, a rapid increase takes place at the resonance
energy. This is also one of the resonance shapes. These kinds of resonances are known as Fano
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• resonance pole + back ground with a relative phase  

                                

 

f(E) = i
E − M + iΓ/2 + beiδ
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Table 3. The resonance states of Solutions 1 and 2.

amplitude (J P) mass [MeV] width [MeV]

Solution 1 P01

(
1
2

+
)

1617 305

Solution 2 P03

(
3
2

+
)

1678 463

Fig. 9. Fano resonance. Cross sections of amplitudes composed of a resonance and a continuum background
with relative phase δ are shown. The resonance is assumed to have 1600 MeV mass and 300 MeV width. The
resonance shape is dependent on the relative phase δ. The vertical axis is in arbitrary units.

width 305 MeV, and J p = (1/2)+. The resonance has quite a large width and it could be hard to
pin down the resonance in production experiments. Similarly, we find a pole of the P03 amplitude of
Solution 2 in the complex energy plane at z = 1678 − 232i MeV corresponding to a resonance state
with mass 1678 MeV/c2, width 463 MeV, and J p = (3/2)+. Since this resonance state is located
far from the real axis, it is not constrained well by experimental observation appearing in the real
axis; the theoretical uncertainty should be large, and this solution could be unstable against small
deviations of experimental data. These results are summarized in Table 3. These resonances could
be compared with the state found in the chiral soliton model [27] with around 1700 MeV/c2 mass
even though it has a narrow width. In Fig. 8 we show the distribution of the poles in the vicinity of
the best-fit value.

Even though we find the resonance state as a pole of the scattering amplitude, there are no peak
structures in the scattering amplitude around the resonance energy. One usually expects resonance
states to appear as a peak in the cross section. It is not necessarily true when the resonance has a
large width and substantial coupling to a non-resonance background. We demonstrate this situation
by using a simple amplitude in which a resonance pole is embedded in a constant background with
a relative phase δ:

f (E) = i
E − M + i"/2

+ beiδ . (54)

In Fig. 9 we show the cross sections of the amplitudes in Eq. (54) with δ = 0, π
2 , π , 3π

2 for
M = 1600 MeV, " = 300 MeV, and b = 0.01 MeV−1. As one can see in the figure, the reso-
nance shape depends on the relative phase. For δ = 0, the resonance and background contributions
interfere constructively, and a resonance peak appears in the cross section, while for δ = π , the
resonance and background contribute deconstructively and the resonance is seen as a dip. It is
very interesting to see that, for the case of δ = π/2, a rapid increase takes place at the resonance
energy. This is also one of the resonance shapes. These kinds of resonances are known as Fano
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Possible broad resonance with S=+1
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• increase around plab = 500 MeV is explained by a resonance 

 

• resonance does not always have a peak structure 
→ Fano resonance
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Fig. 3. The I = 0 total cross sections calculated using Solutions 1 and 2 in comparison with the experimental
data [19,41,43]. The solid line shows the best-fit solution. The shaded area shows the allowable region of the
parameter around the vicinity of the best-fit solution.

with the experimental data [4,14,19,41–43]. The calculated amplitude gives a good reproduction
of the data up to plab = 800 MeV/c. It shows that the S-wave contribution is dominated and the
contributions from the partial waves higher than the P-wave are negligibly small. This is consistent
with the old observation. In Fig. 2 we show the calculated differential cross sections compared with
the experimental data. The figure shows that the obtained amplitudes reproduce the experimental
data well for all the energies considered here.

Next, we determine the I = 0 low-energy constants bI=0, dI=0, gI=0, and hI=0 using the data of the
K+n → K+n and K+n → K0p differential cross sections at plab = 526, 604, and 640 MeV/c given
in Refs. [16,18,44] together with the I = 0 total cross section of Ref. [41] between plab = 366 and
717 MeV/c, which is referred as Bowen 1970 in Fig. 3. We have confirmed that even if we include the
I = 0 total cross section of Ref. [19], referred as Carroll 1973 in Fig. 3, we obtain similar parameter
sets with much worse χ2 values. This would imply that our model prefers the data of Bowen 1970
[41] and 1973 [43]. As a fine-tuning, we use the data of Bowen 1970 as the I = 0 total cross section
data. The K+n elastic and charge exchange scattering amplitudes are linear combinations of the I = 0
and I = 1 amplitudes, as shown in Eqs. (13) and (14). The I = 1 amplitude is already determined
with the K+p elastic scattering. The I = 1 parameters are fixed when the I = 0 parameters are
determined. The fitted results for the I = 0 parameters are summarized in Table 2. Here we propose
two solutions which have different characters in the I = 0 total cross section, as we will discuss in
detail later. In Fig. 3 we show the I = 0 total cross sections calculated with Solutions 1 and 2, and
find that these two solutions reproduce well the observed total cross section. The band shown in the
figure shows the allowable region of each solution around the vicinity of the local minimum of χ2,
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Table 3. The resonance states of Solutions 1 and 2.

amplitude (J P) mass [MeV] width [MeV]

Solution 1 P01

(
1
2

+
)

1617 305

Solution 2 P03

(
3
2

+
)

1678 463

Fig. 9. Fano resonance. Cross sections of amplitudes composed of a resonance and a continuum background
with relative phase δ are shown. The resonance is assumed to have 1600 MeV mass and 300 MeV width. The
resonance shape is dependent on the relative phase δ. The vertical axis is in arbitrary units.

width 305 MeV, and J p = (1/2)+. The resonance has quite a large width and it could be hard to
pin down the resonance in production experiments. Similarly, we find a pole of the P03 amplitude of
Solution 2 in the complex energy plane at z = 1678 − 232i MeV corresponding to a resonance state
with mass 1678 MeV/c2, width 463 MeV, and J p = (3/2)+. Since this resonance state is located
far from the real axis, it is not constrained well by experimental observation appearing in the real
axis; the theoretical uncertainty should be large, and this solution could be unstable against small
deviations of experimental data. These results are summarized in Table 3. These resonances could
be compared with the state found in the chiral soliton model [27] with around 1700 MeV/c2 mass
even though it has a narrow width. In Fig. 8 we show the distribution of the poles in the vicinity of
the best-fit value.

Even though we find the resonance state as a pole of the scattering amplitude, there are no peak
structures in the scattering amplitude around the resonance energy. One usually expects resonance
states to appear as a peak in the cross section. It is not necessarily true when the resonance has a
large width and substantial coupling to a non-resonance background. We demonstrate this situation
by using a simple amplitude in which a resonance pole is embedded in a constant background with
a relative phase δ:

f (E) = i
E − M + i"/2

+ beiδ . (54)

In Fig. 9 we show the cross sections of the amplitudes in Eq. (54) with δ = 0, π
2 , π , 3π

2 for
M = 1600 MeV, " = 300 MeV, and b = 0.01 MeV−1. As one can see in the figure, the reso-
nance shape depends on the relative phase. For δ = 0, the resonance and background contributions
interfere constructively, and a resonance peak appears in the cross section, while for δ = π , the
resonance and background contribute deconstructively and the resonance is seen as a dip. It is
very interesting to see that, for the case of δ = π/2, a rapid increase takes place at the resonance
energy. This is also one of the resonance shapes. These kinds of resonances are known as Fano
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Summary

29

• in-medium quark condensate can be evaluated by correlation function in soft limit 

- it connects to quark condensate to the low energy constants or scattering properties 

- S=+1 channel is much better than S=-1, because it is free from baryon resonance.

• NNLO chiral perturbation theory 

- describes I=1 (K+p) elastic scattering amplitude very well up to 800 MeV 

- poorly reproduces I=0 scattering amplitudes 

- cannot provide increase at plab = 500 MeV in I=0 total cross section

• unitarized KN amplitude 

- describes K+p elastic scattering amplitude very well again 

- reproduces well K+n → K+n, K0p amplitudes 

- provides a broad resonance with S=+1 and I=0

• owing to presence of resonance at plab = 500 MeV, 

one need K+n → K+n, K0p amplitudes below there 

for better extrapolation to extract in-medium quark condensate. 
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Table 3. The resonance states of Solutions 1 and 2.

amplitude (J P) mass [MeV] width [MeV]

Solution 1 P01

(
1
2

+
)

1617 305

Solution 2 P03

(
3
2

+
)

1678 463

Fig. 9. Fano resonance. Cross sections of amplitudes composed of a resonance and a continuum background
with relative phase δ are shown. The resonance is assumed to have 1600 MeV mass and 300 MeV width. The
resonance shape is dependent on the relative phase δ. The vertical axis is in arbitrary units.

width 305 MeV, and J p = (1/2)+. The resonance has quite a large width and it could be hard to
pin down the resonance in production experiments. Similarly, we find a pole of the P03 amplitude of
Solution 2 in the complex energy plane at z = 1678 − 232i MeV corresponding to a resonance state
with mass 1678 MeV/c2, width 463 MeV, and J p = (3/2)+. Since this resonance state is located
far from the real axis, it is not constrained well by experimental observation appearing in the real
axis; the theoretical uncertainty should be large, and this solution could be unstable against small
deviations of experimental data. These results are summarized in Table 3. These resonances could
be compared with the state found in the chiral soliton model [27] with around 1700 MeV/c2 mass
even though it has a narrow width. In Fig. 8 we show the distribution of the poles in the vicinity of
the best-fit value.

Even though we find the resonance state as a pole of the scattering amplitude, there are no peak
structures in the scattering amplitude around the resonance energy. One usually expects resonance
states to appear as a peak in the cross section. It is not necessarily true when the resonance has a
large width and substantial coupling to a non-resonance background. We demonstrate this situation
by using a simple amplitude in which a resonance pole is embedded in a constant background with
a relative phase δ:

f (E) = i
E − M + i"/2

+ beiδ . (54)

In Fig. 9 we show the cross sections of the amplitudes in Eq. (54) with δ = 0, π
2 , π , 3π

2 for
M = 1600 MeV, " = 300 MeV, and b = 0.01 MeV−1. As one can see in the figure, the reso-
nance shape depends on the relative phase. For δ = 0, the resonance and background contributions
interfere constructively, and a resonance peak appears in the cross section, while for δ = π , the
resonance and background contribute deconstructively and the resonance is seen as a dip. It is
very interesting to see that, for the case of δ = π/2, a rapid increase takes place at the resonance
energy. This is also one of the resonance shapes. These kinds of resonances are known as Fano
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