In-medium magnetic moments of the octet, decuplet, low-lying charm and low-lying bottom baryons

Reimei Workshop "Hadrons in dense matter at J-PARC"

February 21 - February 23, 2022

Kazuo Tsushima

LFTC, UNICID (Universidade Cidade de Sao Paulo) [City University of Sao Paulo], Sao Paulo, Brazil

K. Tsushima, eprint arXiv to be revised (submitted to PTEP) K. Tsushima, Phys. Rev. D 99, 014026 (2019) (heavy baryon properties) K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58, 1 (2007) (QMC model review)

(日) (周) (王) (王)

- Motivation, Focus
- Introduction: QMC Model
- In Effective Hadron Masses and Potentials (Parametrizations)
- 4 Baryon Magnetic Moments in Medium
- 5 Summary, Perspective
- 6 (Backup: Low-lying Strange, Charm, Bottom baryons)
- (Backup: Summary, Perspective)

伺 ト イヨト イヨト

Motivation, Focus

- •In-medium magnetic moments of Octet, Decuplet, low-lying Charm and low-lying Bottom Baryons
- •Estimates by in-medium/vacuum ratios (the QMC model)
- •Experiments? influences on observables?
- •Density dependent parametrizations: Baryon and Meson $m_{B,M}^*$ and vector $V_{\omega,\rho}^{q,B,M}$ potentials

Bound quark Dirac spinor (1s_{1/2})
Quark Dirac spinor in a bound hadron:
$$q_{1s}(\mathbf{r}) = \begin{pmatrix} U(\mathbf{r}) \\ i\sigma \cdot \mathbf{\hat{r}} L(\mathbf{r}) \end{pmatrix} \chi$$

Lower component is enhanced !

$$\Rightarrow \quad \mathbf{g}_{\mathsf{A}^*} < \mathbf{g}_{\mathsf{A}}: \ \sim |\mathsf{U}|^{**}2 - (1/3) \ |\mathsf{L}|^{**}2,$$

 \Rightarrow **Decrease** of scalar density \Rightarrow

R=(p'x/p'z)=(GE/GM): ⁴He/¹H

- S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]
- S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

\equiv -1⁴N energy levels (Prog. Theor. Exp. Phys. 2021, 073D02)

QMC model 1: Hadron level

$$\mathcal{L} = \bar{\psi} [i\gamma \cdot \partial - m_N^*(\sigma) - g_\omega \omega^\mu \gamma_\mu] \psi + \mathcal{L}_{\text{meson}},$$

$$m_N^*(\sigma) \equiv m_N - g_\sigma (\sigma) \sigma \simeq m_N - g_\sigma [1 - (a_N/2)(g_\sigma \sigma)] \sigma$$

$$g_\sigma \equiv g_\sigma (\sigma = 0)$$

$$\begin{split} \mathcal{L}_{\mathrm{meson}} &= \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma - m_{\sigma}^{2} \sigma^{2} - \frac{1}{2} \partial_{\mu} \omega_{\nu} (\partial^{\mu} \omega^{\nu} - \partial^{\nu} \omega^{\mu}) \\ &+ \frac{1}{2} m_{\omega}^{2} \omega^{\mu} \omega_{\mu} \; , \end{split}$$

$$\rho_B = \frac{4}{(2\pi)^3} \int d^3k \ \theta(k_F - |\vec{k}|) = \frac{2k_F^3}{3\pi^2},$$

$$\rho_s = \frac{4}{(2\pi)^3} \int d^3k \ \theta(k_F - |\vec{k}|) \frac{m_N^*(\sigma)}{\sqrt{m_N^{*2}(\sigma) + \vec{k}^2}},$$

э

∃ ► < ∃ ►</p>

Image: A matrix and a matrix

QMC model 2: Quark level

 $x = (t, \vec{r}) \; (|\vec{r}| \leq \text{ bag radius}), \; V_{\sigma}^{q} = g_{\sigma}^{q} \sigma$

$$\begin{bmatrix} i\gamma \cdot \partial_x - (m_q - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q + \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_u(x) \\ \psi_{\bar{u}}(x) \end{pmatrix} = 0$$
$$\begin{bmatrix} i\gamma \cdot \partial_x - (m_q - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q - \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_d(x) \\ \psi_{\bar{d}}(x) \end{pmatrix} = 0$$
$$\begin{bmatrix} i\gamma \cdot \partial_x - m_Q \end{bmatrix} \psi_Q(x) \text{ (or } \psi_{\overline{Q}}(x)) = 0$$

$$\begin{split} m_{h}^{*} &= \sum_{j=q,\bar{q},Q\overline{Q}} \frac{n_{j}\Omega_{j}^{*} - z_{h}}{R_{h}^{*}} + \frac{4}{3}\pi R_{h}^{*3}B, \quad \frac{dm_{h}^{*}}{dR_{h}} \Big|_{R_{h} = R_{h}^{*}} = 0\\ \Omega_{q}^{*} &= \Omega_{\bar{q}}^{*} = [x_{q}^{2} + (R_{h}^{*}m_{q}^{*})^{2}]^{1/2}, \text{ with } m_{q}^{*} = m_{q} - g_{\sigma}^{q}\sigma\\ \Omega_{Q}^{*} &= \Omega_{\bar{Q}}^{*} = [x_{Q}^{2} + (R_{h}^{*}m_{Q})^{2}]^{1/2} \quad (Q = s, c, b) \end{split}$$

3

イロト 人間ト イヨト イヨト

QMC model 3: From quarks

$$\begin{split} \omega &= \frac{g_{\omega}\rho_B}{m_{\omega}^2}, \\ \sigma &= \frac{g_{\sigma}}{m_{\sigma}^2} C_N(\sigma) \frac{4}{(2\pi)^3} \int d^3k \ \theta(k_F - |\vec{k}|) \frac{m_N^*(\sigma)}{\sqrt{m_N^{*2}(\sigma) + \vec{k}^2}} \\ &= \frac{g_{\sigma}}{m_{\sigma}^2} C_N(\sigma) \rho_s \quad (g_{\sigma} \equiv g_{\sigma}(\sigma = 0)), \\ C_N(\sigma) &= \frac{-1}{g_{\sigma}(\sigma = 0)} \left[\frac{\partial m_N^*(\sigma)}{\partial \sigma} \right], \\ E^{\text{tot}}/A &- m_N = \frac{4}{(2\pi)^3 \rho_B} \int d^3k \ \theta(k_F - |\vec{k}|) \sqrt{m_N^{*2}(\sigma) + \vec{k}^2} \\ &+ \frac{m_{\sigma}^2 \sigma^2}{2\rho_B} + \frac{g_{\omega}^2 \rho_B}{2m_{\omega}^2} - m_N. \end{split}$$

QMC model 4: Couplings etc.

m_q (MeV)	$g_{\sigma}^2/4\pi$	$g_{\omega}^2/4\pi$	m_N^*	K	Z _N	<i>B</i> ^{1/4} (MeV)
5	5.39	5.30	754.6	279.3	3.295	170
220	6.40	7.57	698.6	320.9	4.327	148

 $\frac{\partial m_N^*(\sigma)}{\partial \sigma} = -3g_{\sigma}^q \int_{bag} d^3 r \ \overline{\psi}_q(\vec{r}) \psi_q(\vec{r}) \quad \text{the lowest bag w.f.}$ $\equiv -\underline{3g_{\sigma}^q S_N(\sigma)} = -\frac{\partial}{\partial \sigma} \left[g_{\sigma}(\sigma) \sigma \right],$ $C_N(\sigma) = \frac{-1}{g_{\sigma}(\sigma=0)} \left[\frac{\partial m_N^*(\sigma)}{\partial \sigma} \right],$

$$g_{\sigma} \equiv g_{\sigma}^{N} \equiv 3g_{\sigma}^{q}S_{N}(\sigma=0).$$

Parameters

Table: Current quark mass values (inputs), quark-meson coupling constants and the bag constant B_p , obtained with the inputs: free nucleon bag radius $R_N = 0.8$ fm, empirical values $E^{\rm tot}/A - m_N = -15.7$ MeV ($m_N = 939$ MeV) at the saturation density $\rho_0 = 0.15$ fm⁻³, and the symmetry energy, 35 MeV.

$m_{u,d}$	5 MeV	g^q_{σ}	5.69
m _s	250 MeV	$\boldsymbol{g}_{\omega}^{\boldsymbol{q}}$	2.72
m _c	1270 MeV	$\boldsymbol{g}_{\rho}^{\boldsymbol{q}}$	9.33
m _b	4200 MeV	$B_{p}^{1/4}$	170 MeV

Results: Quark Meson Coupling (Standard)

- Symmetric Nuclear Matter Binding Energy per Nucleon
- $m_q = 5$ MeV, K = 279.3 MeV

• Nucleon effective mass: $m_q = 5 \text{ MeV}$

э

• Effective mass of constituent quarks: $m_q = 5 \text{ MeV}$ •All the light-quarks in any hadrons feel the same potentials !!

Comparison of Energy/nucleon

- Symmetric Nuclear Matter Binding Energy per Nucleon (scale !!)
- LF pion model (left): $m_q = 220$ MeV, K = 320.9 MeV
- Standard QMC (right): $m_q = 5$ MeV, K = 279.3, MeV

Nucleon effective mass •LF pion model (left: $m_q = 220 MeV$) •Standard QMC (right: $m_a = 5 MeV$)

LF pion model and Standard QMC: m_a^* (potentials)

•Effective mass of constituent quarks, up and down •LF pion model: $m_q = 220$ MeV (left) •Standard QMC $m_q = 5$ MeV (right)

Standard QMC, π, ρ in LF model parameters comparison

• Motivation: The present model works well (Symmetric Vertex)!

$m_q(MeV)$	$g_{\sigma}^2/4\pi$	$g_{\omega}^2/4\pi$	m_N^*	K	Z _N	<i>B</i> ^{1/4} (MeV)
5	5.39	5.30	754.6	279.3	3.295	170
220	6.40	7.57	698.6	320.9	4.327	148
430	8.73	11.93	565.25	361.4	5.497	69.75

• Refs. LF π , ρ model: J.P.B.C. de Melo, KT et al., LF π model ($m_q = 220$ MeV): Phys.Rev. C90 (2014) no.3, 035201; Phys.Lett. B766 (2017) 125; Few Body Syst. 58 (2017) no.2, 85 LF ρ model ($m_q = 430$ MeV): Few Body Syst. 58 (2017) no.2, 82; arXiv:1802.06096 [hep-ph], Phys. Lett. B 788 (2019) 137

・ロト ・ 一日 ・ ・ 日 ・

QMC: Hadron masses in medium (Remind again!)

 $x=(t,ec{r})\;(|ec{r}|\leq ext{bag radius})$, $V^q_\sigma=g^q_\sigma\sigma$

$$\begin{bmatrix} i\gamma \cdot \partial_x - (m_q - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q + \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_u(x) \\ \psi_{\bar{u}}(x) \end{pmatrix} = 0$$
$$\begin{bmatrix} i\gamma \cdot \partial_x - (m_q - V_{\sigma}^q) \mp \gamma^0 \left(V_{\omega}^q - \frac{1}{2} V_{\rho}^q \right) \end{bmatrix} \begin{pmatrix} \psi_d(x) \\ \psi_{\bar{d}}(x) \end{pmatrix} = 0$$
$$\begin{bmatrix} i\gamma \cdot \partial_x - m_Q \end{bmatrix} \psi_Q(x) \text{ (or } \psi_{\overline{Q}}(x)) = 0$$

$$m_{h}^{*} = \sum_{j=q,\bar{q},Q\overline{Q}} \frac{n_{j}\Omega_{j}^{*} - z_{h}}{R_{h}^{*}} + \frac{4}{3}\pi R_{h}^{*3}B, \quad \frac{dm_{h}^{*}}{dR_{h}}\Big|_{R_{h}=R_{h}^{*}} = 0$$

$$\Omega_{q}^{*} = \Omega_{\bar{q}}^{*} = [x_{q}^{2} + (R_{h}^{*}m_{q}^{*})^{2}]^{1/2}, \text{ with } m_{q}^{*} = m_{q} - g_{\sigma}^{q}\sigma$$

$$\Omega_{Q}^{*} = \Omega_{\bar{Q}}^{*} = [x_{Q}^{2} + (R_{h}^{*}m_{Q})^{2}]^{1/2} \quad (Q = s, c, b)$$

Baryon Scalar potential $[m_B^* - m_B]$

Meson Scalar potential $[m_M^* - m_M]$

Effective Hadron Masses and Potentials (Parametrizations)

Scalar potential: $m_{B,M}^* - m_{B,M}$

æ

Scalar field σ and fit

 $\begin{array}{rcl} x & = & (\rho_B/\rho_0) \\ (g_{\sigma}^N \sigma)(x) & = & 1.60828 - 23.9107 \, \sqrt{x} + 350.631 \, x - 144.309 \, x \sqrt{x} \\ & & + 19.4750 \, x^2 \, (x > 0, [x > 0.001]) \\ (g_{\sigma}^N \sigma)(x) & = & 0 \, (x = 0) \end{array}$

$M^*_{B,M}$: Parametrizations

$$\begin{split} m_B^* &\simeq & m_B - \frac{n_q}{3} g_{\sigma}^N \left[1 - \frac{a_B}{2} (g_{\sigma}^N \sigma) \right] \sigma, \\ &= & m_B - \frac{n_q}{3} \left[(g_{\sigma}^N \sigma) - \frac{a_B}{2} (g_{\sigma}^N \sigma)^2 \right], \\ &\quad (B = N, \Lambda, \Sigma, \Xi, \Delta, \Sigma^*, \Xi^*, \Lambda_c, \Sigma_c, \Xi_c, \Lambda_b, \Sigma_b, \Xi_b). \end{split}$$

$$\begin{split} m_{M}^{*} &\simeq m_{M} - \frac{n_{q}^{M}}{3} g_{\sigma}^{N} \left[1 - \frac{a_{M}}{2} (g_{\sigma}^{N} \sigma) \right] \sigma, \\ &= m_{M} - \frac{n_{q}^{M}}{3} \left[(g_{\sigma}^{N} \sigma) - \frac{a_{M}}{2} (g_{\sigma}^{N} \sigma)^{2} \right], \\ (M = \omega, \rho, K, K^{*}, \eta, \eta', D, D^{*}, B, B^{*}, \text{ with } n_{q}^{M} \rightarrow 1 \text{ for } \eta \text{ and } \eta'). \end{split}$$

3

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Vector Potentials: Parametrizations

$$x =
ho_B /
ho_0 \ (
ho_0 = 0.15 \ {
m fm}^{-3})$$

$$\begin{array}{lll} V^B_{\omega}(x) &= b_B \, x, \\ V^q_{\omega}(x) &= &= 41.77 \, x \\ V^h_{\omega}(x) &= & V^h_{\omega} = (n_q - n_{\overline{q}}) V^q_{\omega} = (n_q - n_{\overline{q}}) \times 41.77 \, x \\ V^K_{\omega}(x) &\simeq & 1.96 \times 41.77 \, x \end{array}$$

(baryon octet \rightarrow Pauli potentials)

 $y \equiv \rho_3/\rho_0 = (\rho_p - \rho_n)/\rho_0$, isospin-third component of h, l_3^h , $l_3^h V_\rho^h(y) = l_3^h \times 84.61 y$

Parameters

Table: Effective mass slope parameter $a_{B,M}$, and b_B . ($[m_{\Sigma}^* - m_{\Sigma}] + V_{\nu}^{\Sigma} \simeq +30$ MeV at ρ_0 .)

a _B	$ imes 10^{-4} \ { m MeV}^{-1}$	a _B	$ imes 10^{-4} \ { m MeV}^{-1}$	aB	$ imes 10^{-4} \ { m MeV}^{-1}$	a _B	$ imes 10^{-4} \text{ MeV}^{-1}$
a _N	9.15	a∆	10.08	-	—	-	—
aΛ	9.35	-	—	anc	9.90	anh	10.78
aΣ	9.59	a _Σ ∗	10.15	aΣc	10.34	ar	11.22
a≘	9.52	a <u>=</u> *	10.15	a _{Ec}	9.99	a _{≡b}	10.83
bB	MeV	b _B	MeV	bB	MeV	bB	MeV
b _N	125.30	b_{Δ}	125.30	-	—	—	-
bΛ	92.57	-	_	b _{Ac}	83.54	b _{Ab}	83.54
bΣ	100.12	b _{Σ*}	83.54	b _{Σc}	83.54	bΣh	83.54
ĨΣ	152.42			-			
b _Ξ	46.29	b _{≡*}	41.77	b_{\equiv_c}	41.77	b _{≡b}	41.77
а _М	$ imes 10^{-4} \ { m MeV}^{-1}$	a _M	$ imes 10^{-4} \ { m MeV}^{-1}$	a _M	$ imes 10^{-4} \ { m MeV}^{-1}$	a _M	$ imes 10^{-4} \text{ MeV}^{-1}$
a_{ω}	8.73	a _K	6.66	a _D	8.61	aB	9.92
a _o	8.70	a _K *	8.60	a _{D*}	9.09	a _{B*}	10.04
<u> </u>	-	$a_{\eta}(n_q^{\eta} \rightarrow 1)$	7.03	<u>-</u>	—	<u>-</u>	-
-	_	$a_{\eta'}(n_q^{\eta'} ightarrow 1)$	8.81	—	—	-	

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Magnetic Moment $B(q_1, q_2, q_3)$

$$\begin{split} \mu_{B} &= \frac{1}{3} \left(2\mu_{1} + 2\mu_{2} - \mu_{3} \right) \quad (B \neq \Lambda, \Lambda_{c,b} \neq \text{decuplet}), \\ \mu_{B} &= \mu_{3} \quad (B = \Lambda, \Lambda_{c,b}, \Xi_{c,b}), \\ \mu_{B} &= \mu_{1} + \mu_{2} + \mu_{3} \quad (B = \text{decuplet}) \\ \mu_{q} &\equiv e_{q} \eta_{q} \\ &\equiv e_{q} \left[\left(N_{q}^{B} \right)^{2} \int_{0}^{R_{B}} dr \, r^{2} \, \frac{2r}{3} j_{0} (x_{q}r/R_{B}) \beta_{q}^{B} j_{1} (x_{q}r/R_{B}) \right] \\ \mu_{\Sigma^{0}\Lambda} &= |\mu_{\Sigma^{+}_{c}\Lambda^{+}_{c}}| = |\mu_{\Sigma_{b}\Lambda_{b}}| = \frac{1}{\sqrt{3}} |\mu_{u} - \mu_{d}| \equiv \frac{1}{\sqrt{3}} |e_{u} \tilde{\eta}_{u} - e_{d} \tilde{\eta}_{d}| \\ \tilde{\eta}_{q} &\equiv \left(N_{q}^{B'} N_{q}^{B} \right) \int_{0}^{\min(R_{B'},R_{B})} dr \, r^{2} \, \frac{r}{3} \\ &\times \left[j_{0} (x'_{q}r/R_{B'}) \, \beta_{q}^{B} j_{1} (x_{q}r/R_{B}) + \beta_{q}^{B'} j_{1} (x'_{q}r/R_{B'}) \, j_{0} (x_{q}r/R_{B}) \right] \end{split}$$

< ロ > < 同 > < 回 > < 回 >

Free-space values: 1

Table: Free-space baryon magnetic moments by various models.

$B(q_1, q_2, q_3)$	Set I	Set II	[1, 2]	[3]	[4]	[5]	[6]	[7]	[8, 9]	[10]
p(uud)	1.535	1.535	2.56	_	_	_	2.8732	2.886	2.3	3.04
n(ddu)	-1.023	-1.023	-1.93	_	_	_	-1.9154	-1.924	-1.3	-1.84
$\Lambda(uds)$	-0.429	-0.500	-0.55	-	-	-	-0.5512	-0.580	-0.40	-0.70
$\Sigma^+(uus)$	1.557	1.628	2.60	—	_	—	2.7377	2.758	1.9	2.87
$\Sigma^0(uds)$	0.499	0.535	-1.48	_	_	—	0.8222	0.834	0.54	0.76
$\Sigma^{-}(dds)$	-0.560	-0.559	-1.26	_	_	_	-1.0932	-1.089	-0.87	-1.48
$\Xi^0(ssu)$	-0.929	-1.068	-1.32	_	_	_	-1.3734	-1.414	-0.95	-1.37
$\Xi^{-}(ssd)$	-0.405	-0.509	-0.57	—	—	—	-0.4157	-0.452	-0.41	-0.82
$\Delta^{++}(uuu)$	3.341	3.341	5.267	_	—	—	—	—	4.91	5.24
$\Delta^+(uud)$	1.671	1.671	2.430	_	—	—	_	—	2.46	0.97
$\Delta^0(udd)$	0	0	-0.408	_	_	—	_	—	0.00	-0.035
$\Delta^{-}(ddd)$	-1.671	-1.671	-3.245	—	—	—	—	—	-2.46	-2.98
$\Sigma^{*+}(uus)$	1.781	1.767	3.208	_	—	—		—	2.55	1.27
$\Sigma^{*0}(uds)$	0.102	0.040	0.188	—	—	—	—	—	0.27	0.33
$\Sigma^*^-(dds)$	-1.577	-1.687	-2.105	_	_	—	_	—	-2.02	-1.88
$\Xi^{*0}(ssu)$	0.203	0.083	0.508	_	_	—	_	—	0.46	0.16
Ξ * [−] (ssd)	-1.473	-1.686	-1.805	_	_	—	_	_	-1.68	-0.62

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Free-space values: 2

Table: Free-space baryon magnetic moments (in nuclear magneton).

$B(q_1, q_2, q_3)$	Set I	Set II	[1, 2]	[3]	[4]	[5]	[6]	[7]	[8, 9]	[10]
$\Lambda_{c}^{+}(udc)$	0.423	0.423	_	—	0.42	0.385	0.341	0.352	_	—
$\Sigma_{c}^{++}(uuc)$	1.378	1.378	—	2.4	1.76	2.279	2.44	2.448	—	—
$\Sigma_{c}^{+}(udc)$	0.238	0.238	—	0.5	0.36	0.501	0.525	0.524	—	—
$\Sigma_c^0(ddc)$	-0.903	-0.903	_	-1.5	-1.04	-1.015	-1.391	-1.400	_	_
$\Xi_{c}^{+}(usc)$	0.424	0.426	—	0.8	0.41	0.711	0.796	0.779	—	—
$\Xi_c^0(dsc)$	0.424	0.426	—	-1.2	0.39	-0.966	-1.12	-1.145	—	—
$\Lambda_b^0(udb)$	-0.073	-0.074	—	—	-0.06	-0.064	—	—	—	—
$\Sigma_{b}^{+}(uub)$	1.675	1.681	—	2.4	2.07	2.229	2.575	2.586	—	—
$\Sigma_b^{0}(udb)$	0.437	0.439	_	0.6	0.53	0.592	0.659	0.662	_	_
$\Sigma_{b}^{-}(ddb)$	-0.801	-0.804	_	-1.3	-1.01	-1.047	-1.256	-1.261	_	_
$\Xi_{b}^{0}(usb)$	-0.073	-0.074	_	0.7	-0.06	0.766	0.93	0.917	—	_
$\Xi_b^{-}(dsb)$	-0.073	-0.074	—	-1.2	-0.06	-0.902	-0.985	-1.006	—	—

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

References

- [1] H. Singh, A. Kumar and H. Dahiya, Eur. Phys. J. Plus 134, 128 (2019).
- [2] H. Singh, A. Kumar and H. Dahiya, Eur. Phys. J. Plus 135, 422 (2020).
- [3] T. M. Aliev, T. Barakat and M. Savci, Phys. Rev. D 91, 116008 (2015).
- [4] A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, D. Nicmorus and K. Pumsa-ard, Phys. Rev. D 73, 094013 (2006).
- [5] B. Patel, A. K. Rai and P. C. Vinodkumar, J. Phys. G 35, 065001 (2008).

[7] S. N. Jena and D. P. Rath. Phys. Rev. D 34, 196 (1986).

[6] N. Barik and M. Das, Phys. Rev. D 28, 2823 (1983)

- [8] D. B. Leinweber, R. M. Woloshyn and T. Draper, Phys. Rev. D 43, 1659-1678 (1991) doi:10.1103/PhysRevD.43.1659 Copy to ClipboardDownload
- [9] D. B. Leinweber, T. Draper and R. M. Woloshyn, Phys. Rev. D 46, 3067-3085 (1992) doi:10.1103/PhysRevD.46.3067 [arXiv:hep-lat/9208025 [hep-lat]].
- [10] F. X. Lee, R. Kelly, L. Zhou and W. Wilcox, Phys. Lett. B 627, 71-76 (2005) doi:10.1016/j.physletb.2005.08.106 [arXiv:hep-lat/0509067 [hep-lat]].

< ロ > < 同 > < 回 > < 回 >

R=(p'x/p'z)=(GE/GM): ⁴He/¹H

- S. Malace, M. Paolone and S. Strauch, arXiv:0807.2251 [nucl-ex]
- S. Strauch et al., Phys. Rev. Lett. 91, 052301 (2003)

Octet Baryons

æ

Decuplet Baryons

Charm Baryons

Bottom Baryons

э

э

Summary, Perspective

In-medium magnetic moments of the Octet, Decuplet , low-lying Strange, Charm, Bottom baryons
 (new: effective masses of Decuplet baryons)

•Density dependent parametrizations: $m_{B,M}^*$ and $V_{\omega,\rho}^{B,M}$

- \implies Easier to use, applications
- ⇒ Axial-vector coupling constants in medium
- ⇒ Meson cloud effects: CBM-like approach in medium
- How to make connections with Experiments???

•Other interesting applications ??!! Suggestions ??!!

Thank You Very Much !!!

References:

In-medium magnetic moments $| \rightarrow$ Submitted to PTEP (arXiv article has not yet been revised!!) (Heavy Baryons): K. Tsushima Phys. Rev. D 99, 014026 (2019) Quarkonia-nuclear bindings (QMC model brief summary): G. Krein, A. W. Thomas, K. Tsushima Prog. Part. Nucl. Phys. 100, 161 (2018) QMC model summary: K. Saito. K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58, 1 (2007)

In-medium properties of the low-lying Strange, Charm, Bottom baryons (backup)

- •Effective masses $(\Sigma_b, \Xi_b !!)$
- •In-medium bag radii
- •In-medium bag eigenfrequencies
- •Scalar and vector (plus Pauli) potentials

•Excitation (total) energies $(\Sigma_b, \Xi_b !!)$

(ロ) (同) (ヨ) (ヨ)

In vacuum (inputs)

$B(q_1, q_2, q_3)$	ΖB	m _B	R _B	<i>x</i> 1	<i>x</i> ₂	<i>x</i> 3
N(qqq)	3.295	939.0	0.800	2.052	2.052	2.052
$\Lambda(uds)$	3.131	1115.7	0.806	2.053	2.053	2.402
$\Sigma(qqs)$	2.810	1193.1	0.827	2.053	2.053	2.409
$\Xi(qss)$	2.860	1318.1	0.820	2.053	2.406	2.406
$\Omega(sss)$	1.930	1672.5	0.869	2.422	2.422	2.422
$\Lambda_c(udc)$	1.642	2286.5	0.854	2.053	2.053	2.879
$\Sigma_c(qqc)$	0.903	2453.5	0.892	2.054	2.054	2.889
$\Xi_c(qsc)$	1.445	2469.4	0.860	2.053	2.419	2.880
$\Omega_c(ssc)$	1.057	2695.2	0.876	2.424	2.424	2.884
$\Lambda_b(udb)$	-0.622	5619.6	0.930	2.054	2.054	3.063
$\Sigma_b(qqb)$	-1.554	5813.4	0.968	2.054	2.054	3.066
$\Xi_b(qsb)$	-0.785	5793.2	0.933	2.054	2.441	3.063
$\Omega_b(ssb)$	-1.327	6046.1	0.951	2.446	2.446	3.065

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

In medium at $ho_0=0.15\,{ m fm}^3$

$B(q_1, q_2, q_3)$	m * B	R _B *	<i>x</i> ₁ *	<i>x</i> ₂ *	<i>x</i> ₃ *
N(qqq)	754.5	0.786	1.724	1.724	1.724
$\Lambda(uds)$	992.7	0.803	1.716	1.716	2.401
$\Sigma(qqs)$	1070.4	0.824	1.705	1.705	2.408
$\Xi(qss)$	1256.7	0.818	1.708	2.406	2.406
$\Omega(sss)$					
$\Lambda_c(udc)$	2164.2	0.851	1.691	1.691	2.878
$\Sigma_c(qqc)$	2331.8	0.889	1.671	1.671	2.888
$\Xi_c(qsc)$	2408.3	0.859	1.687	2.418	2.880
$\Omega_c(ssc)$					
$\Lambda_b(udb)$	5498.5	0.927	1.651	1.651	3.063
$\Sigma_b(qqb)$	5692.8	0.966	1.630	1.630	3.066
$\Xi_b(qsb)$	5732.7	0.931	1.649	2.440	3.063
$\Omega_b(ssb)$		_	_		

3

ヘロト ヘ部ト ヘヨト ヘヨト

Effective masses: Strange (left), Charm (right) baryons

Effective masses: Strange (left), Bottom (right) baryons

Bag eigenfrequencies: Strange (left), Charm (right) baryons

Bag eigenfrequencies: Strange (left), Bottom (right) baryons

Bag radii: Strange, Charm, Bottom baryons

Scalar and (Vector+Pauli) potentials: Strange (left), Charm (right) baryons

Scalar and (Vector+Pauli) potentials: Strange (left), Bottom (right) baryons

Excitation energies (scalar + vector pots.): Σ_b, Ξ_b Vector + "Pauli" (left), Vector (right)

Summary, Perspective (backup)

•QMC model: In-medium properties of the low-lying Strange, Charm, Bottom baryons (completed) effective masses, bag radii, bag eigenfrequencies, (two different) vector potentials, excitation (total) energies

References:

In-medium properties of the low-lying strange, charm, and bottom baryons in the quark-meson coupling model (Heavy Baryons): K. Tsushima Phys. Rev. D 99, 014026 (2019) Quarkonia-nuclear bindings (QMC model brief summary):

G. Krein, A. W. Thomas, K. Tsushima Prog. Part. Nucl. Phys. 100, 161 (2018)

QMC model summary:

K. Saito, K. Tsushima and A. W. Thomas Prog. Part. Nucl. Phys. 58, 1 (2007)