Studies of mass modification of the η'(958) meson in nuclei in the LEPS2/BGOegg experiment

Natsuki TOMIDA RCNP, Osaka University

> Reimei workshop 2021/Feb/21

η'(958) meson

LEPS2/BGOegg experiment

SPring-8/LEPS2 beam line 1.3-2.4 GeV γ beam

BGOegg calorimeter

- World's best energy resolution calorimeter for 1 GeV γ : 1.4%
- Large polar angle coverage : $24^{\circ} < \Theta^{lab} < 144^{\circ}$

η' → 2γ, η→2γ η' → π⁰π⁰η→6γ

Phase-I (2014-2016)

- **1.** η'-nucleus bound state search N. Tomida *et al.*, PRL 124 (2020) 202501
- **2. Direct measurement of η' mass in nuclei** Y. Matsumura , PhD thesis (2021)

BGOegg Phase-II experiment

 \Rightarrow ~Full acceptance for γ rays

• 2022-

η'-nucleus bound state

η'-nucleus optical potential H. Nagahiro, S. Hirenzaki PRL 94 (2005) 232503

- $U(r) = (V_0 + iW_0) \times \rho(r) / \rho_0$
- $V_0 = \Delta m(\rho_0)$: mass shift at the normal nuclear density
- $W_0 = -\Gamma(\rho_0)/2$: width at the normal nuclear density
- If V_0 is large and W_0 is small, η' and a nucleus may form a bound state

$$\gamma + {}^{12}\mathrm{C} \to p + \eta' \otimes {}^{11}\mathrm{B}$$

$$E_{ex}-E_0 = MM({}^{12}C(\gamma,p))-M_{11B}-M_{\eta'}$$

Examine η' -nucleus potential

Search for a bound state

Calculation within Distorted Wave Impulse Approximation (DWIA)

H.Nagahiro, JPS Conf. Proc. 13 (2017) 010010

Past experiments

CBELSA/TAPS η-PRiME@GSI η' photoproduction off C, Nb ¹²C(p,d)X η' escaped from nuclei Inclusive missing mass spectroscopy -5 dơ_n./dp_n, [μb/GeV/c] • C data E_=1500-2200 MeV M. Nanova et al., PLB Y.K. Tanaka, 727 (2013) 417 **PRL 117** -10 -1/4 (2016)M. Nanova et al., W₀ [MeV] 202501 PRC 94 (2016) 025205 1/3 -15 M. Nanova et al., Y.K. Tanaka, $V(\rho = \rho_0) = 0 \text{ MeV}$ Eur. Phys. J. A 54 (2018) 182 **PRC 97** $V(\rho = \rho_0) = -25 \text{ MeV}$ -20 $V(\rho = \rho_0) = -50 \text{ MeV}$ (2018) $V(\rho = \rho_0) = -75 \text{ MeV}$ S. Friedrich et al., 015202 $V(\rho = \rho_0) = -100 \text{ MeV}$ 10 16 Eur. Phys. J A 52 (2016) 297 $V(\rho = \rho_0) = -150 \text{ MeV}$ -25 L -200 -150-100-50 V_0 [MeV] 0.25 0.5 0.75 1 1.25 1.5 1.75 2 p_n, [GeV/c]

- Large multi meson backgrounds
 → No signal peak observed
- Upper limit on V₀, W₀ depending on an unknown scaling factor of the DWIA cross section and the elementary cross section
- V₀ = -(40±6(stat)±15(syst)) MeV from comparisons with the collision model
- W₀ = -(13±3(stat)±3(syst)) MeV from the transparency measurement

η' absorption : Search for bound states
 η'N->ηN large branch expected (>40%)

$$\gamma + {}^{12}\mathrm{C} \to p_f + \eta' \otimes {}^{11}\mathrm{B}$$
$$\downarrow \eta' + p \to \eta + p_s.$$

 η' escape => Evaluate production rate of η' (Normalization of the DWIA calculation)

$$\gamma + {}^{12}\mathrm{C} \to p_f + \eta' + {}^{11}\mathrm{B}$$
$$\downarrow \eta' \to 2\gamma$$

Experimental set up

- LEPS2 beam line @ SPring-8 2015/Apr-Jul Tagger **BGOegg** calorimeter TOF-RPC UpVeto LEPS2 building SPring-8 7° 24° 144 **p**_f 1.3-2.4 GeV target 12.5m **p**_s **Inner** plastic scintillator (IPS) DC
- $\gamma + {}^{12}C \rightarrow p_f + (\eta + p_s) + X$: bound state search ($\eta'N \rightarrow \eta N$)
- γ + ¹²C -> p_f + η' + X : production rate of η'
 - Missing mass spectroscopy of ${}^{12}C(\gamma, p_f)$: Tagger, TOF-RPC
 - Decay products (η+p_s), η': BGOegg, IPS
 - No other detected particles
- Trigger : Tagger × BGOegg 2 crystal hits
 => Simultaneous measurements of (η+p_s) and η' tag modes

 η' mass spectrum study

Particle identification

(η+p_s) background source

BG primary η

signal

secondary η

$$\begin{split} \gamma + {}^{12}\mathrm{C} &\to p_f + \eta' \otimes {}^{11}\mathrm{B} & \text{back-to-back } \eta p_s \\ & \downarrow \eta' + p \to \eta + p_s. & \text{isotropic angular} \\ \gamma + {}^{12}\mathrm{C} &\to p_f + \eta + {}^{11}\mathrm{B} \\ & \downarrow \eta + p \to \eta + p_s, \\ \text{or } p_f + p \to p_f + p_s. \\ \gamma + {}^{12}\mathrm{C} &\to p_f + \eta + \pi^0 + {}^{11}\mathrm{B} \\ \gamma + {}^{12}\mathrm{C} \to p_f + \eta + \pi^0 + {}^{11}\mathrm{B} \\ \gamma + {}^{12}\mathrm{C} \to p_f + \eta + \pi^- + {}^{11}\mathrm{C} \\ & \downarrow \pi^- + p + p \to p_s + n. \\ \text{Forward-going } \eta & \text{Undetected } \pi \end{split}$$

$(\eta + p_s)$ kinematical cut

- Optimize to maximize S/N ratio & signal yield : Blind analysis
 - Signal : simulation (isotropic back-to-back ηp_s pair + FSI in nuclei (QMD))
 - BG : side-band data (cos(ηp_s)<-0.9, 100<|E_{ex}-E₀|<200 MeV)

(a) Opening angle cos(ηp_s)<-0.9 <= signal : back-to-back ηp _s								
(b) Missing energy < 150 MeV <= signal : no additional particle								
missing energy = E_{γ} + m_{12C} – E_{η} – E_{ps} – E_{pf} – m_{11B}								
(c) Polar angle cos(p _s)<0.5 signal : Isotropic distribution								
(d) Polar angle cos(ŋ)<0	BG : concentrate in forward							
	Side	Side band $(V_0 = -100 \text{ MeV})$		Side band				
$E_{\rm ex} - E_0^{\eta'}$ region [MeV]	[-300,	[-200,	expected signal	[100,	[200,			
	-200]	-100]	[-50, 50]	200]	300]			
no cuts	67	188	$(58.4 \pm 14.7) \times \operatorname{Br}_{\eta'N \to \eta N}$	507	438			
(a): $\cos \theta_{lab}^{\eta p_s} < -0.9$	11	26	$(43.8 \pm 11.0) \times \operatorname{Br}_{\eta'N \to \eta N}$	24	18			
(a), (b): $ E_{miss}^{\eta p_s p_f} < 150 \text{ MeV}$	11	24	$(43.8 \pm 11.0) \times \operatorname{Br}_{\eta' N \to \eta N}$	9	4			
(a), (b), (c): $\cos \theta_{lab}^{p_s} < 0.5$	9	18	$(35.7 \pm 9.0) \times \mathrm{Br}_{\eta' N \to \eta N}$	9	4			
(a), (b), (c), (d): $\cos \theta_{lab}^{\eta} < 0$	4	1	$(13.1 \pm 3.3) \times \operatorname{Br}_{\eta'N \to \eta N}$	0	0			
BG : Reduced to 0.4% Signal : Preserve 23%								

η'-nucleus search result

$\gamma + {}^{12}C \rightarrow p_f + (\eta + p_s) + X$

no η+p_s kinematical cut
 η+p_s cut (a)-(c)

No events satisfying cuts(a)-(d) in $-50 < E_{ex}-E_0 < 50$ MeV

No $(\eta + p_s)$ signals from η' bound state are observed

Upper limit of the production cross section of η' -nucleus with $(\eta+p_s)$ emission : **2.2 nb/sr** $@\cos(\eta p_s) < -0.9$ $(E_{\gamma}=1.3-2.4 \text{ GeV average})$

=> Compare with the DWIA calculation to discuss η'-nucleus potential

Comparison with theoretical calculation

Theoretical $(\eta + p_s)$ cross section

	$\overline{\left(\frac{d\sigma}{d\Omega_{p_f}}\right)}_{theory}^{\eta+p_s} = 1$	$F \times \overline{\left(\frac{d\sigma}{d\Omega_{p_f}}\right)}_{theory}^{\eta'abs}$	$\times \operatorname{Br}_{\eta'N \to \eta N} \times P_s$	ηp_s	
Vo	Normalization factor	total η' absorption cross section (DWIA)	η'N->ηN branch	Probability that ηp _s is emitted in cos(ηp _s)<-0.9	
-100 MeV	0.35 ± 0.09	292.2 nb/sr	unknown	12.1%	
• 1 nucleon absorption ($\eta'N$ ->MB) \geq multi nucleon absorption ($\eta'N$ ->MB) \geq multi nucleon absorption ($\eta'NN$ ->NN) H. Nagahiro <i>et al.</i> , PLB 709 (2012) 87 • $\eta'N$ -> ηN : ~80% of 1N abs E. Oset and A. Ramos PLB 704 (2011) 334 => Export Br \geq 50% × 80% = 40%			 Including both η'p->ηp, η'n->ηη Evaluated using QMD Consistent with experimental data 16 		

Comparison with past experiments

CBELSA/TAPS

 $V_0 = -40 \pm 6(stat) \pm 15(syst) MeV$ Consistent

Eta-PRiME/Super FRS

- Derived from the comparison with a similar DWIA calculation
- Uncertainty of the elementary $n(p,d)\eta'$ cross section : ~2
- Uncertainty of the DWIA calculation : ~3 <- in our case

Prospects of the η' -nucleus study

- New DWIA calculation
 - E_{ex} - E_0 >50 MeV => Tighter upper limit Evaluation of potential using η' escape events
 - Different parameters (W₀, potential shape)

H. Fujioka *et al.,* PRL 126 (2021) 019201

- Analysis of η'NN -> NN decay mode using existing BGOegg data
- Analysis of 2016 data

Direct measurement of η' mass spectrum

γ + ¹²C → η' + X
 η' → 2γ (2.2%)

- 2 neutral BGOegg cluster (2γ)
- 1 or 0 charged BGOegg cluster (p)

Fitting function (1) $\omega \rightarrow \pi^0 \gamma \rightarrow 3\gamma$, 1 γ missing MC (2) $2\pi^0 \rightarrow 4\gamma \& \pi^0 \eta \rightarrow 4\gamma$, 2γ missing $exp(p_0 + p_1x + p_2x^2 + p_3x^3)$ (3) quasi-free n' gaussian with fixed σ (4) In-medium η' MC

In-medium η' spectrum

• Parameters of in-medium effect $k_1 \& k_2$ $m_{\eta'}(\rho) = m_0(1 - k_1 \frac{\rho}{\rho_0})$ $\Gamma_{\eta'}(\rho) = \Gamma_0(1 + k_2 \frac{\rho}{\rho_0})$ $m_0 = 957.8 \text{ MeV}, \Gamma_0 = 0.197 \text{ MeV}$ ρ_0 : nuclear saturation density $\rho(r) \propto [1 + \exp\{(r - R)/d\}]^{-1}$ R=2.3 fm d=0.57 fm for C

- η' propagation in nuclei and the mass distribution at the decay point
- Detector resolution

Next step

- Analysis of 2016 data \rightarrow Increase statistics x2
- Phase-II experiment with reduced BG \rightarrow Suppress systematic uncertainty

Phase-II experiment

- Additional calorimeter in the forward hole of the BGOegg
 1. FPS, FG : BG→1/8
 2. Expansion of BGOegg : BG → 1/40
- Change the target : C(20 mm) \rightarrow Cu(7 mm) R_{nucleus} × 1.8, # of nucleons × 1.8, $\sigma(M_{\gamma\gamma})$ × 0.6

- 2022 : Installation of readout system of FPS and FG
- 2023 : Data taking
- 2024 : Forward expansion of BGOegg

Summary

Study of η' in medium in the LEPS2/BGOegg experiment

Phase-I (2014-2016)

1. η'-nucleus bound state search

- First simultaneous measurement of decay products (η-p)
- No signal events after kinematical selection
- Indicate small V_0 or small $\eta' N \rightarrow \eta N$ branch
- Update DWIA calculation, Analysis of $\eta'N \rightarrow NN$ decay mode

2. Direct measurement of η' mass in nuclei

Indication of in-medium modification

Phase-II (2022-)

- Additional calorimeters in the forward hole of the BGOegg
- Direct measurement of η' mass with small background level