The meson-nucleus interaction and the search for meson-nucleus bound states

Volker Metag, Mariana Nanova II. Physikalisches Institut

- I. Introduction: theoretical predictions
- II. mass shifts and broadening from meson line shape analysis
- III. meson-nucleus potential from excitation functions, momentum distributions and transparency ratios
- IV. meson-nucleus interaction from meson-nucleus bound states
- V. summary and outlook

Reimei workshop "Hadrons in dense matter at J-PARC" Feb. 21-23. 2022

I. Introduction (theoretical predictions)

Symmetry breaking in the hadronic sector

Symmetry breaking in the hadronic sector

symmetry breaking

Symmetry breaking in the hadronic sector

Predictions for in-medium changes

Δm_{η'} (ρ₀)≈-150 MeV Δm_η (ρ₀)≈+20 MeV

Δm_K⁺ (ρ₀)≈ +30 MeV Δm_K⁻ (ρ₀)≈-100 MeV $\begin{array}{l} \Delta m_{\rho} \left(\rho_{0} \right) \approx \text{-} (80\text{-}160) \text{ MeV} \\ \Delta m_{\omega} \left(\rho_{0} \right) \approx \text{-} (80\text{-}160) \text{ MeV} \\ \Delta m_{\Phi} \left(\rho_{0} \right) \approx \text{-} (20\text{-}30) \text{ MeV}_{4} \end{array}$

Predictions for in-medium broadening

From theoretical predictions to experimental observables

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

From theoretical predictions to experimental observables

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

From theoretical predictions to experimental observables

calculations of meson spectral functions assume:

- infinitely extended nuclear matter in equilibrium at ρ ,T = const.;
- meson at rest in nuclear medium

transport calculations (GiBUU, HSD, UrQMD, JAM,...) are needed for comparison with experiment !!!

- initial state effects: absorption of incoming beam particles
- non equilibrium effects: varying density and temperature
- absorption and regeneration of mesons in the nuclear medium
- fraction of decays inside of the nuclear environment
- final state interactions: distortion of momenta of decay products

II. Meson line shape analysis (sensitive to nuclear density at the decay point)

problems in line shape analysis

problems in line shape analysis

dơ/M_{πγ} [normalized to max.]

three effects limit the sensitivity:

- 1.) only fraction of decays occur within the nucleus: decay length $s = \gamma \cdot \beta \tau = \frac{P}{m} \cdot \tau$ $s_{\omega} = 22 \text{ fm} >> R_{nucleus}$ for $\frac{P}{m} \approx 1.0$
- 2.) in-medium decays occur over wide range of nuclear densities (nuclear density profile)
- 3.) <u>additional complication for $\omega \rightarrow \pi^0 \gamma$ </u>: observation of in-medium decays hampered by π^0 absorption

ω line shape in $ω \rightarrow π^0 γ$

Line shape analysis: Φ meson

 $p + C, Cu \rightarrow \Phi + X @ 12 GeV$

KEK E325: R.Muto et al. PRL 98 (2007) 042501

deviation from expected line shape for slow Φ s with $\beta\gamma < 1.25$

 $V_0 = \Delta m (\rho = \rho_0) = (35 \pm 7) \text{ MeV}; W(\rho = \rho_0) = 7^{+4}_{-3} \text{ MeV}$

$\phi \rightarrow e^+e^-$ decays

Janus Weil (Univ. Frankfurt): J-PARC workshop 2015

GiBUU simulation: p + Pb 30 GeV (E16)

to enhance in-medium decays select low momentum ϕ mesons: $\beta\gamma < 0.5$

tiny fraction of Φ mesons going backwards in cm; almost at rest in lab

mass shift 3.4% + broadening by 3.6

EI6 experiment: S.Yokkaichi et al. $P + A \rightarrow \Phi + X$ at 30 GeV

III.

Meson-nucleus potential from measuring excitation functions, momentum distributions and transparency ratios

(sensitive to nuclear density at the production point)

Meson-nucleus potential

Meson-nucleus potential

- excitation function
- momentum distribution

transparency ratio measurement

$$T_{A} = \frac{\sigma_{\gamma A \to \eta' X}}{A \cdot \sigma_{\gamma N \to \eta' X}}$$

D. Cabrera et al., NPA733 (2004) 130

Determining the real part of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

Determining the real part of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

larger cross section

Determining the real part of the meson-nucleus potential from excitation functions and momentum distributions

sensitive to nuclear density at the production point excitation function

attractive interaction → mass drop → lower threshold → larger phase space→ larger cross section repulsive interaction → mass increase → higher threshold → smaller phase space→ smaller cross section

repulsive interaction \rightarrow mass increase \rightarrow higher threshold \rightarrow smaller phase space \rightarrow smaller cross section

attractive interaction \rightarrow meson slowed down \rightarrow shift to lower momenta

- higher threshold → smaller phase space→ smaller cross section
- attractive interaction \rightarrow meson slowed down \rightarrow shift to lower momenta

quantitative analysis requires transport model or collision model calculations 14

test of method

Coulomb interaction among charged pions and the fireball in heavy-ion collisions

Determining the imaginary part of the meson-nucleus potential from transparency ratio measurements

Determining the real part and imaginary part of the ω -nucleus potential from measurement of excitation function and transparency ratio

<u>real part</u> from excitation function

V. Metag et al., Prog. Part. Nucl. Phys. 67 (2012) 530

including information from momentum distributions (S. Friedrich et al. PLB 736 (2014) 26) $V_{\omega A}(\rho = \rho_0) = -(29 \pm 19(\text{stat}) \pm 20(\text{syst})) \text{ MeV}$ imaginary part from transparency ratio

$$T_{A} = \frac{\sigma_{\gamma A \to \omega X}}{A \cdot \sigma_{\gamma N \to \omega X}}$$

Determining the real part and imaginary part of the ω -nucleus potential from measurement of excitation function and transparency ratio

IVI \leq IWI !! ω no good candidate for meson-nucleus bound states !!

Determining the real part of the η '-nucleus potential from measurement of excitation function and momentum distributions

Determining the imaginary part of the η^\prime - nucleus potential

from transparency ratio measurements

Real and imaginary part of the η ' - nucleus potential

M. Nanova et al., PLB 727 (2013) 417
M. Nanova et al., PRC 94 (2016) 025205
M. Nanova et al., EPJ A 54 (2018) 182
S. Friedrich et al., EPJA 52 (2016) 297

 $V_0 = \Delta m(\rho = \rho_0) = - [40 \pm (stat) \pm 15(syst)] \text{ MeV}$

 $W_0 = Im U(\rho = \rho_{0,p_{\eta'}} \approx 0) = - [13 \pm 3(stat) \pm 3(syst)] MeV$

observed mass shift in agreement with QMC model predictions S. Bass and T. Thomas, PLB 634 (2006) 368

Real and imaginary part of the η' - nucleus potential

M. Nanova et al., PLB 727 (2013) 417 M. Nanova et al., PRC 94 (2016) 025205 M. Nanova et al., EPJ A 54 (2018) 182 S. Friedrich et al., EPJA 52 (2016) 297

 $V_0 = \Delta m(\rho = \rho_0) = - [40 \pm (stat) \pm 15(syst)] MeV$

 $W_0 = Im U(\rho = \rho_{0,p_{\eta'}} \approx 0) = - [13 \pm 3(stat) \pm 3(syst)] MeV$

observed mass shift in agreement with QMC model predictions S. Bass and T. Thomas, PLB 634 (2006) 368

 $\eta': |V_0| >> |W_0| \rightarrow$ better candidate for search for meson-nucleus bound states than the ω meson!

 $\eta: |V_0| >> |W_0|$

Determining the real part of the K⁰-nucleus potential from measurement of momentum distributions

HADES: Ar + KCl at 1.756 AGeV G.Agakishiev et al., PRC90 (2014) 054906

K⁰ transverse momentum spectra compared to IQMD transport calculations without potential (green dotted) and with repulsive potential of +46 MeV (blue dashed curve)

V ≈+ 40 MeV

K0

 $\phi \rightarrow K^+K^-$ decays

$$= \frac{12}{184} \cdot \frac{\sigma_{W}\phi}{\sigma_{C}\phi} = 0.18 \pm 0.02 \pm 0.01 -0.043$$

E.Ya. Paryev, Chin. Phys. C 42 (2018) 084101 and priv. com.

 $\sigma_{abs}^{\varphi} \approx 20 \text{ mb}; \text{ W}(\rho = \rho_0) \approx -20 \text{ MeV}$

earlier determinations of σ_{abs}^{φ} LEPS: (35⁺¹⁷₋₁₁) mb; ANKE: (15-25) mb

The meson-nucleus potential $U(\rho_0) = V(\rho_0) + i W(\rho_0)$

V. Metag, M. Nanova and E.Ya. Paryev, Prog. Part. Nucl. Phys.97 (2017) 199

 η promising candidate for mesic state: $|W_0| \approx 13 \text{ MeV} \ll |V_0| \approx 40 \text{ MeV}$

IV. Information on meson - nucleus interaction from meson-nucleus bound states

recoilless production in ¹²C(p,d) reaction

PRIME collaboration (2012)

K. Itahashi et al., Exp. S 437

theoretical expectation H. Nagahiro et al., PRC 87(2013) 045201

high statistical sensitivity sets constraints on η' -11C interaction: $|V_0| < 100 \text{ MeV}$

improved experiment detecting formation and decay of mesic state ongoing

Search for η ' mesic states in ${}^{12}C(\gamma,p)$ reaction

N.Tomida et al. PRL 124 (2020) 202501

$$\begin{array}{ll} \gamma + {}^{12}C \rightarrow p_f + \eta' \otimes {}^{11}B & p_f = \text{forward going proton} \\ \downarrow & p_s = \text{sideward going proton} \\ \eta' + p \rightarrow \eta + p_s \end{array}$$

simultaneous measurement of forward going proton (production of mesic state) and almost back-to-back (η , p_s) pair (decay of mesic state)

expected signal region

upper limit for branching ratio BR($\eta'N \rightarrow \eta N$) $\approx 24\%$ for V₀= -100 MeV $\approx 80\%$ for V₀= -20 MeV

these limits questioned in H. Fujioka et al. PRL126 (2021) 019201

Search for η -d mesic states in γ d $\rightarrow \pi^0 \eta$ d reaction

T. Ishikawa et al., PRC 104 (2021) L052201; arXiv:2111.01388

coherent $\pi^0\eta$ photoproduction off nuclei

forward going high momentum π takes over most of the beam momentum so that low energy η can couple to the intact nucleus

coherent $\gamma A \rightarrow \pi^0 \eta A$ promising tool for studying η -A interaction

Search for K-pp clusters

Summary and conclusions

- mesons change properties in the nuclear medium as predicted theoretically !!
 - mesons masses are lowered for attractive and increased for repulsive meson-nucleus interactions: $m_{K^+,K0}$, m_{K^-} ; $m_{\eta'}$
 - in-medium lifetimes are shortened by hadronic interactions within the nucleus → in-medium broadening
- experimental approaches:
 - line shape analysis (sensitive to nuclear density at decay point)
 - real and imaginary part of meson-nucleus potentials from excitation functions, momentum distributions and transparency ratios (sensitive to nuclear density at production point; model dependent !)
- <u>model independent information</u> on meson-nucleus potential from observation of meson-nucleus bound states:
 - evidence for existence of virtual ηd state and bound K-pp cluster
 - studies of kaonic nuclei and search for $\eta'\otimes A$ ongoing
- vivid field: new results are eagerly awaited !!

Back up slides

Line shape analysis

probability for decay:

$$\frac{dP_{decay}}{dl} = \frac{mc}{P} \cdot \frac{I}{\hbar c} \cdot \Gamma_{decay} = 6.5 \cdot 10^{-6} / \text{fm}$$
$$\Gamma_{\phi \to e^+e^-} = 1.3 \cdot 10^{-3} \text{ MeV} \qquad (\text{for} \approx \frac{mc}{P} \approx 1.0)$$

probability for absorption:

$$\frac{dP_{abs}}{dl} = \sigma_{abs} \cdot \rho(r) = 0.3/\text{fm at } \rho = \rho_0$$
$$\sigma_{abs} \approx 20 \text{ mb}$$

$$\frac{P_{decay}}{P_{abs}} \approx 2^{\bullet}10^{-5}$$

50 000 times more likely to get absorbed than to decay

33

more favourable decay/absorption ratio only at lower densities near the surface where in-medium modifications are reduced sensitive to nuclear density at decay point !!

Determining the real part of the K⁻ -nucleus potential from momentum distributions

K-momentum spectra in coincidence with K⁺ (200 $\le p_{K+} \le 600$ MeV/c) compared to collision model calculations: E. Paryev et al., J. Phys. G 42 (2015) 075107 $V_{K^-}(\rho = \rho_0) = -63^{+50}_{-30}$ MeV accounting for systematic uncertainties

