Light-front holography with chiral symmetry breaking:

From semiclassical first approximation to ab initio light-front QCD

Yang Li *University of Science & Technology of China, Hefei, China*

ILCAC Seminar February 16, 2022 @ Zoom

▶ The role of longitudinal dynamics in light-front Schrödinger wave equation

 \blacktriangleright Application to light mesons

▶ Prospects to *ab initio* light-front QCD

Based on:

YL, J.P. Vary, Phys. Lett. B 825,136860 (2022); [arXiv: 2103.09993 [hep-ph]] YL, J.P. Vary, arXiv:2202.05581 [hep-ph]

Related work:

G. de Téramond, S. Brodsky, Phys. Rev. D (2021); M. Ahmady et al. Phys. Lett. B (2021); Phys. Rev. D (2021); C. Weller, G.A. Miller, arXiv:2111.03194 [hep-ph].

QCD in the Hamiltonian formalism

One of the central tasks of HEP is to unravel the fundamental structure of matter:

$$
i\frac{\partial}{\partial \tau}|\psi_h(\tau)\rangle = H_{\text{QCD}}|\psi_h(\tau)\rangle
$$

Maximal possible of information: masses, distributions, correlations, reactions, ... (non-perturbative) Relativistic quantum many-body problem:

$$
H_{\text{QCD}} = \sum_{i} T_i + \sum_{ij} V_{ij}
$$

Exponential wall: $\dim \mathcal{H} = N^{dN}$, *d* the spatial dimension Quantum advantage?

Quantum many-body problems

Semi-classical first approximation

Wilson, Walhout, Harindranath, Zhang, Perry, & Głazek, PRD 1994

Semi-classical first approximation

LFH w. *χ*SB (Yang Li, USTC) **5/37** 5/37 5/37 **ILCAC seminar, February 16, 2022** 5/37 5/5/10 11 12:40 LCAC seminar, February 16, 2022

Semi-classical first approximation: heavy flavors

Relativized quark model: Godfrey, Isgur PRD 1985; Hamiltonian QCD in Coulomb gauge: Szczepaniak, Swanson, Ji & Cotanch, PRL 1996; cf. NRQCD: Caswell & Lepage 1986

How heavy is heavy? \mathbb{P} is \mathbb{P} and \mathbb{P} arxiv:2111.14178 [hep-ph]]

widths and the branching fractions for $\eta_{cb} \to \gamma \gamma$. We find that severe tension arises between our state-of-the-art NROCD predictions and the measured η_c hadronic width, and the tension in Br($\eta_c \rightarrow \gamma \gamma$) is particularly disquieting. In our opinion, this may signal a profound crisis for the influential NRQCD factorization approach—whether it can be adequately applicable to charmonium decay or not. Our

Roughly 1700 3-loop forward-scattering diagrams, divided into 4 distinct cut topologies; Cutkosky rule is imposed

For n_c more than 10σ discrepancy!

The call for a relativistic formulation is strong!

LFH w. *χ*SB (Yang Li, USTC) 7/37 ILCAC seminar, February 16, 2022

In modern high-energy experiments, the structure of hadron is ``seen'' at a fixed light-front time $x^+=t+z/c$

- Light-front wave function is frame independent
- Simplification of relativistic dynamics

$$
H_{\mathbb{IF}} = \sum_{i} \sqrt{\vec{p}_{i}^{2} + m_{i}^{2}} + V \quad \text{vs} \quad H_{\mathbb{LF}} = \sum_{i} \frac{\vec{p}_{i\perp}^{2} + m_{i}^{2}}{p_{i}^{+}} + V
$$

- Direct access to hadron structures, e.g. parton distributions, form factors, OPE
- Schrödinger and Einstein equations are equivalent

$$
\underline{P}^-|\psi_h(P,J,m_J)\rangle = \frac{\vec{P}^2_\perp + M_h^2}{P^+}|\psi_h(P,J,m_J)\rangle \Leftrightarrow (P^+\underline{P}^- - \vec{P}^2_\perp)|\psi_h(P,J,m_J)\rangle = M_h^2|\psi_h(P,J,m_J)\rangle
$$

Light-front Schrödinger wave equation (LFSWE)

Light-front QCD in light cone gauge $A^+=0$:

$$
H_{\text{LFQCD}} = \sum_{i} \frac{\vec{p}_{i\perp}^2 + m_i^2}{x_i} + U + \sum_{ij} V_{ij}^{\text{(QCD)}} - \delta_{ij} U_i
$$

$$
\Downarrow
$$

$$
\left(\frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x} + U\right) \psi(x, \vec{k}_{\perp}) = M^2 \psi(x, \vec{k}_{\perp})
$$

The effective potential *U* is expected to implement key physics of QCD:

² Confinement

- ² Chiral symmetry breaking *[→]* Gell-Mann Oakes Renner relation: *^M*² *^π* ∝ *m^q*
- ² Regge trajectories: *^M*² [∝] *ⁿ*, *^L*, *^J*
- ² Kinematical symmetries, e.g. *^m*^P = (*−*1) *^J*P,C
- ² Endpoint asymptotics: *∼ ^x a* (1 *− x*) *b*
- Rotational invariance is non-relativistic limit
- \Box Analytical solutions

How to find an effective interaction *U* for LFQCD?

Semi-classical first approximation: 't Hooft model for $LFQCD_{1+1}$

LFH w. *χ*SB (Yang Li, USTC) **10/37** 10/37 10/37 **ILCAC seminar, February 16, 2022**

Semi-classical first approximation: light-front holography

See, Brodsky et al., Phys. Rep. 2015, for a review of LFHQCD

$\text{Holographic light-front QCD}_{3+1}$ [Review: Brodsky, Phys. Rep. '15]

Light front holography is a unique mapping between $LFQCD_{3+1}$ in the chiral limit and string motion in soft-wall AdS/QCD, as consistent with superconformal quantum mechanics

$$
\left[\frac{\vec{k}_{\perp}^2}{x(1-x)} + \kappa^4 \vec{\zeta}_{\perp}^2 + 2\kappa^2 (J-1)\right] \psi(\vec{\zeta}_{\perp}) = M^2 \psi(\vec{\zeta}_{\perp})
$$

where $\vec{\zeta}_\perp = \sqrt{x(1-x)}\vec{r}_\perp$ is mapped to the fifth dimension z .

- ▶ Unique confining interaction $U_{\perp} = \kappa^4 \zeta_{\perp}^2 + 2 \kappa^2 (J-1)$ in the chiral limit
- \blacktriangleright Meson mass spectra: $M_{nmJS}^2 = 2\kappa^2(2n + |m| + J)$
	- ▶ Regge trajectory *M*² ∝ *n*, *L*, *J*
	- ▶ Massless pion (chiral limit), $ρ − π$ splitting: $M_{ρ}^2 M_{π}^2 = 2κ^2$
	- ▶ Supersymmetry across hadron sepctrum

▶ Predicted light-front wave functions (*ϕnm* is harmonic oscillator function),

$$
\psi_{nmJS}(x,\vec{k}_{\perp}) = \phi_{nm}(\vec{k}_{\perp}/\sqrt{x(1-x)}) \propto e^{-\frac{\vec{k}_{\perp}^2}{2x^2x(1-x)}}
$$

Phenomenological successes

LED AdS $3+1$ dim $5 \dim$ **LEOM** $AdS₂$ **FHOCD** $Conf(R¹)$ dAFF 1 dim

Hadron spectrum

- ▶ Light mesons: Brodsky, PRL '06
- ▶ Heavy-light mesons: Dosch, PRD '15&'17
- ▶ Heavy quarkonia & tetraquarks: Nielsen, PRD '18
- Baryons: de Téramond, PRD '15
- ▶ Exotica: Zou, PRD '19

Form factors

- ▶ Gravitational form factors: Brodsky, PRD '08
- ▶ Nucleon form factors: Sufian, PRD '17

Parton distributions

- ▶ GPDs: de Teramond, PRL '18
- ▶ Proton PDFs: Liu, PRL '20

Other applications

▶ Diffractive *ρ* productions, Forshaw PRL '12

LFH w. *χ*SB (Yang Li, USTC) **13/37** 13/37 13/37 ILCAC seminar, February 16, 2022

Separation of variables **Separation of variables Example 2012**

 $\psi(x, \vec{k}_\perp) = M^2 \psi(x, \vec{k}_\perp)$

We saw that there is a natural separation of the transverse and longitudinal d.o.f.'s: $(1 - x)m_q^2 + xm_{\bar{q}}^2$

mass term ,*L*

 $\frac{y}{x(1-x)}$ + *U*

Separation ansatz:

$$
U = U_{\perp}(\zeta_{\perp}) + U_{\parallel}(\tilde{z})
$$

\n
$$
\Rightarrow M^2 = M_{\perp}^2 + M_{\parallel}^2, \quad \psi(x, \vec{\zeta}_{\perp}) = \phi(\vec{\zeta}_{\perp}) \chi(x)
$$

\nHere, $\tilde{z} = \frac{1}{2}P^{+}x^{-} = i\partial/\partial x|_{\vec{\zeta}_{\perp}}.$ [Miller & Brodsky, PRC 2020]

The LFSWE can be split into two equations:

 ⃗k 2 *⊥* $\frac{x+1}{x(1-x)}$ + | {z } chiral limit ,*T*

$$
\begin{aligned} &\left[\nabla_{\zeta}^2+U_{\perp}(\vec{\zeta}_{\perp})\right]\phi(\vec{\zeta}_{\perp})=M_{\perp}^2\phi(\vec{\zeta}_{\perp}),\\ &\left[\frac{m_q^2}{x}+\frac{m_{\bar{q}}^2}{1-x}+U_{\parallel}(\tilde{z})\right]\chi(x)=M_{\parallel}^2\chi(x) \end{aligned}
$$

Examples of non-separable interaction based on LFH: Wilson, PRD 1994; Brisdová, PRL 1997,

+

Entanglement entropy

EE measures the quantum entanglement of a subsystem A with the rest part of the system:

$$
S_A = -\mathrm{tr}\rho_A \log \rho_A,
$$

where $\rho_A = \text{tr}_B \rho$. $S_A \nearrow$ if more entanglement. Examples:

Product state (separable): $|\psi_1\rangle = |0\rangle_A \otimes |1\rangle_B$, $S_A = 0$.

Entangled state: $|\psi_2\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle_A \otimes |1\rangle_B + |1\rangle_A \otimes |0\rangle_B) \neq |\cdot\rangle_A \otimes |\cdot\rangle_B$, $S_A = \log 2 > 0$.

EE of the transverse d.o.f. of charmonia from a non-separable interaction: [YL, Maris, Vary, PRD 2017]

[Similar observation in proton: Dumitru, & Kolbusz, arXiv:2202.01803] LFH w. *χ*SB (Yang Li, USTC) **15/37** 15/37 15/37 15/37 15/37 **ILCAC seminar, February 16, 2022**

The need for the longitudinal dynamics

Invariant mass ansatz (IMA) is based on covariance argument:

$$
\frac{\vec{k}_{\perp}^2}{x(1-x)} \to \frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1-x}, \quad \chi(x) = 1 \to \chi(x) = N \exp \Big\{ - \frac{(1-x)m_q^2 + xm_{\bar{q}}^2}{2\kappa^2 x(1-x)} \Big\}
$$

Confinement

Missing confinement in the longitudinal direction

- ² Chiral symmetry breaking *[→]* Gell-Mann Oakes Renner relation: *^M*² *^π* ∝ *m^q* $M_{\pi}^2 = 2m_q^2 \log(\kappa^2/m_q^2 - \gamma_E) + O(m_q^4)$
- \emptyset Regge trajectories: $M^2 \propto n$, L, J
- ² Kinematical symmetries, e.g. *^m*^P = (*−*1) *^J*P, C $m_{\mathsf{P}} = (-1)^{m+S+1}$, $\mathsf{C} = (-1)^{m+S}$: requires $|m| = \max |m_L| = L$, leading to issues with state id.
- ² Endpoint asymptotics: *∼ ^x a* (1 *− x*) *b* $F_{\pi}(Q^2) \sim \exp(-cQ^2)$
- 2 Rotational invariance is non-relativistic limit
- 2 Analytical solutions

Alternative longitudinal wave function: \blacksquare and \blacksquare and \blacksquare \blacksquare

$$
\chi(x) = Nx^{\alpha_1}(1-x)^{\alpha_2}, \quad (\alpha_i = m_i/B)
$$

Confinement

Missing confinement in the longitudinal direction

- \varnothing Chiral symmetry breaking \rightarrow Gell-Mann Oakes Renner relation: $M_{\pi}^2 = B m_q + 4 m_q^4$
- \emptyset Regge trajectories: $M^2 \propto n$, L, J
- ² Kinematical symmetries, e.g. *^m*^P = (*−*1) *^J*P, C $m_{\mathsf{P}} = (-1)^{m+S+1}$, $\mathsf{C} = (-1)^{m+S}$: requires $|m| = \max |m_L| = L$, leading to issues with state id.
- 2 Endpoint asymptotics: *∼ ^x a* (1 *− x*) *b*
- ∇ Rotational invariance is non-relativistic limit
- 2 Analytical solutions

$$
\left[\frac{m_{\bar{q}}^2}{x} + \frac{m_{\bar{q}}^2}{1-x}\right] \chi(x) + \frac{g^2}{\pi} P \int_0^1 dx' \frac{\chi(x) - \chi(x')}{(x - x')^2} = M_{\parallel}^2 \chi(x).
$$

▶ Obtained from LFQCD₁₊₁ in the 't Hooft limit $(N_c \to \infty, g_s \to 0, g \equiv g_s \sqrt{N_c}$ fixed) *More general, we can consider the Schwinger model,* QED_{1+1} *and* QCD_{1+1} *.* quark

▶ Confinement from geometry $U_{\parallel} = g^2 |\tilde{z}| = \frac{g^2}{2}$ $\frac{g^2}{2}P^+|x^-|$ N R limit: Ahmady, $\propto (2m_q |\tilde{z}| + \zeta_\perp)$ vs $\sqrt{4m_q^2 \tilde{z}^2 + \zeta_\perp^2}$ (non-separable); [Wilson PRD 1994; Pirner, PLB 2004; Shuryak 2021]

▶ Chiral symmetry breaking via Berezinskii-Kosterlitz-Thouless mechanism GMOR relation: $M_{\pi}^2 = 2\sigma m_q + O(m_q^2)$, where $\sigma = g\sqrt{\pi/3}$. Chiral condensate: $\langle \overline{\psi}\psi \rangle = -gN_c/\sqrt{12\pi} = -f_{\pi}^2\sigma$

$$
\triangleright \text{ Regge trajectory } M_{\ell}^2 = g^2 \pi \ell + (m_q^2 + m_{\bar{q}}^2 - 2g^2 / \pi) \ln \ell \text{ for } \ell \gg 1
$$

▶ Wave functions are not analytic functions: $χ(x) \sim x^{\frac{\beta_1}{2}}(1-x)^{\frac{\beta_2}{2}}$, where $β_i = 2m_i/σ + O(m_i^2)$ are related to the chiral condensate.

Numerical solutions can be obtained with basis expansion using Jacobi polynomials. [See, e.g., Mo & Perry 1993]

$$
\begin{array}{ll}\text{Caveat: separability} & \sim \int \mathrm{d}^2 r'_\perp \delta^2 (r_\perp - r'_\perp) \int \mathrm{d}x' \, K(x-x') \chi(x') \phi(\sqrt{x'(1-x') \vec{r}'_\perp}) \end{array} \times \frac{\sqrt{x(1-x') \vec{r}'_\perp}}{\sqrt{x(1-x') \vec{r}'_\perp}}
$$

anti-quark

$$
\left[\frac{m_{\tilde{q}}^2}{x} + \frac{m_{\tilde{q}}^2}{1-x}\right] \chi(x) - \sigma^2 \partial_x \big(x(1-x) \partial_x \chi(x)\big) = M_{\parallel}^2 \chi(x).
$$

Hermitian by construction

More general, one can consider the Sturm-Liouville operator

▶ Quadratic confining potential $\langle \tilde{z} | U_{\parallel} | \tilde{z}' \rangle = \sigma^2 \tilde{z} \tilde{z}' \frac{j_1(\frac{\tilde{z}' - \tilde{z}}{2})}{2\pi (\tilde{z}' - \tilde{z})}$ $\frac{j_1(\frac{z-z}{2})}{2\pi(\tilde{z}'-\tilde{z})}e^{\frac{i}{2}(\tilde{z}'-\tilde{z})} \to \delta(z-z')\frac{1}{4}M^2\sigma^2z^2$

N.B. there does not exist coordinate operator or coordinate representation in relativistic QM.

 \blacktriangleright Mass spectra: $M_l^2 = (m_q + m_{\bar{q}})^2 + \sigma(m_q + m_{\bar{q}})(2l + 1) + \sigma^2 l(l + 1)$ *For large l, it deviates from the Regge trajectory.*

Wave functions:

$$
\chi_l(x) = Nx^{\frac{\beta_1}{2}}(1-x)^{\frac{\beta_2}{2}}P_l^{(\beta_2,\beta_1)}(2x-1)
$$

where, $β_i = 2m_i/σ$. WF similar to Gutsche et al., but with a factor of 2 difference.

 $▶$ Chiral symmetry breaking: ground state identical to 't Hooft model in the chiral limit with $σ = g\sqrt{π/3}$

$$
\blacktriangleright
$$
 Mass obeys GMOR relation: $M_{\pi}^2 = 2\sigma m_q + O(m_q^2)$

$$
\triangleright
$$
 WF is power law like: $\chi(x) \sim x^{\frac{\beta_1}{2}} (1-x)^{\frac{\beta_2}{2}}$, where $\beta_i = 2m_i/\sigma$

Masses & wave functions are analytically known. \bigcirc

Głazek-Trawiński model **ingledentu (Głazek, APPB 2011, Głazek, Trawiński, PRD 2013**)

Introduce a 3rd momentum: $\kappa_{\parallel} = \frac{m_{\tilde{q}} x - m_q (1-x)}{\sqrt{x(1-x)}}$ and third holographic coordinate $\zeta_{\parallel} = i \partial_{\kappa_{\parallel}}$. The confining interaction is a 3D harmonic oscillator *κ* 4 *ζ* 2 *∥* ,

$$
\left[\frac{m_{\tilde{q}}^2}{x} + \frac{m_{\tilde{q}}^2}{1-x} + \kappa^4 \zeta_{\parallel}^2\right] \chi(x) = M_{\parallel}^2 \chi(x).
$$

▶ Convert light-front kinematics to 3D vector kinematics: $T = \vec{k}^2 + (m_q + m_{\bar{q}})^2$, where $\vec{k} = (\vec{k}_{\perp}, \kappa_{\parallel})$

[See, e.g., Heinzl, Lect. Notes Phys. 2001]

- ▶ Quadratic confining potential, in terms of \tilde{z} , $U_{\parallel} \sim -\partial_x(x^3(1-x)^3\partial_x)$
- Mass spectra obey Regge trajectory
- Wave function generalizes the IMA wave function,

$$
\chi(x) = N \exp \left\{ - \frac{m_q^2}{2\kappa^2 x} - \frac{m_{\bar{q}}^2}{2\kappa^2 (1 - x)} \right\}
$$

 \blacktriangleright Rotational symmetry $\kappa^4 \vec{\zeta}^2$.

Even more longitudinal confining potentials

- ▶ Potential in terms of Miller-Brodsky longitudinal coordinate \tilde{z} , e.g. \tilde{z}^p
- \triangleright Collinear effective model and QFT₁₊₁ \triangleright [Burkardt, PRD 1997] *Related to the ``coordinate rep'n" by Fourier transform:* $K(x - x') = \int d\tilde{z} e^{i\tilde{z}(x - x')} U_{\parallel}(\tilde{z}).$

[Weller & Miller, 2021]

▶ Wave equation in Sturm-Liouville form:

$$
-\partial_x p(x)\partial_x \chi + q(x)\chi = \lambda \chi
$$

where $U_{\parallel} = -\partial_x p(x) \partial_x + \varsigma(x) \tilde{f}_q(x) = m_q^2 / x + m_{\bar{q}}^2 / (1-x)$

- ▶ *Sturm-Liouville theorem guarantees the existence of well-behaved solutions*
- \blacktriangleright *Non-trivial due to the singularities in LF kinetic energy* $q(x)$ *and in* $1/\sqrt{p(x)}$ at $x = 0, 1$
- ▶ *Mathematically, there are only a few well established SL problems directly connected to LFSWE, the LMZV confining potential* $p = x(1 - x)$ *is one of them.* 20

$$
\left[\frac{m_q^2}{x(1-x)} - \sigma^2 \frac{\mathrm{d}^2}{\mathrm{d}x^2}\right] \chi(x) = M_{\parallel}^2 \chi(x)
$$

Another examples with $p(x) = 1$,

Comparison

Other effective qq¯ *interactions for* QCD3+¹ *(a partial list)*

Wilson, Walhout, Harindranath, Zhang, Perry, & Głazek, PRD 1994, relativized linear confinement; Brisudová, Perry & Wilson, PRL 1997, log confinement from O(*αs*) *similarity renormalization; Burkardt & Klindworth, PRD 1997, qq*¯ *potential from transverse lattice; Pauli, EPJC 1999, relativized confining potential based on Krautgärtner-Pauli-Wölz type OGE interaction; Gubankova, Ji & Cotanch, PRD 2000, linear confinement from truncated flow equation; Frederico et al., PRD 2002, relativized harmonic oscillator potential; Pirner & Nurpeissov, PLB 2004, generalizes 't Hooft interaction based on Wilson loop; Głazek et al., PRD 2004 & 2006, PLB 2017, quadratic confinement from O*(*αs*) *similarity renormalization group; Shuryak & Zahed, arXiv:2111.01775 [hep-ph], generalizes 't Hooft interaction based on NG model;*

.

$LMZV/BLFG₀$ for light mesons

$$
H_{\text{eff}} = \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{1 - x} + \kappa^4 \vec{\xi}_{\perp}^2 + 2\kappa^2 (J - 1) - \sigma^2 \partial_x (x(1 - x) \partial_x).
$$

Mass spectra:

$$
M_{nmIJS}^2 = 2\kappa^2 (2n + |m| + I) + (m_q + m_{\bar{q}})^2 + \sigma (m_q + m_{\bar{q}})(2l + 1) + \sigma^2 l(l + 1),
$$

=
$$
M_{\pi}^2 + 2\kappa^2 (2n + |m| + I) + \sigma^2 l(l + 1) + 2l\sigma (m_q + m_{\bar{q}})
$$

Differ from LFH+IMA predictions only for states with longitudinal excitation $l \neq 0$

Wave functions:

$$
\psi_{nmIJS}(x,\vec{k}_{\perp})=\phi_{nm}(\vec{k}_{\perp}/\sqrt{x(1-x)})\chi_{I}(x).
$$

where ϕ_{nm} *is harmonic oscillator function,* $\chi_l(x) = Nx^{\frac{\beta}{2}}(1-x)^{\frac{\alpha}{2}}P_l^{(\alpha,\beta)}(2x-1)$ *.*

$$
\text{Pion: } M_{\pi}^{2} = 2\sigma m_{\{u,d\}} + 4m_{\{u,d\}}^{2}, \ \psi_{\pi}(x,\vec{k}_{\perp}) = \mathcal{N}[x(1-x)]^{\frac{\beta}{2}} e^{-\frac{\vec{k}_{\perp}^{2}}{2\kappa^{2}x(1-x)}}
$$

Parameters of our model. The holographic confining strength κ is adopted from LFH

State identification

$$
\blacktriangleright
$$
 Quantum number assignment: $(n, m, l, S, J) \rightarrow (J, P, C)$

▶ Exact symmetries: mirror parity $m_{\text{P}} = (-1)^{f}P$ and charge conjugation C: [Soper, PRD 1972; Brodsky PRD 2006]

$$
m_{\mathsf{P}} = \int [\mathrm{d}x \, \mathrm{d}^2 k_{\perp}] \psi_{s\bar{s}}^*(x, \vec{k}_{\perp}) \psi_{-s-\bar{s}}(x, \tilde{k}_{\perp}) = (-1)^{m+S+1}, \quad (\tilde{k}_{\perp} = (-k_x, k_y))
$$

$$
\mathsf{C} = \int [\mathrm{d}x \, \mathrm{d}^2 k_{\perp}] \psi_{s\bar{s}}^*(x, \vec{k}_{\perp}) \psi_{s\bar{s}}(1-x, -\vec{k}_{\perp}) = (-1)^{m+1+S}.
$$

▶ Approximate symmetries: $P = (-1)^{L+1}$, $C = (-1)^{L+S}$, with $|m| = \max m_L \equiv L$

Violation of transverse rotational symmetry in LFD leads to the lift of mass degeneracy in m_I . .

LFH w. *χ*SB (Yang Li, USTC) **24/37** 24/37 **ILCAC seminar, February 16, 2022** 24/37 **ILCAC seminar, February 16, 2022**

Spectrum of light mesons $q\bar{q}$

For states without longitudinal excitations, the predictions are identical to those of LFH with IMA

 $▶$ For states with longitudinal excitations, a_0 , $ρ(1700)$, b_1 , a_2 and $ρ_2$, the predictions are improved

[LFHQCD: Brodsky, Phys. Rep. '14; PRC '20; Gutsche, PRD '13; Ahmady '21&'21]

For states without longitudinal excitations, the predictions are identical to those of LFH with IMA

 \blacktriangleright For states with longitudinal excitations, K_1, K_2 , the predictions are improved

[LFHQCD: Brodsky, Phys. Rep. '14; PRC '20; Gutsche, PRD '13; Ahmady '21&'21]

Rotation symmetry

Violation of rotation symmetry leads to a lift of the mass degeneracies in different m_I projections.

- In model w. longitudinal dynamics, e.g. LMZV/BLFO₀, this can be incorporated in state id.
- Violation of Regge scaling in LMZV model leads to large spreads of mass eigenvalues for high-J states
- In LFH+IMA, only states with $|m| = \max |m_I| = L$ can be described

$$
M_{[nmlJ,BLFQ_0]}^2 = M_{\pi}^2 + 2\kappa^2 (2n + |m| + I) + 4I\sigma m_q + \sigma^2 I(l+1),
$$

$$
M_{[nml,J,MA]}^2 = M_{\pi}^2 + 2\kappa^2 (2n + L + I).
$$

27/37

Comparison of state identification of selected light mesons with longitudinal excitations.

Endpoint behavior

The endpoint behavior has an impact on hadronic observables in high energy collisions as hard kernels T_H are sensitive to the endpoint singularities.

Longitudinal wave function without longitudinal dynamics

▶ Adopt the transverse holographic wave functions $\phi_{nm}(\vec{z}_\perp)$ and longitudinal wave functions $\chi_l(x)$ as the building block *A hadron state is the superposition of all basis states allowed by the (kinematical) symmetries: Lorentz boosts, rotational symmetry along z, m_P, C, ...*

$$
\psi_{s\bar{s}/V}^{(\lambda)}(x,\vec{r}_{\perp})=\sum_{n,m,l}C_{nmls\bar{s}}^{\lambda}\phi_{nm}(\sqrt{x(1-x)}\vec{r}_{\perp})\chi_l(x)\propto x^{\frac{\beta}{2}}(1-x)^{\frac{\alpha}{2}}e^{-\frac{x^2}{2}x(1-x)\vec{r}_{\perp}^2}.
$$

- ▶ Adopt a set of physical observables, decay constant, radius, leptonic/radiative width etc to fix the basis parameters $\{\alpha, \beta, \kappa\}$ and the basis coefficients $C_{nmls\bar{s}}$ *Additional constraints: orthogonality, angular momentum coupling with Clebshch-Gordan coefficients, ...*
- Application to vector meson diffractive production [Li, YL, Chen, Lappi, and Vary, arXiv:2111.07087]
- Similar to the moments reconstruction used in DSE/BSE [Shi, PRL 2019]

Semi-classical first approximation

From semi-classical first approximation to ab initio calculation

$$
H = \sum_{i} h_i + \sum_{ij} V_{ij}^{(2)}
$$

 w here $h_i = T_i + U_i$, whose eigenstates are chosen to span the Hilbert space ${\cal H}$ (ideally, h_i is analytically solvable)

- ▶ In practice, the basis space is finite truncated, $\mathcal{H} \rightarrow \mathcal{P}_A$ and $H \rightarrow H_{\text{eff}}[\mathcal{P}_A]$
- H_{eff} defined in \mathcal{P}_A can be viewed as similarity RG transformation \rightarrow non-linear matrix equations

Perturbative expansion

\nFurthermore, the exact results if
$$
a \to A
$$
 is given by:

\n
$$
H_{\text{eff}} = e^{-S_A} H e^{+S_A} = \sum_{i} h_i + \sum_{ij} \widetilde{V}_{ij}^{(2)} + \sum_{ijk} \widetilde{V}_{ijk}^{(3)} + \cdots + \sum_{i_1, i_2, \dots, i_A} \widetilde{V}_{i_1 i_2 \dots i_A}^{(A)} \widetilde{V}_{i_1 i_2 \dots i_A}^{(A)}
$$
\n
$$
\approx \sum_{i} h_i + \sum_{ij} \widetilde{V}_{ij}^{(2)} + \cdots + \sum_{i_1, i_2, \dots, i_A} \widetilde{V}_{i_1 i_2 \dots i_A}^{(A)}
$$
\n
$$
\text{Converge to the exact results if } a \to A \text{ or } \mathcal{P}_A \to \mathcal{H}
$$
\nConverge

LFH w. *χ*SB (Yang Li, USTC) 32/37 31/37 31/37 ILCAC seminar, February 16, 2022

Beyond semi-classical first approximation

Extending the effective interaction with one-gluon exchange interaction by Krautgär tner et al. based on per turbative Bloch-Wilson/Okubo-Suzuki-Lee transformation [YL, Maris, Zhao, Vary, PLB 2016]

$$
H_{\text{eff}} = \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{1 - x} + \kappa^4 \zeta_{\perp}^2 - \sigma^2 \partial_x \left[x(1 - x) \partial_x \right] - \frac{C_F 4 \pi \alpha_s(Q^2)}{Q^2} \bar{u}_{s'}(k') \gamma_\mu u_s(k) \bar{v}_s(k) \gamma^\mu v_{s'}(k')
$$

- **Alternative** $q\bar{q}$ **interactions** [Brisudova PRL 1997 and many others]
- **Truncation up to** $q\bar{q}g$
- Lessons from strongly interacting non-relativistic quantum many-body calculations [Hergert, FP 2020]

Mass spectra & wave functions

 \blacktriangleright $c\bar{c}$, $b\bar{b}$; ¯*b*: YL, Maris, Vary, PRD '17 \blacktriangleright $B_c(b\bar{c})$: Tang, PRD '18 ▶ heavy-light mesons *B*, *D*, *B^s* , *D^s* Tang, EPJC '20 ▶ light mesons $q\bar{q}$, $s\bar{q}$: Jia, PRC '19; Qian, PRC '20; ▶ nucleons: Mondal, PRD '20; Xu, PRD '21 ▶ tetraquark: Kuang, '22

Form factors

▶ elastic form factors: YL, Maris, Vary, PRD '18 ▶ (semi-)leptonic decay: Li, PRD '18 & '19; Tang, PRD '21 ▶ radiative decay: YL, '21 Parton structures \triangleright π : Lan, PRL '19 & PRD '20 \blacktriangleright $c\bar{c}$, *bb*: ¯*b*: Adhikari, PRC '18&'21; Lan, PRD '20 ▶ nucleons: Mondal, PRD '20; Xu, PRD '21; Liu '22 LFH w. *χ*SB (Yang Li, USTC) **32/37** 32/37 **ILCAC seminar, February 16, 2022** 37

- ▶ The role of longitudinal dynamics in a semi-classical first approximation to QCD based on light-front holography
- ▶ A survey of recent work on the longitudinal confining interaction, in particular, the implementation of chiral symmetry breaking
- Prospects towards ab initio calculations based on first approximation

Best Wishes for the Year of Tiger

fin

backup slides

LFH w. *χ*SB (Yang Li, USTC) **35/37** 35/37 ILCAC seminar, February 16, 2022

$$
H_{\text{eff}} = \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\tilde{q}}^2}{1 - x} + \kappa^4 \zeta_{\perp}^2 - \sigma^2 \partial_x \left[x(1 - x) \partial_x \right] - \frac{C_F 4 \pi \alpha_s(Q^2)}{Q^2} \bar{u}_{s'}(k') \gamma_{\mu} u_s(k) \bar{v}_{\bar{s}}(\bar{k}) \gamma^{\mu} v_{\bar{s}'}(\bar{k}')
$$

Bottom-up and top-down

Lessons from nuclear physics: universality across the RG evolved NN forces

