

- 0 -

Effect of tensor force in nuclear structure

Eun Ja Ha¹

in collaboration with

Myung-Ki Cheoun² and Hiroyuki Sagawa³

- 1) Department of General Education for Human Creativity, Hoseo University, Asan, Korea
- 2) Origin of Matter and Evolution of Galaxy (OMEG) Institute, Soongsil University, Seoul, Korea
- 3) RIKEN and University of Aizu, Japan

Contents

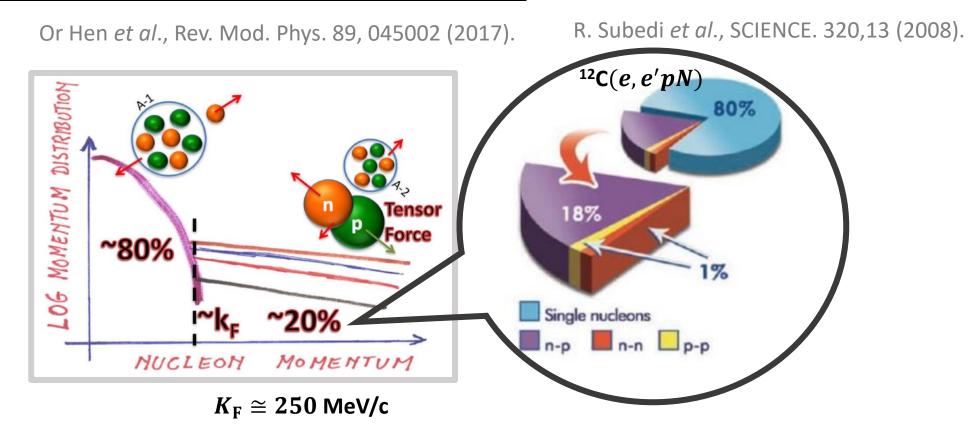
- 1. Introduction
- 2. Formalism
- 3. Effect of tensor force in the ground state of nuclei
- 4. Effect of tensor force in the excited state of nuclei
- 5. Summary

This talk was based on our recent papers.

- Isoscalar pairing correlations by the tensor force in the ground states of ¹²C, ¹⁶O, ²⁰Ne, and ³²S nuclei. Ha *et al.* PRC104, 034306(2021)
- 2. Tensor Force Effects on the Gamow-Teller Transition for ⁴²Ca, ⁴⁶Ti and ¹⁸O. Ha *et al.* submitted to EPJA

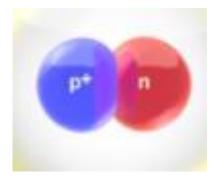
1. Introduction

Short-range correlation(SRC) pairs in nuclei

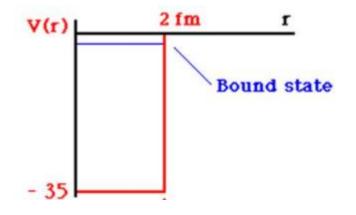


- High-momentum tail from tensor force at k > k_F in N=Z and N > Z nuclei.
- Mean field : two-body interaction → one-body interaction
- But two-body interaction still remain at the short range region.
 In order to consider the residual interaction, we introduce the pairing correlations.

Tensor force : first evidence from the deuteron



Binding energy	2.225 MeV
Spin, parity	1+
Isospin	0
Magnetic moment	μ=0.857 μ _N
Electric quadrupole moment	Q=0.282 e fm ²



$$|\psi_d\rangle = 0.98 |{}^{3}S_1\rangle + 0.20 |{}^{3}D_1\rangle$$

 $2S+1 L_J (L = 0) (L = 2)$
 $S = 1$

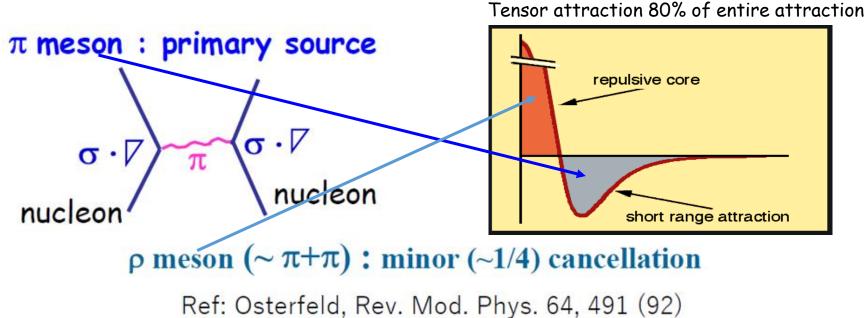
✓ Tensor force(TF) mixes two states.
✓ Without TF deuteron is unbound.

: Non-central force (S=1)

$$\hat{V}_T = V_T(r)\hat{S}_{12}$$
$$\hat{S}_{12} = 3\frac{(\boldsymbol{\sigma}_1 \cdot \boldsymbol{r})(\boldsymbol{\sigma}_2 \cdot \boldsymbol{r})}{r^2} - (\boldsymbol{\sigma}_1 \cdot \boldsymbol{\sigma}_2) \quad \text{:Tensor operator}$$

Origin of TF:

Tensor force (TF)



From Otsuka's talk -6-

How does the tensor force work ?

$$\hat{S}_{12} = 3 \frac{(\sigma_1 \cdot r)(\sigma_2 \cdot r)}{r^2} - (\sigma_1 \cdot \sigma_2) = -2S^2(1 - 3\cos^2\theta) \sim Y_{2,0} \quad \hat{S}_{12} = 0 \text{ for } S = 0$$

contribute only to S=1 states.
Spin of each nucleon \uparrow is parallel, because the
total spin must be S=1
The potential has the following dependence on
the angle θ with respect to the total spin \vec{S} .
 $\hat{V}_T = VT(r)\hat{S}_{12} \qquad V_T(r) < 0$: Tensor force
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T = VT(r)\hat{S}_{12} \qquad V_T(r) < 0$: Tensor force
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T = VT(r)\hat{S}_{12} \qquad V_T(r) < 0$: Tensor force
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$
 $\hat{V}_T \sim -\hat{S}_{12} \sim 1 - 3\cos^2\theta$

From Otsuka's talk -7-

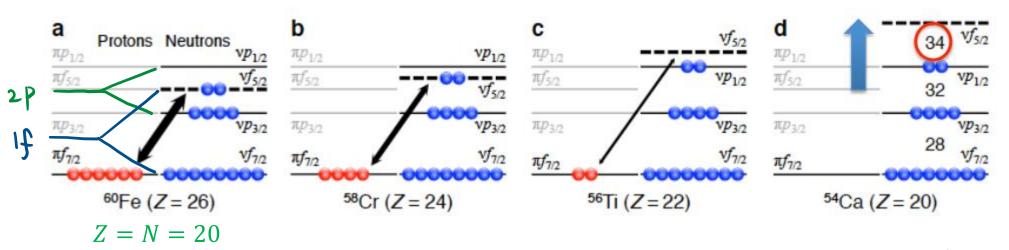
New magic number from ⁵⁴Ca (N=34)!

D. Steppenbeck *et al.* Nature 502,207(2013)

⁷⁰Zn³⁰⁺ ions at 345MeV by BigRIPS

N=34 magic number and the shell evolution due to proton-neutron interaction

neutron $f_{5/2} - p_{1/2}$ spacing increases by ~0.5 MeV per one-proton removal from $f_{7/2}$, where tensor and central forces works coherently and almost equally. note : $f_{5/2} = j$, $f_{7/2} = j$



From Otsuka's talk

PHYSICAL REVIEW LETTERS 121, 242501 (2018)

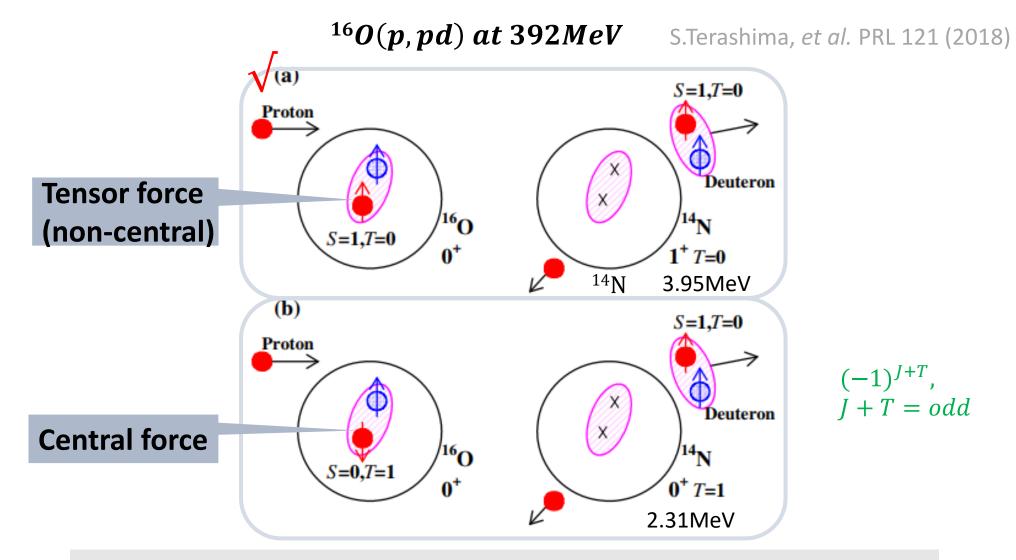
Dominance of Tensor Correlations in High-Momentum Nucleon Pairs Studied by (p,pd) Reaction

S. Terashima,^{1,2,*} L. Yu,¹ H. J. Ong,³ I. Tanihata,^{1,2,3} S. Adachi,³ N. Aoi,³ P. Y. Chan,³ H. Fujioka,⁴ M. Fukuda,⁵
H. Geissel,^{6,7} G. Gey,³ J. Golak,⁸ E. Haettner,^{6,7} C. Iwamoto,³ T. Kawabata,⁴ H. Kamada,⁹ X. Y. Le,^{1,2} H. Sakaguchi,³
A. Sakaue,⁴ C. Scheidenberger,^{6,7} R. Skibiński,⁸ B. H. Sun,^{1,2,10} A. Tamii,³ T. L. Tang,³ D. T. Tran,^{3,11} K. Topolnicki,⁸
T. F. Wang,^{1,2} Y. N. Watanabe,¹² H. Weick,⁶ H. Witała,⁸ G. X. Zhang,^{1,2} and L. H. Zhu^{1,2,10}
¹School of Physics and Nuclear Energy Engineering, Beihang University, 100191 Beijing, China
²International Research Center for Nuclei and Particles in Cosmos, Beihang University, 100191 Beijing, China
³RCNP, Osaka University, 10-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
⁴Department of Physics, Kyoto University, Kyoto 606-8502, Japan
⁵Department of Physics, Osaka University, 1-5 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
⁶GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planskstraße 1, 64291 Darmstadt, Germany
⁷Justus-Liebig-Universitä Gießen, Heinrich-Buff-Ring 16, 35392 Gießen, Germany
⁸M. Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
⁹Department of Physics, Vietnam Academy of Science and Technology, Kitakyushu 804-8550, Japan
¹⁰Beijing Advanced Innovation Center for Big Data based Precision Medicine, Beihang University, 100083 Beijing, China

(Received 7 September 2018; published 11 December 2018)

The isospin character of *p*-*n* pairs at large relative momentum has been observed for the first time in the ¹⁶O ground state. A strong population of the J, T = 1, 0 state and a very weak population of the J, T = 0, 1 state were observed in the neutron pickup domain of ¹⁶O(*p*, *pd*) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ¹⁶O.

Dominance of tensor correlations in high-momentum n-p pairs



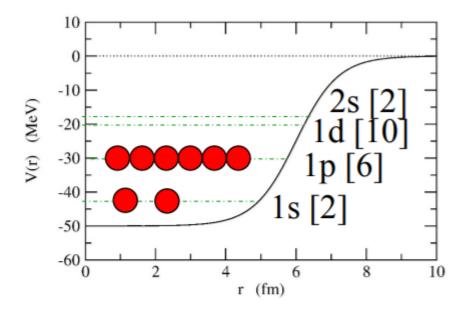
- S=1,T=0 channel in the cross section is dominant.
- The high-momentum *n-p* pairs(S=1,T=0) due to tensor force has been observed in the ¹⁶O ground state.

2. Formalism

- Deformation
- Pairing correlations

Many-body system

Mean-field approximation



2

$$H \sim \sum_{i} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{MF}}(r_i) \right)$$

Slater determinant $\Psi_{\mathsf{MF}}(1,2,\cdots,A)$ $= \mathcal{A}[\psi_1(1)\psi_2(2)\cdots\psi_A(A)]$

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{\mathsf{MF}}(r)\right)\psi_k(r) = \epsilon_k\psi_k(r)$$

the original many-body *H*:

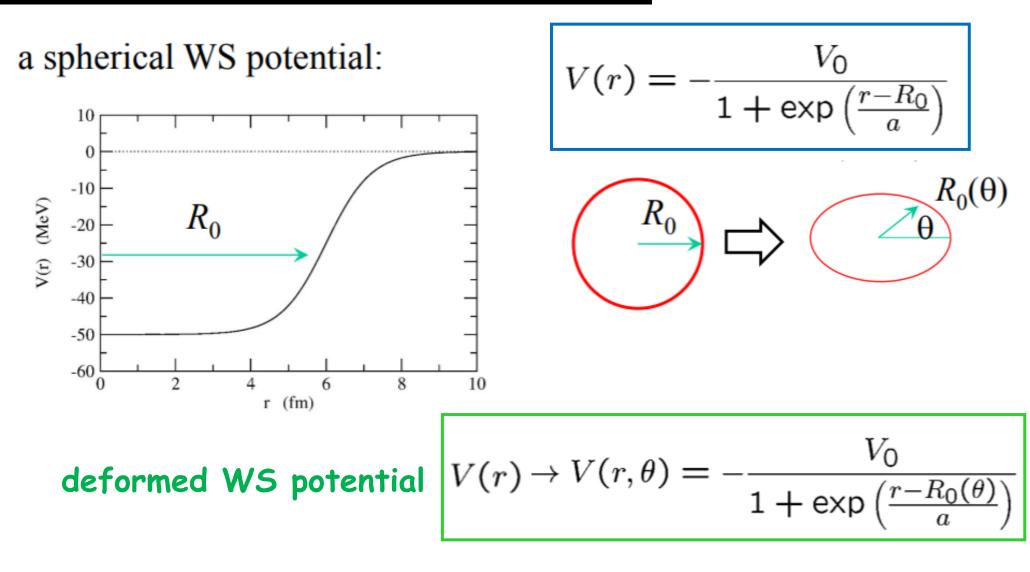
ł

Interacting many-fermion sys. \rightarrow non-interacting fermions A

$$H = -\sum_{i=1}^{A} \frac{\hbar^2}{2m} \nabla_i^2 + \frac{1}{2} \sum_{i,j}^{A} v(r_i, r_j)$$

$$= \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m} \nabla_i^2 + V_{\mathsf{MF}}(r_i) \right) + \frac{1}{2} \sum_{i,j}^{A} v(r_i, r_j) - \sum_i V_{\mathsf{MF}}(r_i)$$

One-particle motion in a deformed potential



 $R_0 \to R_0(1 + \beta_2 Y_{20}(\theta))$

$$V(r,\theta) \sim V_0(r) - \beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta) + \cdots$$

• the effect of Y_{20} term

Eigen-functions for $\beta_2=0$ (spherical pot.) :

$$\psi_{nll_z}(\boldsymbol{r}) = R_{nl}(\boldsymbol{r})Y_{ll_z}(\hat{\boldsymbol{r}})$$

eigen-values: E_{nl} (no dependence on l_z)

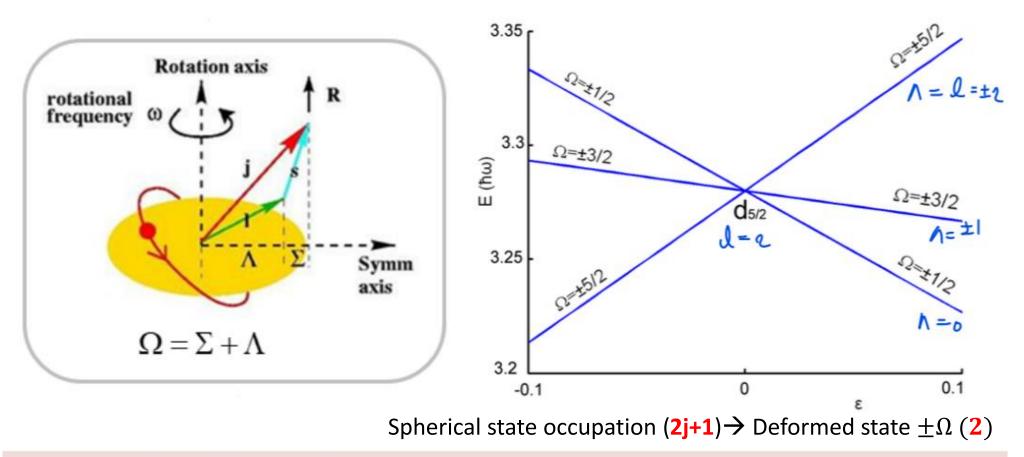
The change of energy due to the Y_{20} term (1st order perturbation theory):

$$E_{nl} \rightarrow E_{nl} + \langle \psi_{nll_z} | \Delta V | \psi_{nll_z} \rangle$$
$$\Delta V(r) = -\beta_2 R_0 \frac{dV_0}{dr} Y_{20}(\theta)$$

K is good quantum number !!

 $project Tan on Z \rightarrow \mathcal{N} \\ \rightarrow \mathcal{N} \\ \mathcal{N} = \mathcal{N} \pm \frac{1}{2}$ In spherical basis, j is a good quantum number. J But in deformed basis, a projection of J on the nuclear symmetric axis z, Ω , is a good quantum number.

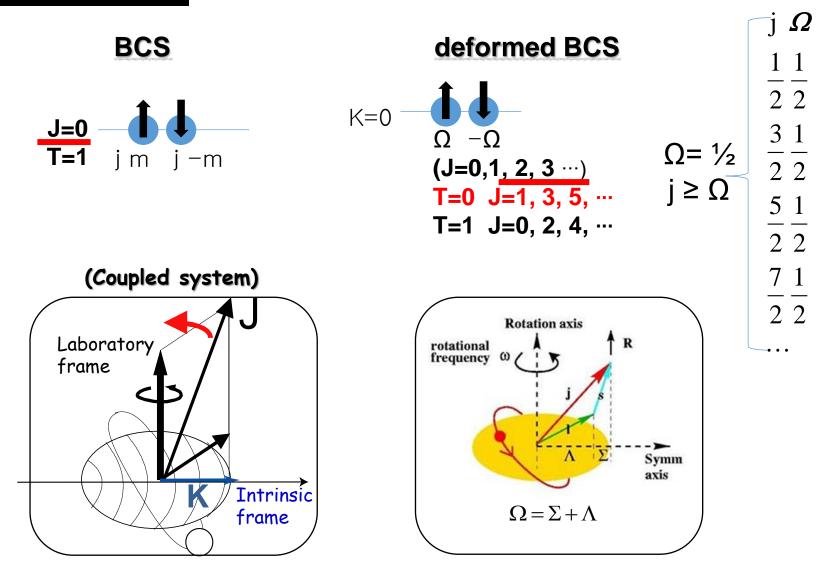
Deformed states, $\pm 5/2$, $\pm 3/2$, and $\pm 1/2$, are separated from the spherical state $d_{5/2}$.



Single particle states in deformed nucleus become more complex.

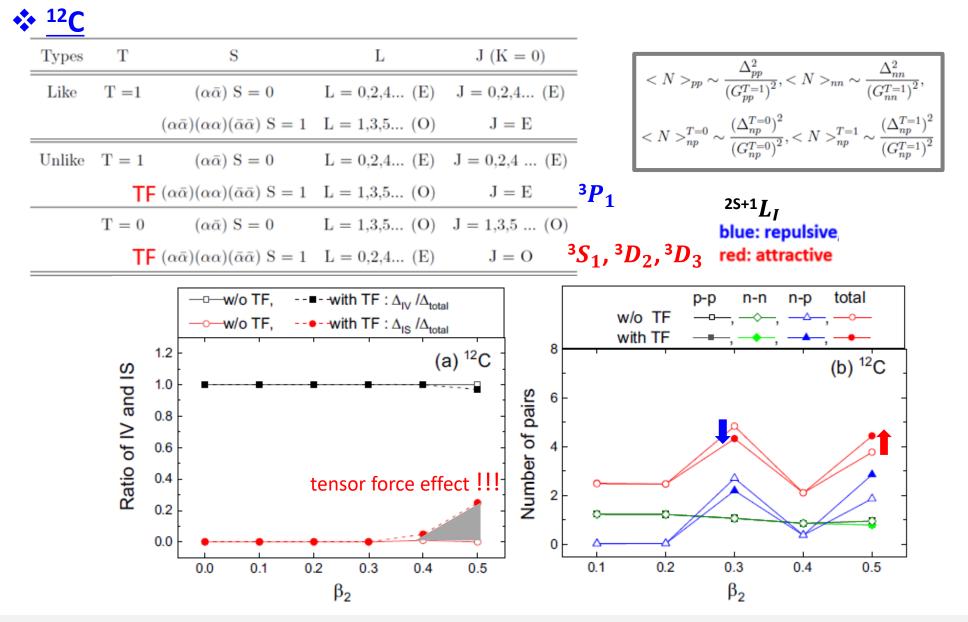
	T=1 (Is					
-	Types	Т	S	L	J~(K=0)	
	P Like	T =1	$(\alpha \bar{\alpha}) \mathbf{S} = 0$	L = 0,2,4 (E)	J = 0,2,4 (E)	
-			$(\alpha \bar{\alpha})(\alpha \alpha)(\bar{\alpha} \bar{\alpha}) \mathbf{S} = 1$	L = 1,3,5 (O)	J = E Not	allowed
-	Unlike	T = 1	$(\alpha \bar{\alpha}) \mathbf{S} = 0$	L = 0,2,4 (E)	$J = 0,2,4 \dots (E)$	25
-		TF	$(\alpha \bar{\alpha})(\alpha \alpha)(\bar{\alpha} \bar{\alpha}) \mathbf{S} = 1$	L = 1,3,5 (O)	$\mathrm{J}=\mathrm{E}$ No er	npirical evidence
	.	T = 0	$(\alpha \bar{\alpha}) \mathbf{S} = 0$	L = 1,3,5 (O)	$J = 1,\!3,\!5\dots(O)$	^{2S+1} L _J
-		TF	$(\alpha \bar{\alpha})(\alpha \alpha)(\bar{\alpha} \bar{\alpha}) \mathbf{S} = 1$	L = 0,2,4 (E)	$\mathbf{J} = \mathbf{O}$	³ S ₁ , ³ D ₁
	In deformed formalism !					blue: repulsive, red: attractive

BCS & DBCS



The different total angular momenta of the SP basis states would be mixed because the deformed SPS are expanded in terms of the spherical SP bases.

3. Effect of tensor force in the ground states

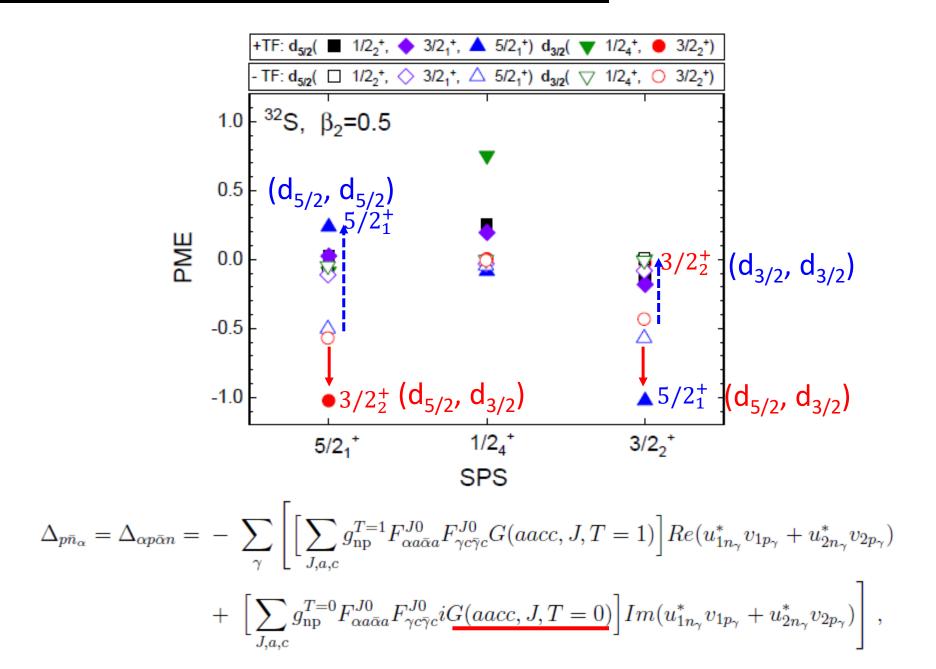


• # of nn & pp pairs are rarely by the **TF**, while that of np pairs changes at certain deformation.

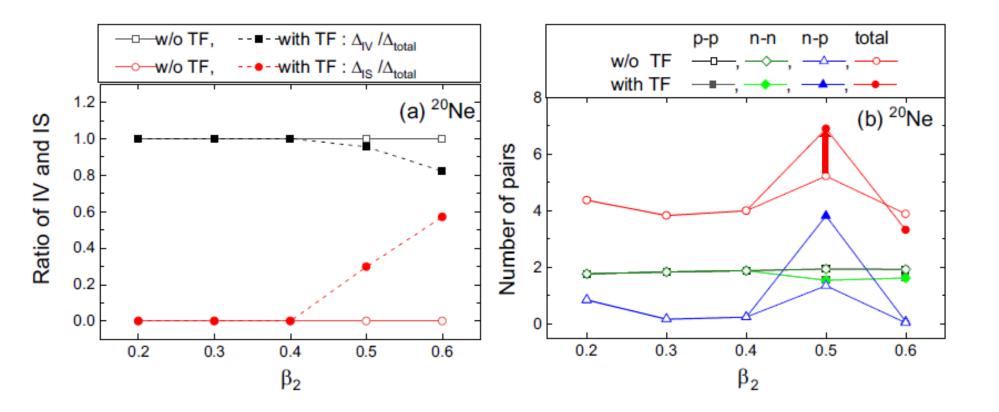
• **TF** increases (decreases) the **PME**s of the T=0 *np* channel by its attractive (repulsive) property around $\beta_2 \sim 0.5$ (0.3)

• **TF is sensitive on the deformation** and may break the IV dominance of the *np* pairing.

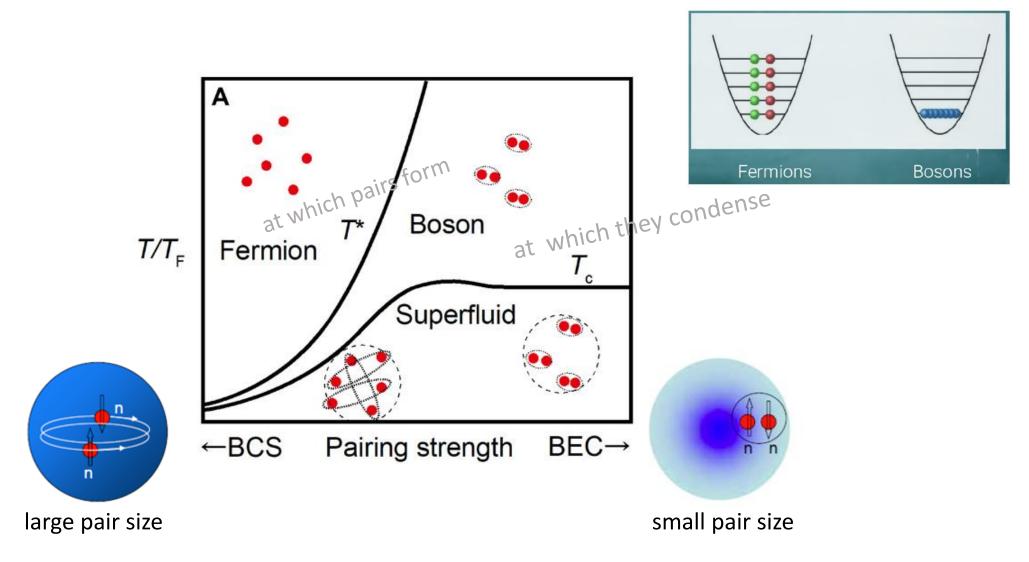
Pairing matrix elements(PMEs) by G-matrix



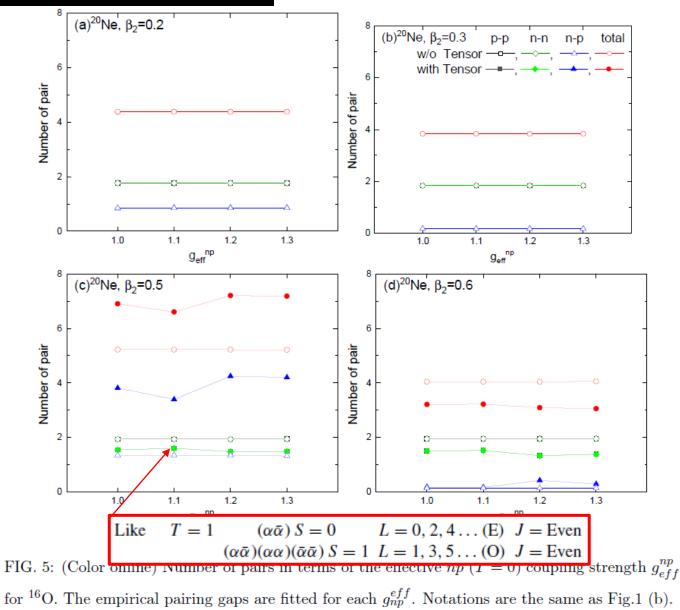
✤ ²⁰Ne



BCS(Bardeen-Cooper-Schrieffer) & BEC(Bose-Einstein condensation)



Effect of IS enhancement

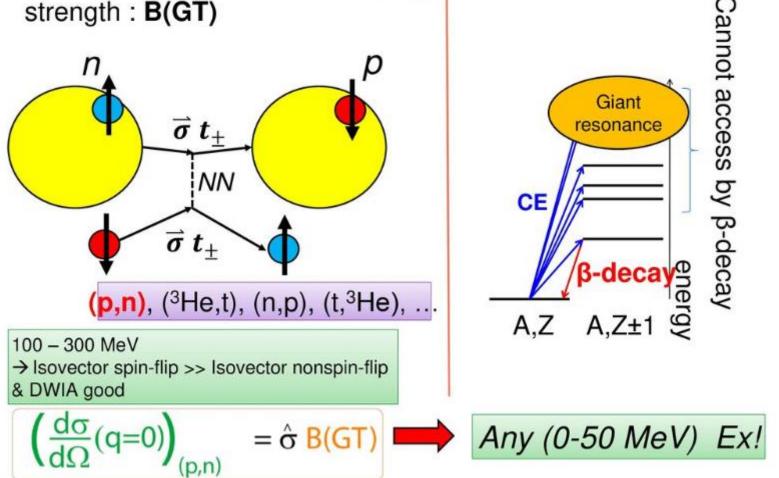


BEC phase might not occur in ²⁰Ne.

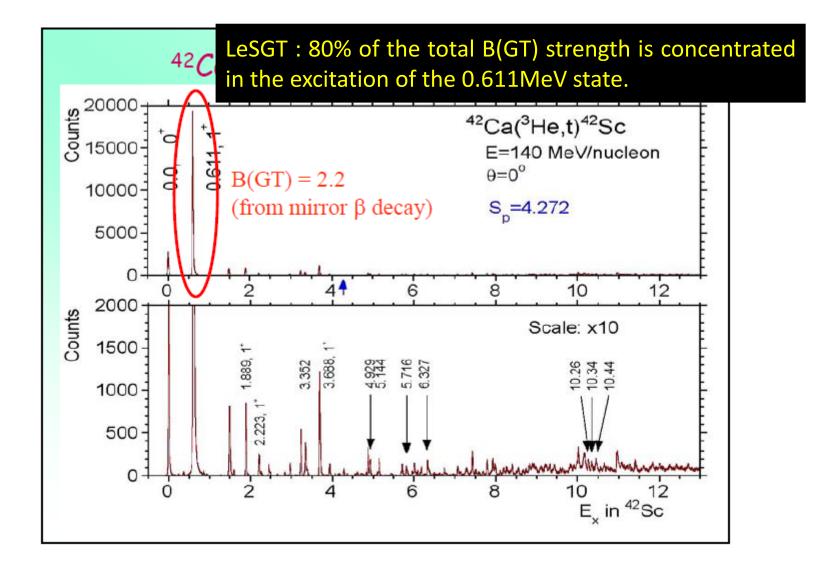
4. Effect of tensor force in the excited state

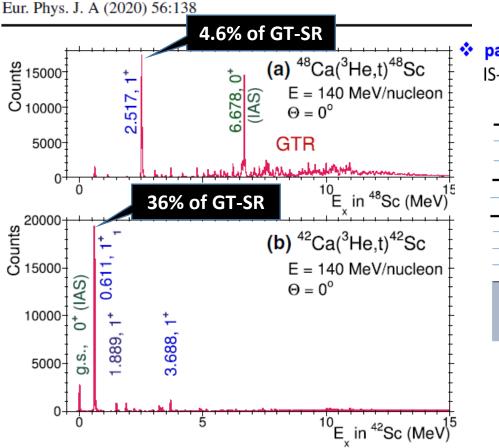
Gamow-Teller transition and Charge-Exchange (CE) reactions at 100-300 MeV

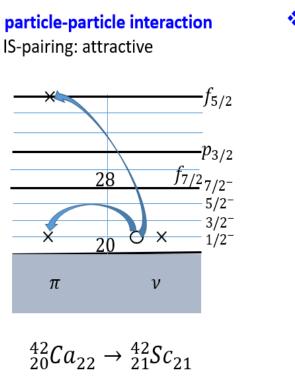
 $\Delta T=1$, $\Delta S=1$, $\Delta L=0$ induced by $\vec{\sigma} t_{\pm}$ strength : **B(GT)**



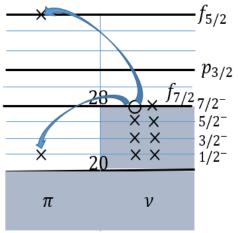
Low-energy super GT state(LeSGT) in N=Z+2 nuclei







particle-hole interaction IV-pairing : repulsive



 ${}^{48}_{20}Ca_{28} \rightarrow {}^{48}_{21}Sc_{27}$

Fig. 1 a 48 Ca(3 He, t) 48 Sc [32] and b 42 Ca(3 He, t) 42 Sc [16] spectra taken at an intermediate incident energy of 140 MeV/nucleon and 0°. The vertical scales of a and b are so normalized that the heights of GT peaks (and IAS peaks) are proportional to their B(GT) [B(F)] values.

The GT sum-rule (GT-SR) suggests that the total GT strength is four times larger in ⁴⁸Sc than in ⁴²Sc. In ⁴⁸Sc, the broad GT-resonance (GTR) structure spreading in the $E_x \approx 5 - 14$ MeV region carries the main part of the GT-SR strength, while the B(GT) = 1.1 of the sharp 2.517 MeV state is only 4.6% of the GT-SR. In ⁴²Sc, however, 0.611 MeV, $J^{\pi} = 1^+_1$ LeSGT state carries 36% of the GT-SR and \approx 80% of the observed GT strength [16]

GT strength Calculations: HFB+QRPA + pairing int.

Bai, Sagawa, Colo et al., PL B 719 (2013) 116

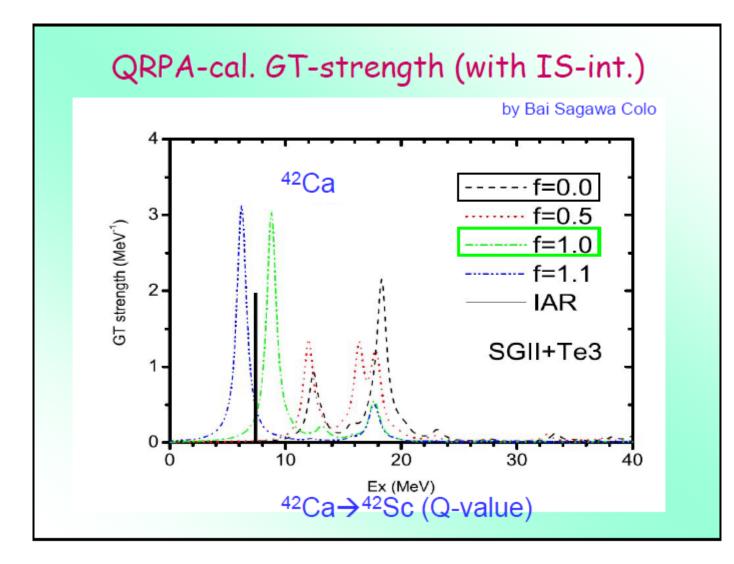
The density dependent contact pairing interactions are adopted for both T = 1 and T = 0 channels,

$$\mathbf{IV} \quad V_{T=1}(\mathbf{r}_1, \mathbf{r}_2) = V_0 \frac{1 - P_\sigma}{2} \left(1 - \frac{\rho(\mathbf{r})}{\rho_o} \right) \delta(\mathbf{r}_1 - \mathbf{r}_2), \tag{1}$$

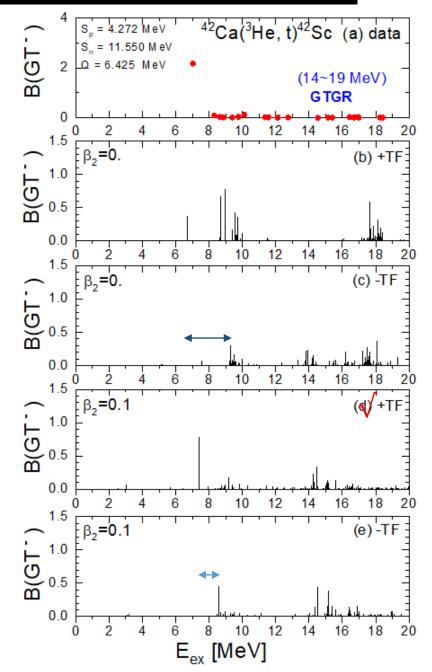
IS
$$V_{T=0}(\mathbf{r}_1, \mathbf{r}_2) = \int V_0 \frac{1+P_\sigma}{2} \left(1 - \frac{\rho(\mathbf{r})}{\rho_o}\right) \delta(\mathbf{r}_1 - \mathbf{r}_2),$$
 (2)

Results (using Skyrme int. SGII) at f=0: there is little strength in the lower energy part, at $f=1.0\sim1.7$: coherent low-energy strength develops!

Low-energy super GT state(LeSGT)



Role of TF in GT states



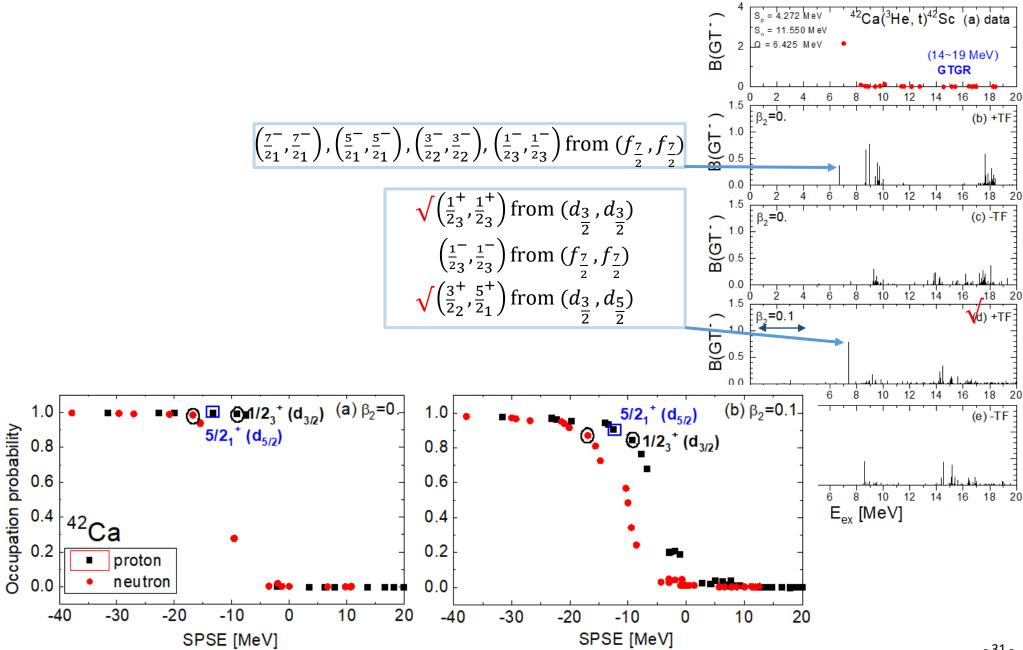
Tensor force & Deformation ?

$$\frac{g_{pp}}{g_{ph}} = 1.7 : {}^{42}\text{Ca}$$

$$\frac{\beta_2(E2)}{\beta_2(FRDM)} \frac{\beta_2(RMF)}{\beta_2(RMF)}$$

$$\frac{4^2\text{Ca}}{2} = 0.245 = 0. 0. 0. 0.$$

Role of TF in GT states •••

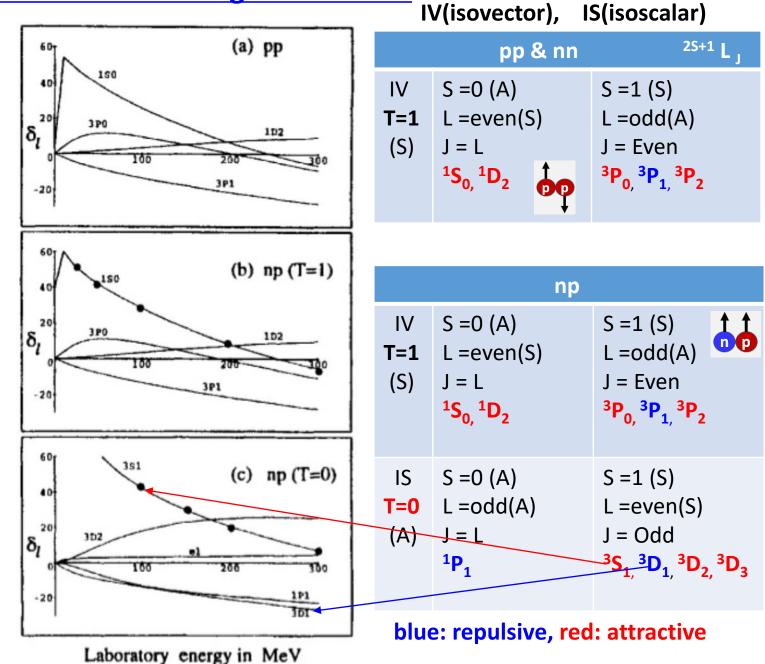




- 1. The noncentral TF effect turns out to be sensitive to the deformation and breaks the IV dominance of the *np* pairing.
- 2. The number of *np* pairs is increased(reduce) by the attractive(repulsive) spintriplet even(odd) TF.
- 3. The nuclear deformation turns out to be another key factor to determine the number of IS pairs reflecting the TF property.
- 4. **TF** plays an important role in producing the low-energy GT peak.
- 5. The attractive TF affects not only the ground state but also plays a crucial role of shifting the main GT peak to the lower excitation energy leading to the LeGST.

Thank you for your attention!

* Nucleon-Nucleon Scattering Phase Shifts

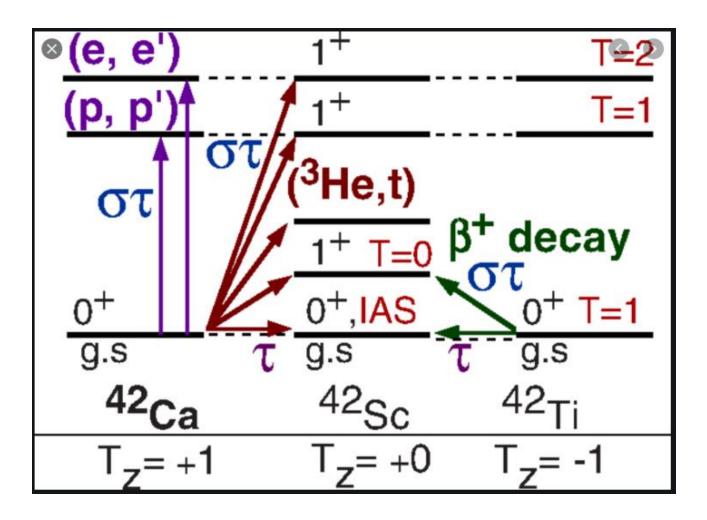


Six parameters in empirical formula

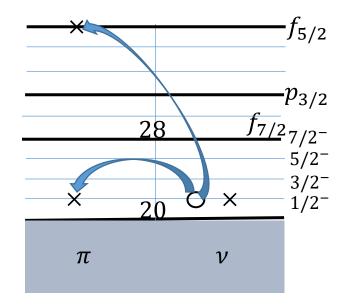
Table 2.2: Values adopted for the six parameters in Eq. (2.1) for the excitation energies of the first natural parity even multipole states including 2_1^+ , 4_1^+ , 6_1^+ , 8_1^+ , and 10_1^+ states. The last two columns are the χ^2 value which fits the parameter set and the total number N_0 of the data points, respectively, for the corresponding multipole state.

J_1^{π}	α	γ	β_p	β_n	λ_p	λ_n	χ^2	N_0
	(MeV)		(MeV)	(MeV)				
2_{1}^{+}	68.37	1.34	0.83	1.17	0.42	0.28	0.126	557
4_{1}^{+}	268.04	1.38	1.21	1.68	0.33	0.23	0.071	430
6_{1}^{+}	598.17	1.38	1.40	1.64	0.31	0.18	0.069	375
8_{1}^{+}	$1,\!438.59$	1.45	1.34	1.50	0.26	0.15	0.053	309
10^{+}_{1}	2316.85	1.47	1.36	1.65	0.21	0.14	0.034	265

Isobaric analogue state (IAS)

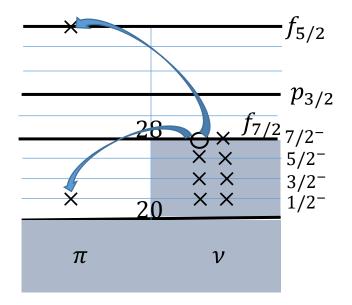


particle-particle interaction IS-pairing: attractive



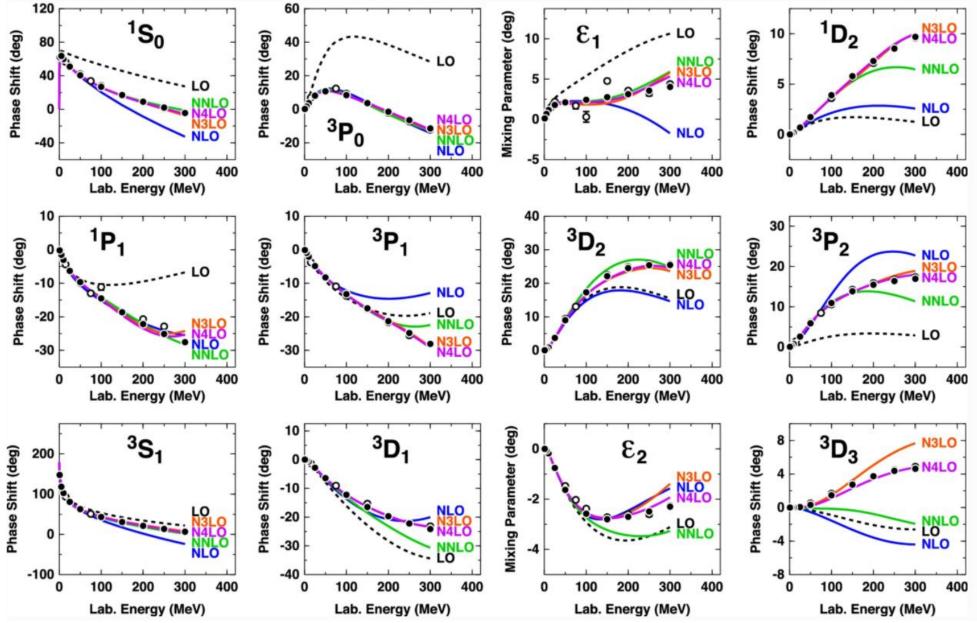
 ${}^{42}_{20}Ca_{22} \rightarrow {}^{42}_{21}Sc_{21}$

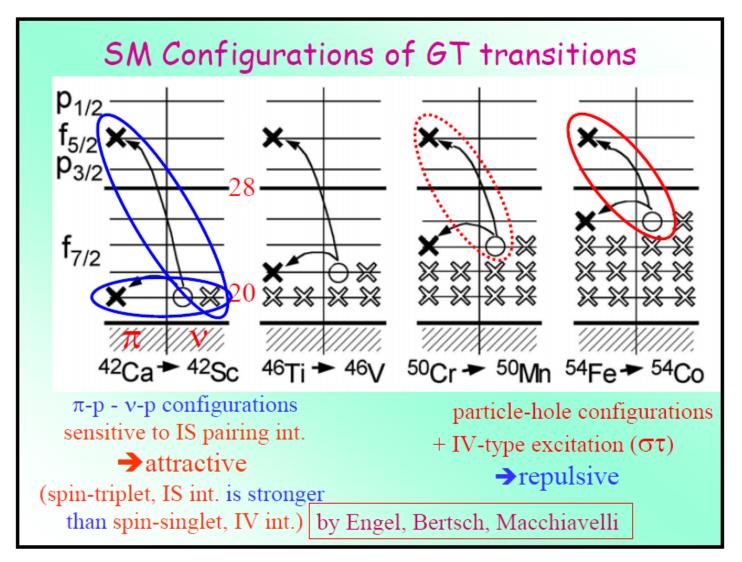
particle-hole interaction
 IV-pairing : repulsive



$${}^{48}_{20}Ca_{28} \rightarrow {}^{48}_{21}Sc_{27}$$

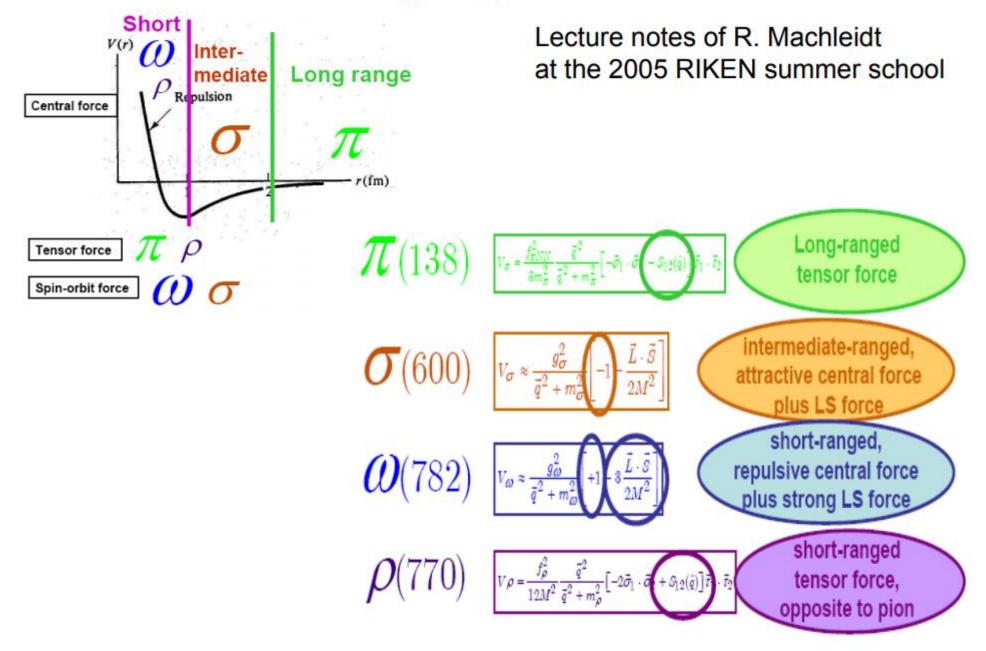
Nucleon-Nucleon Scattering Phase Shifts





✓ IS (T=0) pairing can play important roles !

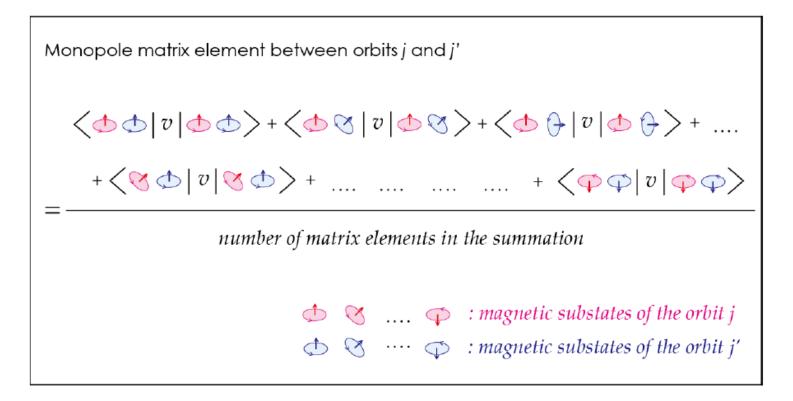
The short and long range tensor force



Monopole matrix element between orbits j and j'

$$V_{nn}^{m}(j,j') = \frac{\sum_{(m,m')} \langle j,m; j',m' | \hat{v}_{nn} | j,m; j',m' \rangle}{\sum_{(m,m')} 1}$$

 v_{nn} is interaction; *m*, *m*'are magnetic substates



$$\left(\begin{array}{c} \text{Tensor Force} \right) , \\ \left(\begin{array}{c} \vec{r} \\ \vec{$$

Ground-state correlations

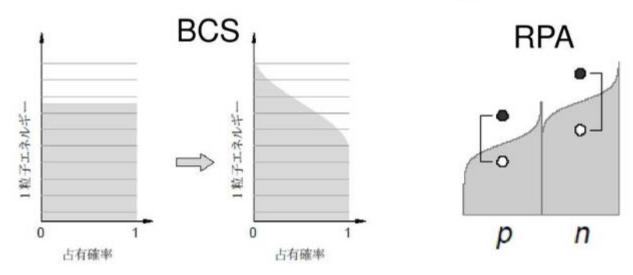
 $\beta\beta$ decay : $0^{+}_{gs} \rightarrow 0^{+}_{gs}$

Important components of NN interaction:

1) Pairing between like nucleons \rightarrow BCS

2) Proton-neutron interaction, in particular QQ force

 \rightarrow RPA Random-Phase Approximation



proton-neutron QRPA

BCS

Ground state ansatz

 $|\operatorname{BCS}\rangle = \prod_{j,m>0} (u_j + v_j c_{jm}^{\dagger} c_{j-m}^{\dagger})| \rangle$

Variation with constraints

$$\frac{\partial}{\partial u_{j}} \langle \operatorname{BCS} | H' | \operatorname{BCS} \rangle = 0$$
$$H' = H - \lambda \widehat{N}$$
$$\langle \operatorname{BCS} | \widehat{N} | \operatorname{BCS} \rangle = N$$
$$u_{j}^{2} + v_{j}^{2} = 1$$
quasiparticle

$$a_{jm}^{\dagger} = u_j c_{jm}^{\dagger} + v_j \tilde{c}_{jm}$$
$$\tilde{a}_{jm} = u_j \tilde{c}_{jm} - v_j c_{jm}^{\dagger}$$
$$a_{jm} | BCS \rangle = 0$$

RPA

■ Excitation Operator charge-changing modes $Q_{\omega,J}^{\dagger} = \sum_{pn} (X_{\omega,J}^{pn} [a_p^{\dagger} a_n^{\dagger}]_J - Y_{\omega,J}^{pn} [\tilde{a}_p \tilde{a}_n]_J)$ ■ Equation of motion $\langle 0 | [\delta Q, [H, Q_{\omega}^{\dagger}]] | 0 \rangle$ $= \omega \langle 0 | [\delta Q, Q_{\omega}^{\dagger}] | 0 \rangle$

RPA equation

-

$$\begin{bmatrix} A & B \\ B & A \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = \omega \begin{bmatrix} C & 0 \\ 0 & -C \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix}$$

quasi-boson approximation

$$\Rightarrow \quad C_{p'n',pn} = \delta_{p'p} \,\delta_{n'n}$$

2010.12.17-18

二重ベータ崩壊研究懇談会

B(GT) derivation

 \star β decay : fundamental, but E_{χ} range : limited "Q-window limitation"

* (p, n) reaction at intermediate energies (E = 100-500 MeV)"proportionality" : B(GT) and $\sigma(0^\circ)$ $\sigma(0^\circ) = KN_{\text{GT}} | J_{\text{GT}}(0^\circ) |^2 B(\text{GT})$

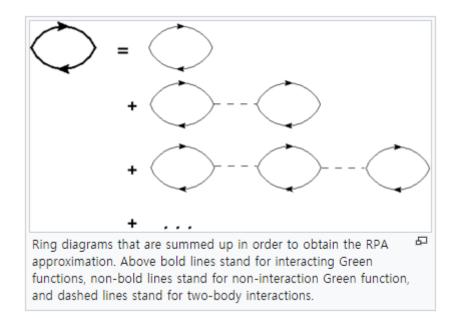
⇒ Breakthrough against "Q-window limitation" but resolution : rather poor ($\Delta E = 200-400 \text{ keV}$)

 $J_{\sigma\tau}$: volume integral of the effective interaction $V_{\sigma\tau}$ at momentum transfer $q \approx 0$. $K(\omega)$: kinematic factor.

 $\omega{:}{\rm total}$ energy transfer.

 $N_{\sigma\tau}$: distortion factor.

 $\sigma(0)$: unit cross section for the GT transition at $q = \omega = 0$.



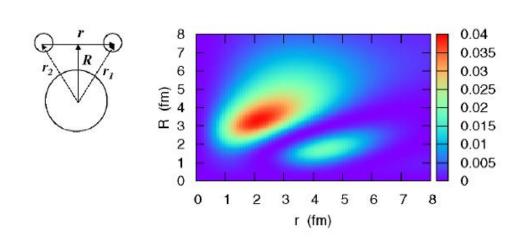
In a weak perturbing external filed, the response of system is related to the 2-body Green's function.

RPA provides an approximation scheme to calculate the 2-body Green's function. In dielectric function e(k,w) describes the dielectric response to the plan-wave Electric field E(w,k)exp^i(kr-wt).

The contribution to the dielectric function from the total potential is assumed to average out, so that only the potential at wave vector k contribute.

Coexistence of BCS- and BEC-Like Pair Structures in Halo Nuclei

K. Hagino,¹ H. Sagawa,² J. Carbonell,³ and P. Schuck^{4,5}



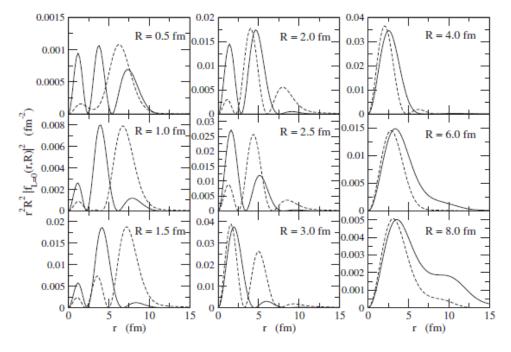
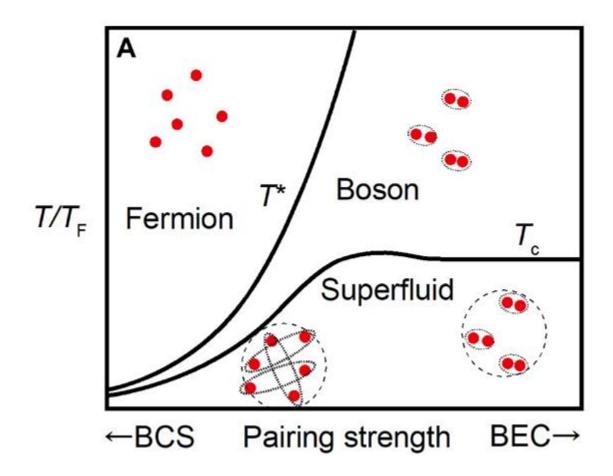


FIG. 1 (color online). A two-dimensional plot for the ground state two-particle wave function $r^2 R^2 |f_{L=0}(r, R)|^2$, for ¹¹Li. It is plotted as a function of the relative distance between two neutrons *r* and the distance between the center of mass of the two neutrons and the core nucleus *R*, as denoted in the inset.

FIG. 2. The ground state two-particle wave functions $r^2 R^2 |f_{L=0}(r, R)|^2$ as a function of the relative distance between the neutrons *r* at several distances *R* from the core. The solid lines correspond to the two-particle wave functions of ¹¹Li, while the dashed lines denote those of ¹⁶C. Notice the different scales on the ordinate in the various panels.



$$T_{\alpha\gamma}ler \text{ series,}$$

$$f(\alpha) = f(\alpha_{o}) + f'(\alpha_{o})(\alpha - \alpha_{o}) + \frac{f''(\alpha_{o})}{z'}(\alpha - \alpha_{o})^{2} + \cdots$$

$$here \quad \alpha - \alpha_{o} = h \quad for \quad convergence$$

$$\alpha = \alpha_{o} + h \quad \text{if})h_{\tau s} \quad \text{small}$$

$$f(\alpha_{o} + h) = f(\alpha_{o}) + f'(\alpha_{o})h_{\sigma} + \frac{f''(\alpha_{o})}{z'}h_{\sigma}^{2} + \cdots$$