# Static properties of light and heavy baryons

### Yang, Ghil-Seok Hoseo University

in collaboration with H.-Ch. Kim(Inha U.), H.-D. Son(CENuM & Ruhr-Uni. Bochum), M. Polyakov (Ruhr-Uni. Bochum), and M. Praszalowicz(Jagiellonian U)

2021 2<sup>nd</sup> HaPhy Meeting 2021.11.19(Fri) [Joint Workshop on Hadron-Nuclear Physics and Astrophysics]

#### Contents

- Motivation and Theoretical Framework
   (Chiral soliton model)
- Low-lying singly and doubly heavy baryons
- Excited states of SU(3) baryons
- Summary



#### 2020 Review of Particle Physics.

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

DOUBLY CHARMED BARYONS

 $\begin{array}{l} (C = +2) \\ \Xi_{cc}^{++} = ucc, \ \Xi_{cc}^{+} = dcc, \ \Omega_{cc}^{+} = scc \\ \Xi_{cc}^{++} & I(J^{P}) = ?(?^{?}) \end{array}$ 

| $arepsilon_{cc}^{++}$ MASS      | $3621.2\pm0.7~\text{MeV}$      |
|---------------------------------|--------------------------------|
| $arepsilon_{cc}^{++}$ MEAN LIFE | $(2.56\pm0.27)	imes10^{-13}$ s |









#### Theoretical framework: Chiral soliton model

Large  $N_c$  arguments allows us to consider a classical pion mean field (Witten): Relativistic Mean Field Approximation



The presence  $N_c$  valence quarks creates the pion mean fields and valence quarks are self-consistently bound by it in the large  $N_c$  limit. One can put the real-world value 3 into  $N_c$  at the end of the calculation. Theoretical framework: Chiral soliton model



hedgehog

- : Effective and relativistic low energy theory
- : Large N<sub>c</sub> limit : meson fields
   → Soliton (No quark degree of freedom)
- : Quantizing SU(3) meson fields rotated in flavor and spin space  $\rightarrow$  Collective Hamiltonian, model baryon states

Hedgehog Ansatz:

$$U_0 = \begin{bmatrix} e^{i\boldsymbol{n}\cdot\boldsymbol{\tau}\,\boldsymbol{P}(r)} & 0\\ 0 & 1 \end{bmatrix}$$

SU(2) Witten imbedding into **SU(3)**: SU(2) X U(1)











Mean meson field :  $N_c - 1$  valence quarks

$$For S_{z} = +1/2 \quad \left\{ \begin{array}{l} \Psi_{B_{Q}}^{\left(\boldsymbol{\pi}_{0}^{1/2}\right)} = \left(\boldsymbol{\chi}_{\uparrow} \psi_{B\left(-\frac{2}{3},0,0\right)}^{\left(\boldsymbol{\pi}\right)}, \quad :\psi \text{ from light baryons} \right. \\ \Psi_{B_{Q}}^{\left(\boldsymbol{\pi}_{1}^{1/2}\right)} = \left(-\sqrt{\frac{1}{3}} \boldsymbol{\chi}_{\uparrow} \psi_{B\left(-\frac{2}{3},1,0\right)}^{\left(\boldsymbol{\pi}\right)} + \sqrt{\frac{2}{3}} \boldsymbol{\chi}_{\downarrow} \psi_{B\left(-\frac{2}{3},1,1\right)}^{\left(\boldsymbol{\pi}\right)} \right. \\ \left. \Psi_{B_{Q}}^{\left(\boldsymbol{\pi}_{1}^{3/2}\right)} = \left(\sqrt{\frac{2}{3}} \boldsymbol{\chi}_{\uparrow} \psi_{B\left(-\frac{2}{3},1,0\right)}^{\left(\boldsymbol{\pi}\right)} + \sqrt{\frac{1}{3}} \boldsymbol{\chi}_{\downarrow} \psi_{B\left(-\frac{2}{3},1,1\right)}^{\left(\boldsymbol{\pi}\right)} \right. \\ \left. \bar{\Psi}_{B_{Q}}^{\left(\boldsymbol{\pi}_{1}^{3/2}\right)} = \left(\sqrt{\frac{2}{3}} \boldsymbol{\chi}_{\uparrow} \psi_{B\left(-\frac{2}{3},1,0\right)}^{\left(\boldsymbol{\pi}\right)} + \sqrt{\frac{1}{3}} \boldsymbol{\chi}_{\downarrow} \psi_{B\left(-\frac{2}{3},1,1\right)}^{\left(\boldsymbol{\pi}\right)} \right. \\ \left. \bar{\Psi}_{P_{Q}}^{\mu} \frac{\lambda^{a}}{2} \Psi A_{\mu}^{a} \sim \left(\Psi^{\dagger} \frac{\lambda^{a}}{2} \Psi A_{0}^{a} - \frac{1}{m_{Q}} \Psi^{\dagger} \vec{\sigma} \frac{\lambda^{a}}{2} \Psi \cdot \left(\vec{\nabla} \times A^{a}\right) \right) \right\}$$

Heavy quark spin-flip is not taken into account : Heavy quark (spin) symmetry

Theoretical framework: Chiral soliton model (Collective hamiltonian)



SU(3) flavor symmetry breaking

+ Isospin symmetry breaking

Recent results for heavy baryons in a chiral soliton model

> Mass splittings from SU(3) flavor symmetry breakings



$$H_{sb}^{SU(3)} = (m_s - \hat{m}) \left( \alpha D_{88}^{(8)} + \beta \hat{Y} + \frac{\gamma}{\sqrt{3}} \sum_{i=1}^3 D_{8i}^{(8)} \hat{f}_i \right)$$
  
where  
$$\alpha = -\frac{2}{3}\sigma - \beta Y', \qquad \Longrightarrow \qquad \tilde{\alpha} = \frac{N_c - 1}{N_c} \left( -\frac{2}{3}\sigma - \beta Y' \right),$$
  
$$\beta = -\frac{K_2}{I_2}, \qquad \Longrightarrow \qquad \beta = -\frac{K_2}{I_2},$$
  
$$\gamma = \frac{2K_1}{I_1} + 2\beta. \qquad \Longrightarrow \qquad \gamma = \frac{2K_1}{I_1} + 2\beta.$$

For 
$$a, b = 4,5,6,7$$
  
 $K_2 = K_{ab}^{val} = \frac{N_c}{2} \sum_{n \neq val} \frac{\langle n | \lambda_a | val \rangle \langle val | \lambda_b \gamma_0 | n \rangle}{E_n - E_{val}}$ 



This results are from the soliton for the light baryons with a factor  $(N_c - 1)/N_c$ 

| $\mathcal{R}^Q_J$ | $B_c$        | Mass           | Experiment [17] | Deviation $\xi_c$ | $\mathcal{R}^Q_J$                    | $B_b$              | Mass             | Experiment [17]  | Deviation $\xi_b$ |
|-------------------|--------------|----------------|-----------------|-------------------|--------------------------------------|--------------------|------------------|------------------|-------------------|
| āc                | $\Lambda_c$  | $2272.5\pm2.3$ | $2286.5\pm0.1$  | -0.006            | āb                                   | $\Lambda_b$        | $5599.3\pm2.4$   | $5619.5\pm0.2$   | -0.004            |
| $S_{1/2}$         | $\Xi_c$      | $2476.3\pm1.2$ | $2469.4\pm0.3$  | 0.003             | $s_{1/2}$                            | $\Xi_b$            | $5803.1\pm1.2$   | $5793.1 \pm 0.7$ | 0.002             |
|                   | $\Sigma_c$   | $2445.3\pm2.5$ | $2453.5\pm0.1$  | -0.003            |                                      | $\Sigma_b$         | $5804.3\pm2.4$   | $5813.4\pm1.3$   | -0.002            |
| $6_{1/2}^{c}$     | $\Xi_c'$     | $2580.5\pm1.6$ | $2576.8\pm2.1$  | 0.001             | $6^{b}_{1/2}$                        | $\Xi_{b}^{\prime}$ | $5939.5\pm1.5$   | $5935.0\pm0.05$  | 0.001             |
| 1/2               | $\Omega_c$   | $2715.7\pm4.5$ | $2695.2\pm1.7$  | 0.008             | 1/2                                  | $\Omega_b$         | $6074.7\pm4.5$   | $6048.0 \pm 1.9$ | 0.004             |
|                   | $\Sigma_c^*$ | $2513.4\pm2.3$ | $2518.1\pm0.8$  | -0.002            |                                      | $\Sigma_{b}^{*}$   | $5824.6\pm2.3$   | $5833.6 \pm 1.3$ | -0.002            |
| $6_{3/2}^{c}$     | $\Xi_c^*$    | $2648.6\pm1.3$ | $2645.9\pm0.4$  | 0.001             | <b>6</b> <sup>b</sup> <sub>3/2</sub> | $\Xi_{h}^{*}$      | $5959.8 \pm 1.2$ | $5955.3\pm0.1$   | 0.001             |
| 5/2               | $\Omega^*_c$ | $2783.8\pm4.5$ | $2765.9\pm2.0$  | 0.006             | 5/2                                  | $\Omega_b^*$       | $6095.0\pm4.4$   | _                | -                 |

G.S Yang et al., Phys.Rev.D 94, 071502(R) (2016)

## Recent results for heavy baryons in a chiral soliton modelStrong decay widths of heavy baryons

$$\hat{g}_{1}^{(0)} = (1) D_{\varphi 3}^{(8)} + (2) I_{3bc} D_{\varphi b}^{(8)} \hat{J}_{c} + (3) \int_{\sqrt{3}}^{(8)} D_{\varphi 8}^{(8)} \hat{J}_{3},$$

$$= \left[ M_{3} - \frac{2iQ_{12}}{I_{1}} \right] D_{X3}^{(8)} + \left[ -\frac{4M_{44}}{I_{2}} \right] d_{pq3} D_{Xp}^{(8)} \hat{J}_{q} + \left[ -\frac{2M_{83}}{I_{1}} \right] \frac{1}{\sqrt{3}} D_{X8}^{(8)} \hat{J}_{3} + \cdots$$
where
$$M_{3, \text{val}} = (N_{c} \langle v | \gamma_{0} \gamma_{3} \gamma_{5} \lambda_{3} | v \rangle,$$

$$Q_{bc, \text{val}} = (N_{c} \langle v | \gamma_{0} \gamma_{3} \gamma_{5} \lambda_{3} | v \rangle,$$

$$M_{bc} = (N_{c} \sum_{n} \frac{\langle n | \sigma_{3} \lambda_{b} | v \rangle \langle v | \lambda_{c} | n \rangle}{4} \operatorname{sign} (E_{n} - \mu) - \operatorname{sign} (E_{m} - \mu))$$

$$N_{c} - 1$$

For heavy baryons

$$M_{3, \text{val}} = \frac{N_c - 1}{N_c} N_c \langle v | \gamma_0 \gamma_3 \gamma_5 \lambda_3 | v \rangle \quad \text{from octet baryons}$$



Strong decay widths of charmed baryons



Light quarks govern their structure of singly heavy baryons.

#### PHYSICAL REVIEW D 104, 052003 (2021)

#### Measurement of the masses and widths of the $\Sigma_c(2455)^+$ and $\Sigma_c(2520)^+$ baryons

(Belle Collaboration)

Measurements of the masses of all members of the two isotriplets allow tests of models of isospin mass splittings. In the model of Yang and Kim [4], for instance, the mass splittings from the following four sources add: the electromagnetic corrections due to the light quarks, the differences of the masses of the u and d quarks, the hyperfine interactions between the light quarks, and the Coulomb interactions between the soliton and charm quark. Most





#### Motivation for isospin mass differences of singly heavy baryons

## $\Delta M_{B_{\rm h}}^{\rm total} = \Delta M_{\rm sol}^{\rm EM} + \Delta M_{sb}^{iso} + \Delta M_{\rm hf} + \Delta M_{\rm sol-h}^{\rm Coul}$

• EM self-energy for a soliton





G. S. Yang, et al., Phys. Lett. B 695, 214 (2011)

with  $N_c - 1$ 

Hadronic contributions from m<sub>d</sub>-m<sub>u</sub>

$$\Delta M_{sb}^{iso} = H_{sb}^{iso} = (m_{d} - m_{u}) \left( \frac{\sqrt{3}}{2} \alpha D_{38}^{(8)} + \beta \hat{T}_{3} + \frac{\gamma}{2} \sum_{i=1}^{3} D_{3i}^{(8)} \hat{J}_{i} \right)$$

 Strong hyperfine interaction for the light quarks inside a heavy baryon

 $\Delta M_{\rm hf} = \delta^{\rm hf} S_1 \cdot S_2$ 

 Coulomb interaction between a soliton and a heavy quark

$$\Delta M_{\rm sol-h}^{\rm Coul} = \alpha_{\rm sol-h} \hat{Q}_{\rm sol} \hat{Q}_{\rm h}$$







 $\Delta M$ [MeV]





|     |                               |                                                               |                             | · · ·                       |                    |                                  |                                   |
|-----|-------------------------------|---------------------------------------------------------------|-----------------------------|-----------------------------|--------------------|----------------------------------|-----------------------------------|
|     | $\mathcal{R}_J$               | $\Delta B_{ m hh}$                                            | $\Delta M_{ m sol}^{ m EM}$ | $\Delta M_{ m sb}^{ m iso}$ | $\Delta M_{ m hf}$ | $\Delta M_{ m sol-hh}^{ m Coul}$ |                                   |
| 2.2 | 3 <u>+</u> 0.91               | $\Xi_{\rm cc}^{++}(ucc) - \Xi_{\rm cc}^{+}(dcc)$              |                             |                             |                    | $4\alpha_{\rm sol-h}/3$          | $\textbf{4.48} \pm \textbf{0.91}$ |
| -4. | $J_{1/2}$<br><b>49 ± 0.46</b> | $\Xi_{\rm bb}^0(u{\rm bb}) - \Xi_{\rm bb}^-(d{\rm bb})$       | $3c^{(8)}/8$                | $\delta^{ m iso}$           |                    | $-2\alpha_{\rm sol-h}/3$         | $-2.24 \pm 0.45$                  |
| 2.2 | 3 <u>+</u> 0.91               | $\Xi_{\rm cc}^{*++}(ucc) - \Xi_{\rm cc}^{*+}(dcc)$            | $-0.06 \pm 0.09$            | 03<br>-2.20 ± 0.01          |                    | $4\alpha_{\rm sol-h}/3$          | $\textbf{4.48} \pm \textbf{0.91}$ |
| -4. | <b>49</b> ± <b>0</b> . 46     | $\Xi_{\rm bb}^{*0}(u{\rm bb}) - \Xi_{\rm bb}^{*-}(d{\rm bb})$ |                             |                             |                    | $-2\alpha_{\rm sol-h}/3$         | $-2.24 \pm 0.45$                  |

where 
$$\delta_{\mathbf{3}}^{\text{iso}} = \frac{3}{16} \left( m_d - m_u \right) \left( \overline{\alpha} + \frac{16}{3} \beta - \frac{3}{2} \gamma \right)$$
 in which  $\overline{\alpha} = \left( \frac{N_c - 2}{N_c} \right).$ 



 $[\overline{3}] = D(0,1),$ J = 1/2





GSYang, HchKim, Phys.Lett.B 808 (2020) 135619

## Excited SU(3) baryons



Full expression with the grand spin K is

$$M = M_{\rm sol} + \Delta \mathcal{E} \left( J_i \to J_f \right) + \mathcal{E}_K + M_{\rm sb}^K.$$
  
$$\alpha \mathcal{D}_{88}^{(8)} \left( \mathcal{A} \right) + \beta Y - \frac{\gamma}{\sqrt{3}} \sum_i \mathcal{D}_{8i}^{(8)} \left( \mathcal{A} \right) \tilde{T}_i - \underbrace{\frac{\delta}{\sqrt{3}}}_{i} \sum_i \mathcal{D}_{8i}^{(8)} \left( \mathcal{A} \right) \hat{K}_i,$$

where  $K = \tilde{T} + \tilde{J}$  and  $\tilde{Y}_K = N_c/3$ . D. Diakonov etal. PhysRev D88 074030, 2013

Excited baryons (qqq')

$$\begin{array}{rcl} \alpha & \rightarrow & \left(N_c - 1\right) / N_c \; \alpha \; \equiv \; \overline{\alpha}, \\ \widetilde{Y}_K \; = \; N_c / 3 \; \rightarrow & \left(N_c - 1\right) / 3, \\ & I_{1, \, 2} \; \rightarrow \; \left(N_c - 1\right) / N_c \; I_{1, \, 2} \; \equiv \; \overline{I}_{1, \, 2}, \end{array}$$

for one-quark (u, d) excited baryons

$$\mathcal{E}_{\mathcal{R}_{J}}^{K} = \frac{\mathcal{C}_{2}(\mathcal{R}) - \tilde{T}\left(\tilde{T}+1\right) - \frac{3}{4}\tilde{Y}_{K}^{2}}{2I_{2}} + \frac{1}{2I_{1}}\left[\tilde{a}_{K}\right] J(J+1) + (1 - \tilde{a}_{K})\tilde{T}\left(\tilde{T}+1\right) - \tilde{a}_{K}(1 - \tilde{a}_{K})K(K+1)\right],$$

$$\Psi_{K}^{(\mathcal{R})}\left(\mathcal{A}, \ \mathcal{S}, \ \chi\right) = \sqrt{\frac{\dim\left(\mathcal{R}\right)\left(2J+1\right)}{2K+1}} \sum_{\tilde{T}, \tilde{T}_{3}, \tilde{J}_{3}} C_{\tilde{T}\tilde{T}_{3}; J\tilde{J}_{3}}^{KK_{3}} \mathcal{D}_{\tilde{Y}\tilde{T}\tilde{T}_{3}; YTT_{3}}^{(\mathcal{R})}\left(\mathcal{A}^{+}\right) \mathcal{D}_{\tilde{J}_{3}; J_{3}}^{J}\left(\mathcal{S}^{+}\right) \chi_{K_{3}},$$



Study for negative-parity excited states are in progress



### Summary

- Assuming that the valence quarks are bound by the pion mean fields, we can regard the nucleon as a chiral soliton.
- The present pion mean-field approach indeed explains consistently both the SU(3) light baryons and the heavy baryons.
- Dynamical parameters and flavor quantum numbers of the collective operators and wave functions are modified by N<sub>c</sub> (# of heavy quarks) mean field for the heavy baryons based on N<sub>c</sub> mean field for the light baryons
- We have obtained excellent description of various **physical observables** (Masses from isospin and SU(3) flavor symmetry breakings, widths of strong and radiative decays, magnetic moments and transitions)
- Contributions from isospin symmetry breaking for a soliton are significant to describe the isospin mass differences of singly and doubly charmed and beauty baryons.
- It is shown that light quarks govern their structure of heavy baryons.
- We can see the multiplet stucture even in excited states as like octet, decuplet.



|                       | Decay modes                                                                                                                                                                                                      | $\Gamma_i^{(0)}$                                                                    | $\Gamma_i^{(\text{total})}$                                                       | Γ                     | Γ(Exp.) [2]           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------|-----------------------|
|                       | $\Delta \rightarrow N\pi$                                                                                                                                                                                        | $75.98 \pm 1.01$                                                                    | 88.58                                                                             | $\pm 1.31$            | 116–120               |
|                       | $\begin{array}{l} \Sigma^{*+} \to \Sigma^{0} \pi^{+} \\ \Sigma^{*+} \to \Sigma^{+} \pi^{0} \\ \Sigma^{*+} \to \Lambda \pi^{+} \end{array}$                                                                       | $2.59 \pm 0.03$<br>$3.17 \pm 0.05$<br>$29.68 \pm 0.26$                              | $3.22 \pm 0.06$<br>$2.62 \pm 0.05$<br>$30.41 \pm 0.33$                            | $36.25\pm0.42$        | 36.0±0.7              |
|                       | $\begin{array}{l} \Sigma^{*0} \rightarrow \Sigma^{0} \pi^{0} \\ \Sigma^{*0} \rightarrow \Sigma^{+} \pi^{-} \\ \Sigma^{*0} \rightarrow \Sigma^{-} \pi^{+} \\ \Sigma^{*0} \rightarrow \Lambda \pi^{0} \end{array}$ | $\begin{array}{c} 0 \\ 3.61 \pm 0.11 \\ 2.78 \pm 0.1 \\ 31.15 \pm 0.47 \end{array}$ | $egin{array}{c} 0 \\ 2.98 \pm 0.1 \\ 2.30 \pm 0.09 \\ 31.92 \pm 0.52 \end{array}$ | $37.21 \pm 0.69$      | $36 \pm 5$            |
|                       | $\begin{array}{l} \Sigma^{*-} \to \Sigma^{-} \pi^{0} \\ \Sigma^{*-} \to \Sigma^{0} \pi^{-} \\ \Sigma^{*-} \to \Lambda \pi^{-} \end{array}$                                                                       | $3.50 \pm 0.06$<br>$3.64 \pm 0.06$<br>$31.50 \pm 0.30$                              | $2.89 \pm 0.06$<br>$3.01 \pm 0.06$<br>$32.28 \pm 0.37$                            | $38.18\pm0.48$        | 39.4 ± 2.1            |
|                       | $\begin{array}{l} \Xi^{*0} \rightarrow \Xi^0 \pi^0 \\ \Xi^{*0} \rightarrow \Xi^- \pi^+ \end{array}$                                                                                                              | $4.76 \pm 0.05$<br>$7.61 \pm 0.08$                                                  | $4.33 \pm 0.06 \\ 6.93 \pm 0.10$                                                  | $11.26\pm0.17$        | $9.1 \pm 0.5$         |
|                       | $\begin{array}{c} \Xi^{*-} \to \Xi^{-} \pi^{0} \\ \Xi^{*-} \to \Xi^{0} \pi^{-} \end{array}$                                                                                                                      | $4.76 \pm 0.05$<br>$8.20 \pm 0.13$                                                  | $4.33 \pm 0.06$<br>$8.68 \pm 0.16$                                                | $13.01 \pm 0.21$      | $9.9^{+1.7}_{-1.9}$   |
| <i>a</i> <sub>1</sub> | <i>a</i> <sub>2</sub>                                                                                                                                                                                            | <i>a</i> <sub>3</sub>                                                               | <i>a</i> <sub>4</sub>                                                             | <i>a</i> <sub>5</sub> | <i>a</i> <sub>6</sub> |
| -3.5                  | $509 \pm 0.011$ 3.437                                                                                                                                                                                            | $2 \pm 0.028$ 0.604                                                                 | $\pm 0.030 - 1.21$                                                                | $3 \pm 0.068$ 0.479   | $\pm 0.025 -0.735$    |

Yang, et al. Rev. C **92** 035206 (2015)

Yang, et al, Phys. Lett. B **785** 434 (2018)

#### Heavy quarks are too heavy !

 $\Lambda_{OCD}(210 \sim 340 \, MeV) \ll m_c (\sim 1.2 \, GeV) \ll m_b (\sim 4.5 \, GeV)$ 







|                         |                                                    | $\delta^{\rm hf} =$         | $\delta^{\rm hf} = (0.40 \pm 0.06) { m MeV}$ |                    | $\alpha_{\rm sol-h} = (2.76 \pm 0.28) \text{ MeV}$ |                       | /leV            |                  |
|-------------------------|----------------------------------------------------|-----------------------------|----------------------------------------------|--------------------|----------------------------------------------------|-----------------------|-----------------|------------------|
| $\mathcal{R}_J$         | B <sub>c</sub>                                     | $\Delta M_{ m sol}^{ m EM}$ | $\Delta M_{\rm sb}^{\rm iso}$                | $\Delta M_{ m hf}$ | $\Delta M_{\rm sol-h}^{\rm Coul}$                  | $\Delta M^{ m total}$ | PDG [56]        | PDG <sup>†</sup> |
| $\overline{3}_{1/2}$    | $\Xi_c^+ - \Xi_c^0$                                | $-0.11\pm0.17$              | -3.51                                        | $-1.20\pm0.18$     | $1.84\pm0.19$                                      | input                 | $-2.98\pm0.22$  | _                |
|                         | $\Sigma_c^{++} - \Sigma_c^+$                       | $1.10\pm0.33$               | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | $1.02\pm0.38$         | _               | $1.07\pm0.42$    |
| <b>6</b> <sub>1/2</sub> | $\Sigma_c^+ - \Sigma_c^0$                          | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | input                 | $-0.9\pm0.4$    | _                |
|                         | $\Xi_c^{\prime+}-\Xi_c^{\prime0}$                  | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | $-0.90\pm0.30$        | $-0.8\pm0.6$    | _                |
|                         | $\Sigma_c^{++}-\Sigma_c^0$                         | $0.29\pm0.17$               | -4.66                                        | $0.80\pm0.12$      | $3.68\pm0.37$                                      | $0.12\pm0.43$         | $0.220\pm0.013$ | _                |
|                         | $\Sigma_c^{++} + \Sigma_c^0 - 2\Sigma_c^+$         | $1.92\pm0.53$               | 0                                            | 0                  | 0                                                  | $1.92\pm0.53$         | -               | $1.92\pm0.82$    |
|                         | $\Sigma_c^{*++} - \Sigma_c^{*+}$                   | $1.10\pm0.33$               | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | $1.02\pm0.38$         | _               | $0.91 \pm 2.31$  |
| <b>6</b> <sub>3/2</sub> | $\Sigma_c^{*+}-\Sigma_c^{*0}$                      | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | $-0.90\pm0.30$        | _               | $-0.98\pm2.31$   |
|                         | $\Xi_c^{*+}-\Xi_c^{*0}$                            | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $1.84\pm0.19$                                      | $-0.90\pm0.30$        | $-0.80\pm0.26$  | _                |
|                         | $\Sigma_c^{*++}-\Sigma_c^{*0}$                     | $0.29\pm0.17$               | -4.66                                        | $0.80\pm0.12$      | $3.68\pm0.37$                                      | $0.12\pm0.43$         | $0.01\pm0.15$   | _                |
|                         | $\Sigma_c^{*++} + \Sigma_c^{*0} - 2\Sigma_c^{*+}$  | $1.92\pm0.53$               | 0                                            | 0                  | 0                                                  | $1.92\pm0.53$         | -               | $1.89 \pm 4.64$  |
| $\mathcal{R}_J$         | B <sub>b</sub>                                     | $\Delta M_{ m sol}^{ m EM}$ | $\Delta M_{\rm sb}^{\rm iso}$                | $\Delta M_{ m hf}$ | $\Delta M_{\rm sol-h}^{\rm Coul}$                  | $\Delta M^{ m total}$ | PDG [56]        | PDG <sup>†</sup> |
| $\overline{3}_{1/2}$    | $\Xi_b^0 - \Xi_b^-$                                | $-0.11\pm0.17$              | -3.51                                        | $-1.20\pm0.18$     | $-0.92\pm0.09$                                     | $-5.74\pm0.27$        | $-5.9\pm0.6$    | _                |
|                         | $\Sigma_b^+ - \Sigma_b^0$                          | $1.10\pm0.33$               | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-1.74\pm0.34$        | _               | _                |
| <b>6</b> <sub>1/2</sub> | $\Sigma_b^0 - \Sigma_b^-$                          | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-3.66\pm0.25$        | _               | _                |
|                         | $\Xi_b^{\prime 0} - \Xi_b^{\prime -}$              | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-3.66\pm0.25$        | -               | _                |
|                         | $\Sigma_b^+ - \Sigma_b^-$                          | $0.29\pm0.17$               | -4.66                                        | $0.80\pm0.12$      | $-1.84\pm0.19$                                     | $-5.40\pm0.28$        | $-5.06\pm0.18$  | _                |
|                         | $\Sigma_b^+ + \Sigma_b^ 2\Sigma_b^0$               | $1.92\pm0.53$               | 0                                            | 0                  | 0                                                  | $1.92\pm0.53$         | _               |                  |
|                         | $\Sigma_b^{*+} - \Sigma_b^{*0}$                    | $1.10\pm0.33$               | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-1.74\pm0.34$        | _               | _                |
| <b>6</b> <sub>3/2</sub> | $\Sigma_b^{*0} - \Sigma_b^{*-}$                    | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-3.66\pm0.25$        | _               | _                |
|                         | $\Xi_b^{*0}-\Xi_b^{*-}$                            | $-0.81\pm0.22$              | -2.33                                        | $0.40\pm0.06$      | $-0.92\pm0.09$                                     | $-3.66\pm0.25$        | _               | $-3.03\pm0.91$   |
|                         | $\Sigma_b^{*+} - \Sigma_b^{*-}$                    | $0.29\pm0.17$               | -4.66                                        | $0.80\pm0.12$      | $-1.84\pm0.19$                                     | $-5.40\pm0.28$        | $-4.37\pm0.33$  | _                |
|                         | $\Sigma_{h}^{*+}+\Sigma_{h}^{*-}-2\Sigma_{h}^{*0}$ | $1.92\pm0.53$               | 0                                            | 0                  | 0                                                  | $1.92\pm0.53$         | _               | _                |

- Electromagnetic self-energy
- EM mass corrections



Electromagnetic (EM) self-energy

| EM [MeV]                                         | Exp.              |
|--------------------------------------------------|-------------------|
| (p – n) <sub>EM</sub>                            | <b>0.76</b> ±0.30 |
| (Σ <sup>+</sup> – Σ <sup>-</sup> ) <sub>ΕΜ</sub> | -0.17±0.30        |
| (≡° –≡⁻) <sub>ЕМ</sub>                           | -0.86±0.30        |



Gasser, Leutwyler, Phys.Rep 87, 77 "Quark Masses"

$$\Delta M_{B} = M_{B_{1}} - M_{B_{2}} = (\Delta M_{B})_{H} + (\Delta M_{B})_{EM}$$

$$(p-n)_{exp} \sim -1.293 \text{ MeV} \qquad (p-n)_{EM} \sim 0.76 \text{ MeV}$$

#### Electromagnetic self-energy

In the ChSM,  $(\Delta M_B)_{\rm EM} = \langle B | J_\mu(x) J^\mu(0) | B \rangle = \langle B | \mathcal{O}_{\rm EM} | B \rangle$ 

$$\mathcal{O}_{\rm EM} = -\frac{e^2}{2} \int d^3x \, d^3y D_{\gamma}(x, \, y) \int \frac{d\omega}{2\pi} \operatorname{tr} \left\langle x \left| \frac{1}{\omega + iH} \gamma_{\mu} \lambda^a \right| y \right\rangle \left\langle y \left| \frac{1}{\omega + iH} \gamma_{\mu} \lambda^b \right| x \right\rangle D_{Qa}^{(8)} D_{Qb}^{(8)} \right.$$
$$= \alpha_1 \sum_{i=1}^3 D_{Qi}^{(8)} D_{Qi}^{(8)} + \alpha_2 \sum_{p=4}^7 D_{Qp}^{(8)} D_{Qp}^{(8)} + \alpha_3 D_{Q8}^{(8)} D_{Q8}^{(8)}$$

#### It can be further reduced to

It can be further reduced to  

$$\mathcal{O}^{\text{EM}} = c^{(27)} \left( \sqrt{5} D^{(27)}_{\Sigma_{2}^{0} \Lambda_{27}} + \sqrt{3} D^{(27)}_{\Sigma_{1}^{0} \Lambda_{27}} + D^{(27)}_{\Lambda_{27} \Lambda_{27}} \right) + c^{(8)} \left( \sqrt{3} D^{(8)}_{\Sigma^{0} \Lambda} + D^{(8)}_{\Lambda \Lambda} \right) + c^{(1)} D^{(1)}_{\Lambda \Lambda}$$

$$\mathbf{8} \otimes \mathbf{8} = \mathbf{1} \oplus \mathbf{8}_{s} \oplus \mathbf{8}_{a} \oplus \mathbf{10} \oplus \mathbf{27}$$
Because of Bose symmetry
$$c^{(1)} = \frac{1}{8} (\alpha_{1} + \frac{4}{3} \alpha_{2} + \frac{1}{3} \alpha_{3})$$

G. S. Yang, H.-Ch. Kim and M. V. Polyakov, Phys. Lett. B 695, 214 (2011)