System Size and Energy Dependence of Resonance production

Jihye Song Pusan National University HaPhy 2021 19 November 2021

Outline

- Motivation
- Resonance production
 - system size
 - energy
 - lifetime
- Probing the hadronic phase
- Strangeness production
- Spin alignment
- Summary and outlook

Jihye Song

Motivation

Lifetime(fm/c): $\rho(1.3) < K^{*0}(4.2) < \Sigma^{*}(5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.4)$

Motivation

- 2. Strangeness production
- Resonances have same quark content as the ground state particles, but different masses

help to understand strangeness
 production by factorizing mass and
 strangeness related effects

- 3. In-medium energy loss
- 4. Spin Alignment
- 5. Chiral symmetry restoration

HaPhy2021

Jihye Song

Resonances (particle & decay)

Meson	quark content	Decay modes	B.R.	
ρ(770) ⁰	(u u +dd) √2	π+π-	100	
K*(892) ⁰	ds	K+π⁻	66.6	
K*(892) ±	us	$K^0{}_s\pi^+$	33.3	
f ₀ (980), f ₂ (1270)	unknown	π+π-	46(84)	
K* _{0,2} (1430) ⁰	ds	K+π⁻	93(49.4)	
ϕ (1020)	s s	K+K-	48.9	

Baryon	quark content	Decay modes	B.R.
Σ(1385) +	uus	Λπ+	87
Σ(1385) ⁻	dds	Λπ-	87
Λ(1520)	uds	pK⁻	22.5
Ξ(1530) ⁰	USS	Ξ-π+	66.7
Ξ(1820) ^{∓,0}	dss (uss)	ΛK∓ (ΛK⁰ _s)	unknown
Ω <mark>(2012)</mark> ∓	SSS	Ξ∓K₀s	unknown

Lifetime(fm/c): $\rho(1.3) < K^{*0}(4.2) < \Sigma^{*}(5.0-5.5) < \Lambda^{*}(12.6) < \Xi^{*}(21.7) < \phi(46.2)$

Jihye Song

```
HaPhy2021
```

Particle ratios: system size

- Suppression of K^{*0} is observed in different collision systems from various experiments (NA49, NA61/SHINE, STAR)
 - more suppression for larger collision systems

Eur. Phys. J. C (2020) 80:460

Jihye Song

J. Phys. G: Nucl. Part. Phys. 30 S577

Particle ratios: system size

- Suppression of K^{*0} w.r.t. the statistical Hadron Resonance Gas Models(HGM) is observed for heavier system
- Suppression of $\Lambda(1520)$ while no suppression for ϕ w.r.t. the HGM from NA49 measurement

Jihye Song

Eur. Phys. J. C (2020) 80:460 NA49, Phys. Rev. C84 (2011) 064909 6

Particle ratios: energy dep. 7

K*0/K and ϕ /K ratios have been measured at different energies in STAR and ALICE - no clear energy dependence from RHIC to LHC

PLB 802 (2020) 135225

Particle ratios: energy dep.

- Flat behavior in wide range of energy for small collision systems
- Yield ratios for central Au+Au and Pb-Pb collisions are significantly lower than the pp collisions

Phys.Rev.C71:064902,2005 PHYSICAL REVIEW C 102, 024912 (2020) 8

HaPhy2021

Jihye Song

Particle ratios: energy dep.

• Flat behavior in wide range of energy (~10-10⁴ GeV)

- Increase for low energies due to canonical suppression
 - reproduced by statistical model calculation with strangeness correlation radius parameter $R_c = 2.2$ fm

Phys.Rev.C71:064902,2005

9

HaPhy2021

Jihye Song

PHYSICAL REVIEW C 102, 024912 (2020)

Particle ratios

- K*0/K
- decrease with
- increasing multiplicity
- (system size)
- larger in central Cu-Cu
 than central Au-Au
 higher in pp collisions
 than in central Au-Au
 and Pb-Pb

- constant as a function of multiplicity
- slightly larger in Au-Au
- and Cu-Cu than Pb-Pb
- independent of collision energy and system from RHIC to LHC energies

Jihye Song

Lifetime(fm/c): **p(1.3)**

Jihye Song

Phys.Rev.C78:044906,2008

Lifetime(fm/c): **p(1.3) < K*⁰(4.2)**

Jihye Song

Phys.Rev.C78:044906,2008

HaPhy2021

Lifetime(fm/c): **ρ(1.3) < K***⁰(4.2) < **Σ*(5.5)**

Jihye Song

Phys.Rev.C78:044906,2008

HaPhy2021

Lifetime(fm/c): **ρ(1.3) < K***⁰(4.2) < **Σ***(5.5) < **Λ***(12.6)

Jihye Song

Phys.Rev.C78:044906,2008

14

HaPhy2021

Lifetime(fm/c): **ρ(1.3) < K*⁰(4.2) < Σ*(5.5) < Λ*(12.6) < Ξ*(21.7) < φ(46.2)**

Jihye Song

Phys.Rev.C78:044906,2008

Lifetime(fm/c): **ρ(1.3) < K*º(4.2) < Σ*(5.5) < Λ*(12.6) < Ξ*(21.7) < φ(46.2)**

Jihye Song

```
HaPhy2021
```

Probing the hadronic phase

 $[K^{*0}/K]_{kinetic(pPb, PbPb)} = [K^{*0}/K]_{chemical(pp)} \times e^{-\tau/\tau} k^{*0}$

- Estimate the time duration between chemical and kinetic freeze-out from the measurement of K*0/K ratios in Pb-Pb and pp collisions
 - found to be ~4-7 fm/c for central collisions

Jihye Song

PLB 802 (2020) 135225

Strangeness in small system

What causes the enhancement? mass vs. strangeness

Ground state

- s=1: Λ(1116)
- s=2: Ξ(1320)
- s=3: Ω(1670)

Resonances

s=1: $\Sigma^*(1385)^{\pm}$, $\Lambda^*(1520)$ s=2: Ξ*(1530)⁰ s=3: Ω(2012)[∓]

HaPhy2021

18

Jihye Song

Strangeness in small system

Strangeness enhancement

- Smooth evolution vs. multiplicity in pp, p-Pb, Xe-Xe and Pb-Pb collisions from different energies
- Strangeness enhancement increases with strangeness content
 - what about ϕ meson?

Jihye Song

HaPhy2021

Strangeness enhancement: ϕ

- φ/π (|S|=0)/(|S|=0)
 - large systems: described by thermal model
 - small systems: increase with multiplicity

Jihye Song

HaPhy2021

Strangeness enhancement: ϕ

ALI-PUB-339048

Jihye Song

- φ/K (|S|=0)/(|S|=1)
 - flat or slightly increasing at lowest multiplicities
 - suggest ϕ behaves like a S \ge 1 particle

22

∑/φ (|S|=2)/(|S|=0)

- increase for low multiplicity collisions
- fairly flat across wide multiplicity range
- The ϕ has "effective strangeness" of 1-2 units

Nuclear modification factor (RAA)

 R_{AA} helps in understanding the evolution of parton energy loss in the medium

Jihye Song

ArXiv:2106.13113

HaPhy2021

Nuclear modification factor (RAA)

<u>Center-of-mass energy dependence</u>

- R_{AA} values for $\sqrt{s_{NN}} = 5.02$ TeV are compared to the values at $\sqrt{s_{NN}} = 2.76$ TeV
- No significant differences for both the K*0 and ϕ are observed
- measurement of other mesonic and baryonic resonances ($\rho(770)^0$, $\Delta(1232)^{++}$, $\Sigma(1385)$, $\Lambda(1520)$) are required to further support

Jihye Song

ArXiv:2106.13113

HaPhy2021

Nuclear modification factor (RAA)

Intermediate- p_T (2 < p_T < 8 GeV/c)

- baryon-meson splitting
- hint of mass ordering among mesons
- higher R_{AA} values for proton (might be due to baryon-meson effect)
- Jihye Song

High-*p*_T (>8 GeV/*c*)

- similar **suppression** for different light flavor hadrons
- No flavor (u,d,s) dependence

HaPhy2021

Spin alignment

26

Resonance production contributes spin alignment in heavy-ion collisions

Experimental observable

$$\frac{\mathrm{d}N}{\mathrm{d}(\cos\theta^*)} \propto (1-\rho_{00}) + (3\rho_{00}-1)\cos^2\theta^*$$

 ρ_{00} : Element of spin density matrix if $\rho_{00} = 1/3$, No spin alignment

- Large angular momentum [1] and intense magnetic field [2] is expected in initial stage of heavy-ion collisions
 - spin alignment of vector meson could occur
- [1] F. Becattini et al., Phys. Rev. C 77 (2008) 024906
- [2] D. E. Kharzeev et al., Nucl.Phys.A 803 (2008) 227

Jihye Song

Nucl. Phys. B 15, 397 (1970)

Spin alignment: poo vs. pT 27

- ρ_{00} <1/3 for K*0 and consistent with 1/3 for ϕ

- LHC
 - spin alignment ($p_{00} < 1/3$) of vector meson in heavy-ion collisions at low p_T
 - no spin alignment for vector meson in pp collisions
 - no spin alignment for spin 0 hadron (K⁰s)

Jihye Song

C. Zhou / NPA 982 (2019) 559–562 PhysRevLett.125.012301 (2020) NPA 1005 (2021) 121733

Spin alignment: ρ_{00} vs. $\langle N_{part} \rangle$

Jihye Song

PhysRevLett.125.012301 (2020) NPA 1005 (2021) 121733

HaPhy2021

Spin alignment: poo vs. energy

 $\sqrt{s_{NN}} = 11.5 - 200 \text{ GeV/c}$

- K*0 ροο
 - low- p_T and in mid central collisions is smaller than 1/3
 - no beam-energy dependence is observed

• φροο

- larger than 1/3 at RHIC energies (~ 3σ significance at 200 GeV)
- smaller than 1/3 at LHC energy (~ 2σ significance)

Jihye Song

PRD 101, 096005 (2020) HaPhy2021

Conclusion

- Hadronic resonances are valuable probes to study the properties of hadronic phase and strangeness production (in medium energy loss, spin alignment, chiral symmetry restoration, etc.)
- Suppression of short-lived resonances in large collision systems
 - dominance of re-scattering over regeneration
 - no suppression observed for the longer-lived resonances
- Enhancement of strange baryon with multiplicity is due to strangeness content
 - confirmed by comparing ground state particle & resonances
- High-p_T particle suppression is observed for Pb-Pb
 No flavor(u/d/s) dependencies (ground state particles & resonances)
- Spin alignment (ρ_{00} <1/3) of vector meson is found in heavy-ion collisions at low p_T in mid-central Pb-Pb collisions

Jihye Song

HaPhy2021

Backup

Jihye Song

Chiral symmetry restoration: **E(1820)**

- First measurement of E(1820) from a collider experiment
- Calculation from FASTSUM Collaboration shows potential parity doubling

- signature of chiral symmetry restoration in heavy-ion collisions

- expected signal: mass shift, width broadening or change in yield ratio between $\Xi(1820)$ and $\Xi(1530)$

Jihye Song

Nuclear modification factor (R_{pA})

ALI-PUB-498522

Intermediate-*p***T(2 <** *p***T** < 8 GeV/*c***)** - mass dependent for strange baryons

High-*p*_T (>8 GeV/*c*)

- no suppression for different light flavor hadrons
- No flavor (u,d,s) dependence

Jihye Song

Strangeness production

Increases in small system is related to **Strangeness content**

Jihye Song