Big Bang Nucleosynthesis in a weakly nonideal plasma

Youngshin Kwon

Soongsil University

based on Astron. Astrophys. 650 (2021) A121

in collaboration with Dukjae Jang, Kyujin Kwak, Myung-Ki Cheoun CRLS, IBS UNIST Soongsil U

Hadron Physics (HaPhy) Meeting November 19, 2021

Introduction

- Standard big bang nucleosynthesis (SBBN)
- Primordial lithium problem
- Non-standard BBN

Non-Planckian Radiation

- Numerical solution to the lithium problem
- Photo-disintegration reaction rate
- Expansion rate & freeze-out time

Primordial Plasma

- From ideal to weakly non-ideal plasma
- Positron annihilation

Summary & Outlook

Contents

Origin of elements

Nucleosynthesis

Big bang nucleosynthesis (BBN) Stellar nucleosynthesis Supernova nucleosynthesis Cosmic ray spallation

Standard BBN

Particles & interactions

Standard model of particle physics

Thermal distribution

Boltzmann-Gibbs statistics

$$f(E) \propto \exp\left(-E/kT\right)$$

Cosmic expansion

General relativity Homogeneous & isotropic universe

$$H^2 = \left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi G}{3}\rho$$

Standard BBN

BBN network calculation

Kawano, FERMILAB-Pub-92/04-A (1992)

Primordial abundances

Standard BBN prediction

Abundances as a function of baryon-to-photon ratio. Cosmic microwave background (CMB) constraint: $(2,004 \pm 0,022) = 10^{-10}$

 $\eta = (6.094 \pm 0.063) \times 10^{-10}$

[Planck collaboration 2016]

Primordial ⁷Li problem

Spectra of metal-poor stars

Observed ⁷Li abundance is smaller than the SBBN prediction.

Non-standard BBN

[Kusakabe's ppt]

	Model	⁷ Li problem solved ?	Signatures on other nuclides ?
Massive particle	sub-SIMP X ⁰	\checkmark	⁶ Li, ⁹ Be
	SIMP X ⁰	no	⁹ Be and/or ¹⁰ B
	CHAMP X-*	1	⁶ Li, ⁹ Be
Non-Maxwellian velocity distribution	radiative decay	(√)	⁶ Li, η, N _{eff}
	Corrected Tsallis	no	D, ³ He, ⁴ He, ⁷ Li
	Nuclear resonance	difficult	no
B-field	Chemical separation	\checkmark	no
	Early cosmic rays	no	⁶ Li, ⁹ Be & ^{10,11} B

Introduction

- Standard big bang nucleosynthesis (SBBN)
- Primordial lithium problem
- Non-standard BBN

Non-Planckian Radiation

- Numerical solution to the lithium problem
- Photo-disintegration reaction rate
- Expansion rate & freeze-out time

Primordial Plasma

- From ideal to weakly non-ideal plasma
- Positron annihilation

Summary & Outlook

Contents

Thermonuclear reaction rate

$$\begin{split} R_{12} &= N_1 N_2 \langle \sigma v \rangle_{12} \\ &\langle \sigma v \rangle_{12} = \int_0^\infty \int_0^\infty \sigma(E) \, \left| \vec{v}_1 - \vec{v}_2 \right| \, \phi_1(\vec{v}_1) \phi_2(\vec{v}_2) \, d\vec{v}_1 d\vec{v}_2 \end{split}$$

Integration over the relative velocity in CM coordinates

$$\langle \sigma v \rangle_{12} = \left(\frac{8}{\mu\pi}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_0^\infty \sigma(E) E \left[\exp\left(-\frac{E}{kT}\right) \right] dE$$

Non-Maxwellian distribution

	Maxwell BBN	Non-Max. q = 0.5	Non-Max. q = 2	Observation
⁴ He/H	0.249	0.243	0.141	0.2561 ± 0.0108
D/H	2.62	3.31	570	$2.82^{+0.20}_{-0.19} (\times 10^{-5})$
³ He/H	0.98	0.91	69.1	$(1.1 \pm 0.2)(\times 10^{-5})$
⁷ Li/H	4.39	6.89	356.	$(1.58 \pm 0.31)(\times 10^{-1})$

Notes. All numbers have the same power of 10 as in the last column.

Non-Maxwellian velocity distribution of nuclei

[Bertulani et al., ApJ 767, 67 (2013)] [Hou et al., ApJ 834, 165 (2017)] [Kusakabe et al., PRD 99, 043505 (2019)]

We found that the observations are consistent with a non-extensive parameter $q = 1^{+0.05}_{-0.12}$, indicating that a large deviation from the Boltzmann–Gibbs statistics (q = 1) is highly unlikely.

$$\begin{split} &\frac{dy}{dx} = y \rightarrow y = e^x \rightarrow y = \ln x \\ &\frac{dy}{dx} = y^q \rightarrow y = (1 - (q - 1)x)^{\frac{1}{1 - q}} \rightarrow y = \frac{x^{1 - q} - 1}{1 - q} \equiv \ln_q x \end{split}$$

Tsallis statistics

Boltzmann-Gibbs entropy:

$$S_{\rm BG} = -\sum_{i=1}^{w} p_i \ln p_i = \left\langle \ln \frac{1}{p_i} \right\rangle$$

Non-extensive (Tsallis) entropy:

$$S_q \equiv \left< \ln_q \frac{1}{p_i} \right> = \frac{1 - \sum p_i^q}{q - 1}$$

Non-Planckian distribution

A&A 650, A121 (2021) https://doi.org/10.1051/0004-6361/202038478 © ESO 2021

Astronomy Astrophysics

Big Bang nucleosynthesis in a weakly non-ideal plasma

Dukjae Jang¹, Youngshin Kwon^{2,3}, Kyujin Kwak⁴, and Myung-Ki Cheoun⁵

Center for Relativistic Laser Science, Institute for Basic Science (IBS), Gwangju 61005, Republic of Korea Research Institute of Basic Science, Korea Aerospace University, Goyang 10540, Republic of Korea e-mail: kwon@kau. ac. kr

³ Center for Extreme Nuclear Matters (CENuM), Korea University, Seoul 02841, Republic of Korea

⁴ Department of Physics, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea

⁵ Department of Physics and OMEG Institute, Soongsil University, Seoul 06978, Republic of Korea

Received 22 May 2020 / Accepted 28 March 2021

ABSTRACT

We propose a correction of the standard Big Bang nucleosynthesis (BBN) scenario to resolve the primordial lithium problem by considering a possibility that the primordial plasma can deviate from the ideal state. In the standard BBN, the primordial plasma is assumed to be ideal, with particles and photons statisfying the Maxwell-Boltzmann and *Planck* distribution, respectively. We suggest that this assumption of the primordial plasma being ideal might oversimplify the early Universe and cause the lithium problem. We find that a deviation of photon distribution from the *Planck* distribution, which is parameterised with the help of Tsallis statistics, can resolve the mimordial lithium problem, when the particle distributions of the primordial plasma still follow the Maxwell-Boltzmann still follow the Maxwell-Boltzmann still follows.

Simple ansatz for non-Planckian photon distribution

$$f_q = \frac{1}{\left[1 - (1 - q)\frac{E}{kT}\right]^{\frac{1}{q-1}} - 1}$$

For q
ightarrow 1, the Planck distribution is recovered.

 $\lim_{q \to 1} f_q = \frac{1}{e^{\frac{E}{kT}} - 1}$

$$q(T) = \theta(T - T_{\rm tr}) + \theta(T_{\rm tr} - T) q'$$

Photo-disintegration reaction

Reaction rate

For a reaction in the form of $\,3+\gamma \rightarrow 1+2$

$$N_{\gamma} \langle \sigma c \rangle_{3\gamma} = \frac{m_{12}}{\pi^2 \hbar^3} \frac{g_1 g_2}{g_3 (1 + \delta_{12})} \\ \times \int_0^\infty \sigma_{12}(E) E \frac{1}{\left[1 - (1 - q)\frac{E + Q}{kT}\right]^{\frac{1}{q - 1}} - 1} dE$$

using a detailed balance relation between the forward and reverse cross sections.

Photon energy density

Photon energy density

$$\rho_{\gamma} = \frac{(kT)^4}{(\hbar c)^3} \frac{\pi^2}{15} \frac{1}{(4-3q)(3-2q)(2-q)}$$

The condition for the energy conservation at the moment of transition

$$\rho_{\gamma\,(q=1)} = \rho_{\gamma\,(q>1)}$$

leads to the sudden temperature drop.

Freeze-out time

The temperature drop advances the freeze-out time of the light elements.

Primordial abundance

Baryon-to-photon ratio

Together with the CMB constraint, we are able to narrow down the possible range of it to $6.031 < \eta \times 10^{10} < 6.070$

Restoration to blackbody

$$q' = 1.027$$
 at $T_{\rm tr} = 4 \times 10^8 \,{\rm K}$
 $q = 1$ at $T_{\rm re} = 2 \times 10^8 \,{\rm K}$

	w/o res	w/ res	Observation
$Y_{\rm p}$	0.2474	0.2474	0.2446 ± 0.0029
D/H (10^{-5})	2.525	2.503	2.527 ± 0.03
$^{3}\text{He/H}(10^{-5})$	0.9253	0.9322	$\leq 1.1 \pm 0.2$
$^{7}\mathrm{Li/H}~(10^{-10})$	1.677	1.664	1.58 ± 0.31

Introduction

- Standard big bang nucleosynthesis (SBBN)
- Primordial lithium problem
- Non-standard BBN

Non-Planckian Radiation

- Numerical solution to the lithium problem
- Photo-disintegration reaction rate
- Expansion rate & freeze-out time

Primordial Plasma

- From ideal to weakly non-ideal plasma
- Positron annihilation

Summary & Outlook

Contents

Standard BBN

Adiabatic process

No heat flux into the Universe

Thermal plasma

Thermal equilibrium

Cosmic expansion rate < Thermonuclear reaction rate

Plasma constituents as ideal gases No collisional effect

Plasma parameter

Ratio of mean potential energy and thermal kinetic energy

Primordial plasma

What happened

positron annihilation

radiation dominated era to matter dominated era

Boltzmann eqn.

$$\frac{\partial f}{\partial t} - \frac{\dot{R}}{R} E \frac{\partial f}{\partial E} = \frac{1}{E} C[f]$$

$$Collision term including positron annihilation
$$\frac{dY_1}{dT} = -F \frac{d}{dT} \left[Q(T)T^3/s(T) \right] = -F \left[\frac{Q'(T)T^3}{s(T)} + Q(T) \frac{d}{dT} \left(\frac{T^3}{s(T)} \right) \right]$$$$

Introduction

- Standard big bang nucleosynthesis (SBBN)
- Primordial lithium problem
- Non-standard BBN

Non-Planckian Radiation

- Numerical solution to the lithium problem
- Photo-disintegration reaction rate
- Expansion rate & freeze-out time

Primordial Plasma

- From ideal to weakly non-ideal plasma
- Positron annihilation

Contents

New BBN scenario

HAPHY MEETING, NOV. 19, 2

Cosmic expansion

Primordial BBN plasma

Solution to the ⁷Li problem

[Jang et al., arXiv:1812.09472]

below the observational upper limit.

Enhanced photo-disintegration processes play a crucial role in reducing the lithium abundance.

THANK YOU for your attention