What makes things so hard?

BSM

Quantum gravity

SM

Inflation

Dark Matter

+ particle-anti-particle asymmetry

Solution on hierarchy problem (is it really problem ?)

KAST Minho Son

Shit!, no unique guiding principle Nightmare!!

Need more input from data measure measure measure

Flavor-precision at high-E hadron colliders

Low-E experiment

: probe through semileptonic decay

 \checkmark accessible to only one op

$$R_{D^{(*)}} = \frac{\mathcal{B}(B \to D^{(*)} \tau \nu_{\tau})}{\mathcal{B}(B \to D^{(*)} l \nu_l)}$$

Bottom-flavored Mono-Tau Tails at the LHC

High-E experiment

Marzocca, Ui, SON JHEP 2020

- : through collision of quarks from PDF
 - ✓ accessible to only linear comb of ops

$$q_{i} \rightarrow ((V^{+}u)_{i'}d_{i})^{T} = (V_{i}^{+}u_{i'}, d_{i})^{T}$$

: from UV origin : PMNS matrix : from CKM matrix

$$V \rightarrow \Delta \mathcal{L}(\Lambda) = -\frac{1}{v^{2}} [C_{iq}^{(3)}]_{ijkl} (\overline{l}_{i}\gamma_{\mu}\sigma^{I}l_{j})(\overline{q}_{k}\gamma^{\mu}\sigma^{I}q_{i}) + \cdots$$
Match to SU(2)xU(1)
invariant operators
above EW scale

$$M_{b} = 0_{vL} = [\overline{c}\gamma^{\mu}b][\overline{l}\gamma_{\mu}P_{L}v]$$

$$O_{vL} = [\overline{c}\gamma^{\mu}b][\overline{l}\gamma_{\mu}P_{L}v]$$

$$Rich phenomenology = \sum_{l=vL,l} [\frac{2C_{lb}}{v^{2}}(\overline{r}_{l}v_{v})(\overline{l}\gamma^{\mu}b) + \cdots]$$

$$C_{lb} = [\overline{c}_{l}^{(2)}]_{3313} v_{ld} + [\overline{c}_{l}^{(3)}]_{3323} v_{lb} + [\overline{c}_{l}^{(3)}]_{3323} v_{lb}$$
Marzocca, UI, SON I HEP 2020

$$V = -4 \operatorname{cost} (RD^{0}) - \frac{1}{C_{l}^{0}} \int_{0.00}^{0.00} \int_{0.00}^{0.00$$

With more data at HL-LHC, FCC-hh

Extension to 2-to-3

- More differential distributions
- ✓ Fully covering independent test of EFT/leptoquark approach for B-anomaly and muon g-2

Let me use anomalies to illustrate the strategy.

 μ^{-}

 $(g-2)_{\mu}: \frac{a_{\mu}}{m_{\mu}} \sim \frac{1}{16\pi^2} \frac{m_{\mu}}{\Lambda^2} \times \frac{m_t}{m_{\mu}} \qquad R_{K^{(*)}}$

 $\bar{t}_L t_R \mu^+ \mu^-$

 Λ^2

 $pp \rightarrow \mu^+\mu^- + t/b$

2-to-3 processes are unique opportunity in constructing complete Flavor-Precision-Net for NP

 $R_{D^{(*)}}$

W, Y-precision

+ s-channel (not same as ISR-jet tagging!)

 $\bar{b}s\ell^+\ell^-$

 Λ^2

 $pp \rightarrow \ell^+ \ell^- + s/b$

s/b

From the viewpoint of Landscape of many vacua, e.g. in string theory, it might be more natural if our current Universe turns out to be sitting at a metastable vacuum

Global EWS vacuum at h = 0 in Higgs portal with ϕ via $\lambda_{h\phi}$

Only 100 TeV FCC-hh vs other option ? to rule out this possibility

Light particle frontier Provided by Seung J. Lee

Generic prediction in Axiverse, Photiverse etc

Is it meta-science or something real? Remains to be clarified, but ideas are being developed

New Particle	Comes from	Couples to
Axion and Axion Like Particles	Topology of Extra Dimensions	Spin and Mass density, Light in a background field
Dilatons, Moduli, radion	Geometry of Extra Dimensions	Mass density, Fundamental constants
Dark Photons	Topology of Extra Dimensions	Mixes with the photon
Higher Dimensional Graviton	Extra Dimensions	Just like the graviton

Extra slides for discussion

Legacy of Effective Field Theory approach

Related topic to Jae-sik Lee

EWPT at LEP

 $\epsilon_3 = \epsilon_3^{SM} + \frac{\alpha}{4\sin^2\theta_W} S$

Since Higgs discovery

W, Z

"Varying Higgs mass" to "varying Higgs coupling"

W, Z

VV-VV scattering

Strong Magnets at FCC-hh

✓ Beneficial to high- p_T physics. It hurts low- p_T physics

	CMS: 4T, 1.5m	FCC: 6T, 6m
$p_{T crit} = 0.15 \times \left(\frac{B}{T}\right) \times \left(\frac{r_{cal}}{m}\right)$	~ 0.9 GeV	~ 5.4 GeV

• This implies that O(100 GeV) process such as Higgs physics becomes low- p_T physics at 100 TeV!

E.g. $H \rightarrow b\overline{b}$ with low p_T will be significantly under-reconstructed due to lost tracks (We need to make sure that we are capable of restoring the lost tracks back to our jets via track reconstruction, e.g. particle-flow)

Combining information is not unique

□ EM-flow

Katz, SON, Spethmann, Tweedie 2011, 2012

Pseudo-CMS type Event

□ Track-flow

Similarly rescale tracks by $\frac{E_{ECAL} + E_{HCAL}}{E_{ECAL}}$

E_{tracks}

Schatzel, Spannowsky 2014 Larkoski, Maltoni, Selvaggi 2015

Particle-flow

Rescale tracks by $\frac{E_{HCAL}}{E_{tracks}}$ and leave E_{ECAL} as-is

• PERFECT tracking efficiency is assumed. Reality is worse than this perfect case

compared to CMS-type ECAL, HCAL

FCC1 : ECAL 2x, HCAL 2x (default) FCC2 : ECAL 4x, HCAL 2x

- ✓ EM-flow looks very promising.
- ✓ It can solely cover up to 20TeV tops assuming FCC2 configuration (ECAL 4x, HCAL 2x)