Physics Motivations for Future Colliders

Pyungwon Ko (KIAS)

KFCC 2021 @ Hilton Gyeongju Nov. 12-14 (2021)

No-lose theorem for LHC

- Before the Higgs boson discovery, rigorous arguments for LHC due to the No-Lose theorem
- W/o Higgs boson, $W_L W_L \to W_L W_L$ scattering violates unitarity, which is one of the cornerstones of QFT
- Unitarity will be restored by
 - Elementary Higgs boson
 - Infinite tower of new resonances (KK tower)
 - New resonances for strongly interacting EWSB sector
 - Higgs is there, but not observable if it decays into DM (2007,2011,..)

My personal favorites

- So far, all the observed fermions are charged under some gauge symmetries, and chiral
- All the matters are fundamental representations of the gauge group. No higher dim rep.'s have been found yet
- Dark photon, dark Higgs (~singlet scalar) if DM mass ~ EW scale
- Vectorlike fermions which are chiral under new gauge sym
- New confining (dark) forces

Personal Viewpoints

- Higher energy colliders can produce heavier particles and probe shorter distance : $E = Mc^2$, $\Delta x \Delta p \gtrsim \hbar$
- No rigorous arguments to set new energy scales, unlike before the Higgs boson discovery
- Unexplored territory of the SM : Nonperturbative aspects such as QCD instanton, EW sphaleron
- Can we set a new energy scale for pp colliders so that we can measure the Higgs aquatic coupling within certain accuracy ?

- Model independent approach based on SMEFT ? Could be misleading if used for high energy colliders
- Many UV completions for a given EFT operator in general
- Model dependent approaches motivated by the current anomalies, such as muon g-2, RK(*), RD(*), neutrino masses and mixings, dark matter, etc.
- Some interesting channels: DY + missing ET, Multi leptons (+ missing ET), $t\bar{t}$ + missing ET, etc.
- In any case, search for New Physics without any theoretical prejudice is most important (SUSY, MSW with the large mixing for the solar neutrino problem, etc.)

Some recolletion

- $B \rightarrow J/\psi \pi \pi$ for D-wave charmonium $\rightarrow X(3872)$ (1997)
- $U(1)_{\mu-\tau}$ for the muon (g-2) (2001) and PAMELA e^+ excess (2009)
- Invisible Higgs decay into DM pair in the hidden valley scenario (2007, 2011)
- Higgs invisible decay in Higgs portal DM (2007,2011,2014)
- *t*-channel mediated DM search at colliders (2017)

