FCC as a Very Large Research Infrastructure

Sun Kun Oh Global Science Forum, OECD 12 Nov. 2021, Gyeongju, Korea

What is an Infrastructure?

What is an Infrastructure?

It can serve many users and many uses.

It's designed with the future in mind.

What is a Research Infrastructure?

- A facility or a cluster of facilities for a specific disciple or generic purposes
- Multiple users/customers from multiple institutions
- Organizational management

What is a Research Infrastructure?

- A facility, resource and/or service that are used by the research communities to conduct research and foster innovation in their fields.
- It may include: major scientific equipment (or sets of instruments), knowledge-based resource, e-infrastructure.
- Accordingly, it is implemented along a specific organisational model, coordination and management of geographically distributed observatories or laboratories, remotely accessible resources.
- [from Article 2 (6) of the Regulation (EU) No 1291/2013 of 11 December 2013 for establishing Horizon 2020]

International Research Infrastructure

- An association or network of geographically-separated, distinct entities from more than one country that agree to jointly perform or sponsor basic research.
- It is a long-term enterprise.
- It represents a strategic investment that is indispensable for enabling and developing research.
- It has often broader socio-economic impacts.

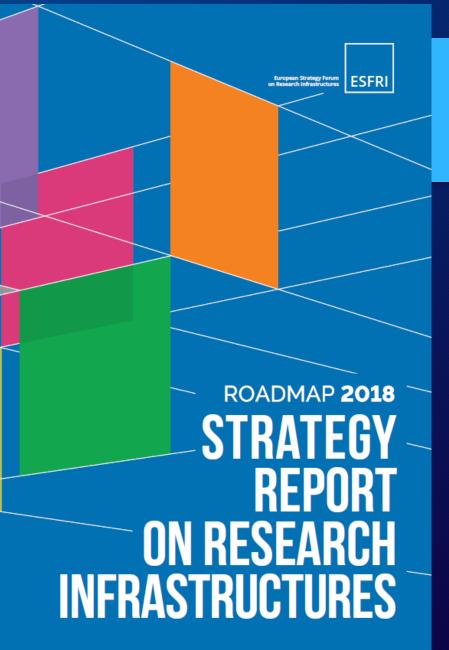
Facilities for the Future of Science: *A Twenty-Year Outlook*

Contents

A Message from the	-	3			
Steward of the World	I's Finest Suite of Scientific Facilities and Instruments	5			
Introduction					
Prioritization Process					
A Benchmark for the	e Future	10			
The Twenty-Year Fa	cilities Outlook—A Prioritized List	11			
Facility Summaries		14			
Near-Term Prioriti	03	14			
Priority: 1	ITER	14			
Priority: 2	UltraScale Scientific Computing Capability (USSCC)	15			
Priority: Tie for 3	Joint Dark Energy Mission (JDEM)	16			
	Linac Coherent Light Source (LCLS)	16			
	Protein Production and Tags	17			
	Rare Isotope Accelerator (RIA)	18			
Priority: Tie for 7	Characterization and Imaging of Molecular Machines	19			
	Continuous Electron Beam Accelerator Facility (CEBAF) 12 GeV Upgrade	20			
	Energy Sciences Network (ESnet) Upgrade	20			
	National Energy Research Scientific Computing Center (NERSC) Upgrade	21			
	Transmission Electron Achromatic Microscope (TEAM)	22			
Priority: 12	BTeV	23			
Mid-Term Prioritie	18	24			
Priority: 13	Linear Collider	24			
Priority: Tie for 14	Analysis and Modeling of Cellular Systems	24			
	Spallation Neutron Source (SNS) 2-4MW Upgrade	25			
	Spallation Neutron Source (SNS) Second Target Station	26			
	Whole Proteome Analysis	27			
Priority: Tie for 18	Double Beta Decay Underground Detector	27			
	Next-Step Spherical Torus (NSST) Experiment	28			
	Relativistic Heavy Ion Collider (RHIC) II	29			
Far-Term Prioritie	S	30			
Priority: Tie for 21	National Synchrotron Light Source (NSLS) Upgrade	30			
	Super Neutrino Beam	30			
Priority: Tie for 23	Advanced Light Source (ALS) Upgrade	31			
	Advanced Photon Source (APS) Upgrade	32			
	eRHIC	32			
	Fusion Energy Contingency	33			
	High-Flux Isotope Reactor (HFIR) Second Cold Source and Guide Hall	34			
	Integrated Beam Experiment (IBX)	35			
Appendix: Sample Charge Letter to Advisory Committees					
Office of Science Advisory Committees					
About DOE's Office of Science					
Office of Science Contacts					

Facilities for the Future of Science A Twenty-Year Outlook

> Office of Science



Home > Research and innovation > Strategy > Strategy 2020-2024 > Our digital future > European Research Infrastructures > ESFRI

European Strategy Forum on Research Infrastructures (ESFRI)

What the ESFRI does, mandate, members, ESFRI roadmaps, reports and documents

PAGE CONTENTS	What is ESFRI?		
What is ESFRI?			
ESFRI's mandate	The European Strategy Forum on Research Infrastructures (ESFRI) plays a key role in policy- making on Research Infrastructures in Europe.		
ESFRI Roadmap Members	It is composed of national delegates nominated by research ministers of EU countries and countries associated with Horizon 2020. It also includes a Commission representative.		
Related documents	ESFRI is a self-regulated body, operating on a consensus basis and typically meets 4 times a year.		
Contact	ESFRI's mandate		
Related links			
	establish a European roadmap for Research Infrastructures for the next 10-20 years, stimulate the implementation of these facilities, and update the roadmap as needed		
Your cookie preferences have been saved. To change your preferences at any time, see our <u>cookies</u> Close (x) <u>policy</u> or visit the link in the page footer.			

Research Infrastructures in the European Research Area

A report by the ESF Member Organisation Forum on Research Infrastructures

International Conference on Research Infrastructures

Proceedings Report June 1-3, 2021

Very Large Research Infrastructures

- Uniqueness: VLRI is unique or quasi unique worldwide and provides world-leading capabilities
- Complexity: VLRI is highly complex in its organisational structure, technology and/or operation. Its scale is usually very large in terms of the required human and/or capital resources
- International dimension: VLRI possesses an international dimension which is reflected in its governance, its operational footprint and/or user base.
- Diversity: various background of partners and their expectations.
- Long time span

Very Large Research Infrastructures

- CERN
- ALMA (Akatama Large Millimeter Radiotelescope Array)
- XFEL (European X-ray Free Electron LASER)
- ITER
- FCC
- Baikal GVD (Gigaton Volume Detector)
- ESS (European Spallation Source)
- FAIR (Facility for Antproton and Ion Research)

12 November 2021 Gyeongju Korea (Square Kilometer Array), etc

Global Research Infrastructure

 It represents the research infrastructure with a full international dimension to serve common needs of the world scientific community, or the advanced collaboration among existing research infrastructures that share common efforts to pursue challenging upgrades needed for top research. **OECD** Global Science Forum

Large Research Infrastructures

Report on Roadmapping of Large Research Infrastructures (2008)

Report on Establishing Large International Research Infrastructures: Issues and Options (2010)

OECD Global Science Forum

Report on Roadmapping of Large Research Infrastructures

December 2008

OECD publishing

OPTIMISING THE OPERATION AND USE OF NATIONAL RESEARCH INFRASTRUCTURES

OECD SCIENCE, TECHNOLOGY AND INDUSTRY POLICY PAPERS August 2020 No. 91

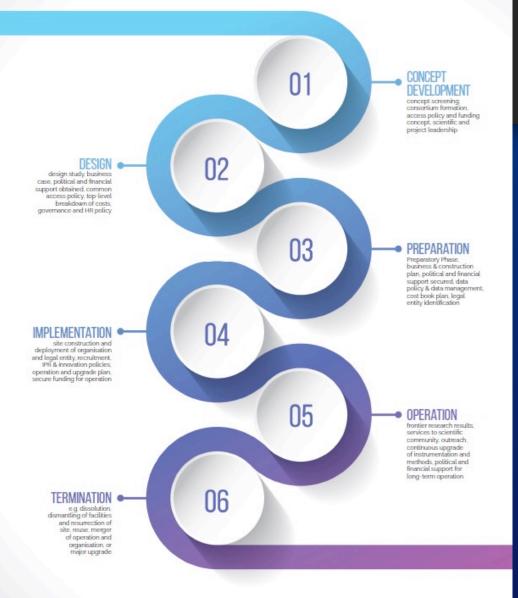
Report on the Impacts of Large Research Infrastructures on Economic Innovation and on Society

CASE STUDIES AT CERN

PRELIMINARY VERSION

Global Research Infrastructure

Creation	* * *	Planning (Roadmapping) Internationalisation Establishing
Operation	* * *	Operating costs Access to resources and to data Decommissioning
Assessment		Scientific impact Economic impact Societal impact


Global Research Infrastructure

Road-mapping:

may include non-scientific consideration,
can mobilise an entire scientific community,
promoting innovation in a competitive environment,
should encourage multi- and inter-disciplinarity.

Global Resear

TAE 28

12 November 2021 Gyeongju Korea

ESFRI ROADMAP 2018 - STRATEGY REPORT ON RESEARCH INFRASTRUCTURES

Global Research Infrastructure

Science policy issues are important regarding:
-the role of existing infrastructures,
-balancing supply and demand of research resources,
-understanding the size of the overall effects,
-comparing infrastructure costs,
-access rules and policies,
-and workforce issues.

Global Research Infrastructure

Some caveats:

-stress on science budgets because of its expensiveness
-potential neglect of small and medium projects
-inflexibility of long-term commitments
-national/regional/global interference
-confusion from proliferation of diverse roadmaps

Some issues

- Legal and administrative
- Funding and contributions
- Project management
- Equipment
- Personnel

Some issues - legal and administrative

- International Organisation [archetype models: ITER, CERN]
- Limited Liability Company (LLC) under national law [archetype models: ESRF, XFEL]
- Association of independent national or regional infrastructures [archetype model: ALMA]
- Ex-post-facto collaborating infrastructures [archetype models: LIGO/VIRGO/GEO]
- Foundation under national law [archetype model: JIVE]
- European Research Infrastructure Consor
- A digression: the HEP detector model

- Allocating the right tasks to the right negotiators
- Scope and organisation of the negotiations
- Bi-lateral or multi-lateral?
- The role of "Science Cases"
- The language issue

Some issues - funding and contributions

FUNDING AND CONTRIBUTIONS

- Host premium and host benefits.
- Cash vs. In-Kind: deciding the best proportion of each, the pros and cons.
- In-Kind: methods for assigning value, dividing up assignments among Partners.
- Juste retour: theory and practices.
- Operating costs and scientific access
- Risk Analysis. Contingencies and cost overruns. Quality control. Openness and accountability.
- Contracting by the Organisation (esp. in Partner countries).

Some issues - project management

PROJECT MANAGEMENT

- Relationship to Risk Analysis, and to generic issues of accountability, authority and communication between the chief actors (the Organisation and the Partners).
- Examples of scope of PM (e.g., purchasing, contracting, hiring). Use of commercial software and of external contractors. Role of experienced individuals.
- Data availability and quality issues, especially access to information held by Partners.
- Possibility of adopting agreed international standards.
- Special vulnerability issues in the start-up phases.
- Special challenges to international scientific communities, especially when transitioning to large infrastructures.

Some issues - equipment and personnel

PERSONNEL

- Recruitment and contracts
- Organisation hires vs. secondees.
- Staff regulations (incl. issues of authority).
- Conflict of interest.
- Family issues.

EQUIPMENT

- Responsibility for testing, acceptance and transfer of ownership.
- Liability in case of malfunction.
- Disposition at decommissioning.
- IPR

Some issues - funding and contributions

Some caveats:

-stress on science budgets because of its expensiveness
-potential neglect of small and medium projects
-inflexibility of long-term commitments
-national/regional/global interference
-confusion from proliferation of diverse roadmaps

Korean participation

- Suppose that Korean HEP community reaches a consensus, and Korean government agrees to support.
- At what stage?
- How much should Korea be involved?

•

Merci!