Study of Roper-like resonances

Ahmad Jafar Arifi

Recent progress in hadron physics September, 2021

Contents

Part 1

Roper resonance and its analogous states

Part 2

Quark model & relativistic effect

Part 3

Finding the missing Roper-like resonances

Part 1

Roper resonance and its analogous states

Roper resonance

- In PDG $\rightarrow N(1440)$
- Discovered by L. D. Roper in 1963 (almost 60 years).
- A radial excitation of nucleon with $J^P = 1/2^+$.
- Incompatible with the quark model.
- Interpretation: quark core + meson cloud?

Roper-like resonances

Similarities —> hints to their structures

Status of Roper-like heavy baryons

- PDG: 1 star.
- J^P is not determined.
- Mostly decays into $\Lambda_c \pi \pi$

- PDG: 3 star.
- J^P =1/2⁺ -> Belle 2021.

6

- Newly observed
 -> by LHCb 2020
- $\Gamma = 72 \, \text{MeV}$

We expect Ξ_b resonance will be reported soon by LHCb.

Three-body decay

 $\Lambda_{c}(2765)$

PRD101, 094023 (2020)

7-

Spin-parity 1/2+

- They most likely belong to Roper's family.
 - -> Invariant mass distribution
 - -> Ratio of decay width
 - –> Angular correlation

PRD101, 111502 (R) (2020)

8

cost

- Similarities among the Roper-like resonances.
 <u>Accidental ? Universal behavior?</u>
- Is the N(1440) rather special to the others?
 –> Pion cloud? What about Ω?
- Radial excitation of heavy baryon -> Why so broad?

 3-body decay is dominated by sequential process. The *o* meson (direct) process is insignificant.
 <u>-> hint to the internal structure?</u>

- Nonrelativistic quark model

 -> Predict a narrow width (Problem!)
 -> Relativistic effect? Exotics?
- What about the other system?
 —> We're looking into it.

Question?

Part 2

Quark model & relativistic effect

Heavy baryon decay in Quark model

Two-body decay

Baryon wave function

Quark-meson interaction

$$\mathcal{T} = \left\langle \pi \bigotimes_{\Lambda_c} \middle| \mathcal{L}_{\pi q q} \middle| \bigotimes_{\Lambda_c^*} \right\rangle$$

$$\mathcal{L}_{\pi q q} = \frac{g_A^q}{2f_\pi} \bar{q} \gamma^\mu \gamma_5 \vec{\tau} q \cdot \partial_\mu \vec{\pi}$$

non-relativistic expansion

Leading terms up to 1/m

$$H_{NR} = g \left[\boldsymbol{\sigma} \cdot \boldsymbol{q} - \frac{\omega_{\pi}}{2m} \boldsymbol{\sigma} \cdot \left(\boldsymbol{p}_i + \boldsymbol{p}_f \right) \right]$$

PRD95, 014023 (2017)

k

Relativistic correction

• FWT transformation gives a correction order by order

 $H = \frac{H(1/m^{0}) + H(1/m) + H(1/m^{2}) + \dots}{RC}$ Remove large-small component (odd operator).

• Quark-meson interaction

$${\cal L}_{\pi q q} = - rac{g^q_A}{2 f_\pi} ar q \gamma_\mu \gamma_5 ec au q \cdot \partial^\mu ec \pi$$

• Leading term up to 1/m

$$H_{NR} = g \left[\boldsymbol{\sigma} \cdot \boldsymbol{q} - \frac{\omega_{\pi}}{2m} \boldsymbol{\sigma} \cdot (\boldsymbol{p}_i + \boldsymbol{p}_f) \right]$$
 The same as obtained by non-rel reduction.

• The correction up to $1/m^2$

$$H_{RC} = \frac{g}{8m^2} \left[m_{\pi}^2 \boldsymbol{\sigma} \cdot \boldsymbol{q} - 2\boldsymbol{\sigma} \cdot (\boldsymbol{p}_i + \boldsymbol{p}_f) \times (\boldsymbol{q} \times \boldsymbol{p}_i) \right]$$

E. M. -> spin-orbit coupling

important term ~ P^2

12

apctp

Ground state: $\Sigma_c \rightarrow \Lambda_c \pi$

Ground state	NR	NR + RC	Exp.
$\Sigma_c(2455): 1/2^+$	4.27 - 4.34	0.35 - 1.95	1.89 MeV
$\Sigma_c(2520): 3/2^+$	29.8 - 31.4	2.70 - 14.1	14.78 MeV
	2 x	reduced	

- Suppression of g_A^q coupling constant.
- The overlap of the wave functions is unity in wave-length limit.

$$\begin{array}{c|c|c|c|c|c|} \left< \Lambda_c \right| 1 \left| \Sigma_c \right> \propto 1 & \left< \Lambda_c \right| p_i \left| \Sigma_c \right> \propto q & \left< \Lambda_c \right| p_i^2 \left| \Sigma_c \right> \propto a^2 \\ \hline & \text{large} & \text{small} & \text{large} \end{array} \right.$$

• The relativistic correction has opposite sign.

$$H_{NR} = g \left[\boldsymbol{\sigma} \cdot \boldsymbol{q} + \frac{\omega_{\pi}}{2m} \left(\boldsymbol{\sigma} \cdot \boldsymbol{q} - 2\boldsymbol{\sigma} \cdot \boldsymbol{p}_{i} \right) \right], \quad H_{RC} = \frac{g}{8m^{2}} \left[m_{\pi}^{2} \boldsymbol{\sigma} \cdot \boldsymbol{q} + 2\boldsymbol{\sigma} \cdot \left(\boldsymbol{q} - 2\boldsymbol{p}_{i} \right) \times \left(\boldsymbol{q} \times \boldsymbol{p}_{i} \right) \right],$$

Negative parity state: $\Lambda_c^* \to \Sigma_c \pi$

Negative parity state	NR	NR + RC	Exp.
$\Lambda_c(2595): 1/2^-$	1.35 - 3.16	1.36 - 3.20	2.6 MeV
$\Lambda_c(2625): 3/2^-$	0.15 - 0.33	0.09 - 0.26	<0.97 MeV

- In this case, the momentum is almost zero.
- The dominant term is $(\sigma \cdot p_i)$ term.

$$\begin{aligned} \left\langle \Sigma_{c} \right| 1 \left| \Lambda_{c} \right\rangle \propto q & \left\langle \Sigma_{c} \right| p_{i} \left| \Lambda_{c} \right\rangle \propto a & \left\langle \Sigma_{c} \right| p_{i}^{2} \left| \Lambda_{c} \right\rangle \propto q \ a^{2} \\ \text{small} & \text{dominant} & \text{small} \end{aligned}$$

- The dominance of the S-wave decay.
- The relativistic correction is rather small.

Roper-like state: $\Lambda_c^* \to \Sigma_c^{(*)} \pi$

Roper-like state	NR	NR + RC	Exp.
$Λ_c(2765) : 1/2^+, λλ$	2-5	11 - 49	73 MeV
$\Lambda_{c}(3136): 1/2^{+}, \rho\rho$	11 - 123	314 - 1799	

• The overlap is orthogonal in the long-wavelength limit.

$$\begin{aligned} \left\langle \Sigma_c \right| 1 \left| \Lambda_c \right\rangle \propto q^2 & \left\langle \Sigma_c \right| p_i \left| \Lambda_c \right\rangle \propto q & \left\langle \Sigma_c \right| p_i^2 \left| \Lambda_c \right\rangle \propto a^2 \\ & \text{negligible} & \text{small} & \text{large} \end{aligned}$$

- The leading order is somehow suppressed.
- The relativistic correction is essential.

Some remarks

- The Roper-like heavy baryon -> Quark model state?
- A problem of narrow width
 -> Cured by the relativistic correction.
- Role of relativistic correction

 -> not important for negative parity state
 -> Essential especially for Roper-like state.
- How about fully relativistic quark model?
 —> Light-front quark model.
- What about other baryons or mesons?
 —> It's interesting to study them as well.

Part 3

Finding the missing Roper-like resonances

Roper-like strange baryons

- \bullet We expect the Roper-like strange baryons lie around ΔM ~ 500 MeV.
- However, they are not yet identified in experiment.
- Here, we study their decay properties in the quark model.

Strange baryon decay in quark model

Wave function

Gaussian-type (harmonic oscillator) The λ and ρ modes are mixed. We average the mass of strange and light quarks. Parameter k & m -> the baryon core's radius.

 $\mathbf{6}\otimes\mathbf{6}\otimes\mathbf{6}=\mathbf{56}_{S}\oplus\mathbf{70}_{M}\oplus\mathbf{70}_{M}\oplus\mathbf{20}_{A},$

Quark-meson Interaction FWT

$$H = \frac{H(1/m^{0}) + H(1/m) + H(1/m^{2}) + \dots}{RC}$$
$$H_{NR} = g \left[\boldsymbol{\sigma} \cdot \boldsymbol{q} - \frac{\omega_{\pi}}{2m} \boldsymbol{\sigma} \cdot \left(\boldsymbol{p}_{i} + \boldsymbol{p}_{f} \right) \right]$$
$$H_{RC} = \frac{g}{8m^{2}} \left[m_{\pi}^{2} \boldsymbol{\sigma} \cdot \boldsymbol{q} - 2\boldsymbol{\sigma} \cdot \left(\boldsymbol{p}_{i} + \boldsymbol{p}_{f} \right) \times \left(\boldsymbol{q} \times \boldsymbol{p}_{i} \right) \right]$$

19

Ξ(1690), ??

 $\Gamma_{\rm exp} < 30 {\rm MeV}$

		$\Xi\pi$	$\Xi^*\pi$	ΛK	ΣK	Sum
70, ² 10,1,1,1/2 ⁻	NR	2.0	0.002	4.1	0.6	6.7
	NR+RC	2.7	0.002	4.3	0.6	7.6
70, ² 8,1,1,1/2 ⁻	NR	2.0	0.002	16.4	9.4	27.9
	NR+RC	2.7	0.002	17.3	9.4	29.5
70, ⁴ 8,1,1,1/2 ⁻	NR	32.3	0.0006	16.4	2.4	51.1
	NR+RC	42.8	0.0004	17.3	2.4	62.5
56, ² 8,1,1,3/2 ⁻	NR	0.3	1.0	0.2	~0	1.8
	NR+RC	0.2	1.1	0.2	~0	1.6
56, ² 8,2,0,1/2 ⁺	NR	0.2	0.02	0.4	0.02	0.7
	NR+RC	2.3	0.3	1.3	0.1	3.9

 $egin{aligned} R^{\Sigma^+K^-}_{\Lambda^0ar{K}^0} &= \ 0.50 \ R^{\Xi\pi}_{\Sigmaar{K}} &< 0.09 \ R^{\Xi^*\pi}_{\Sigmaar{K}} &< 0.06 \end{aligned}$

The most suitable state: 1/2-, Not possible to assign it as 1/2+

Ξ(1620)		$\Gamma_{exp} =$	40 ± 13	5 MeV	
		$\Xi\pi$	ΛK	Sum	_
$70^{4}8111/2^{-}$	NR	24	6	30	
/0, 0,1,1,1/2 /	NR+RC	29	6	35	

Only the 1/2- state that have a sizable width.

Exp status of $\Xi(1820)$

$$\Gamma_{\rm pdg} = 24 \pm 5 \,\,{\rm MeV}$$

LHCb, 2021	$\Gamma = 36 \pm 4 \text{ MeV}$
------------	---------------------------------

- **BES III**, 2020 $\Gamma = 17 \pm 15 \text{ MeV}$
- **BES III**, 2015 $\Gamma = 54.4 \pm 15.7 \text{ MeV}$
- Biagi, 1987 $\Gamma = 24.6 \pm 5.3 \text{ MeV}$
- Biagi, 1981 $\Gamma = 72 \pm 20 \text{ MeV}$
- Briefel, 1976 $\Gamma = 99 \pm 57 \text{ MeV}$
- Gay, 1976 $\Gamma = 21 \pm 7 \text{ MeV}$
- Apsel, 1970 $\Gamma = 64 \pm 23 \text{ MeV}$

Inconsistencies among the data

Some experiments $\rightarrow J^P = 3/2^-$. Hypothesis: other nearby resonance?

apctp

$\Xi(1820)$ in the quark model

RC -> Large (for 1/2+), but small (for 1/2-,3/2-)

 $3/2^- \rightarrow \text{small}(\Gamma \sim 14) \& \text{dominant} \Xi^* \pi$ $1/2^+ \rightarrow \text{large}(\Gamma \sim 80) \& \text{dominant} \Sigma K$

$\Xi(1950)$

$\Xi(1950)$ $I(J^P) = 1/2(?^?)$

We list here everything reported between 1875 and 2000 MeV. The accumulated evidence for a Ξ near 1950 MeV seems strong enough to include a $\Xi(1950)$ in the main Baryon Table, but not much can be said about its properties. In fact, there may be more than one Ξ near this mass.

		$\Xi\pi$	$\Xi^*\pi$	ΛK	ΣK	Σ^*K	Sum
$56^{2}8201/2^{+}$	NR	0.2	2.5	0.7	23	3.1	29
50, 0,2,0,172 /	NR+RC	6.0	26	4.9	117	15	169

 $\Gamma_{\rm exp} = 60 \pm 20 \,\,{\rm MeV}$

- The predicted width is quite large for 1/2⁺ as compared to data.
- ΔM ~ 636 MeV seems also larger than expected.
- Not suitable with 1/2⁺.

Intermezzo: $\Omega(2012)$

- Discovered by Belle in 2018.
- Relatively narrow state.
- Likely to be $3/2^-$ in the quark model.
- Recently, Belle measure its 3-body decay.

 $[R_{\Xi\bar{K}}^{\Xi\pi\bar{K}}]_{\rm exp} < 11.9\%.$

State	Channel	$\Gamma_{\rm NR}$	$\Gamma_{\rm NR+RC}$	$\Gamma_{\rm exp}$
$\Omega(2012)$	$\Xi \bar{K}$	2.63	2.41	
	$\Xi \bar{K} \pi$	0.09	0.11	
	sum	2.72	2.52	$6.4^{+3.0}_{-2.6}$

$$[R_{\Xi\bar{K}}^{\Xi\pi\bar{K}}]_{\rm QM} = 4.5\%,$$

25

Some remarks

- Opportunity to study strange baryon in J-PARC.
 - -> Roper-like Ξ and Ω resonances.
 - -> Establishing negative parity states.
- Signature of the Roper-like Ξ resonance. -> Large width & dominant $\Sigma \overline{K}$ channel.
- Identifying overlapping resonances: 1/2⁺ and 3/2⁻.
 -> How to distinguish them in J-PARC experiment?

Ω(2012): quark model, molecular state, or what?
 -> In QM, it is an orbital excitation with 3/2⁻.
 -> Need to find its LS partner

Final part Summary & outlook

Summary & Outlook

- We recently study Roper-like resonances.
 -> Similarity: mass & decay property
 -> Three-body decay -> spin-parity
- Roper-like resonances in the quark model.
 - -> Narrow width problem
 - -> Inclusion of relativistic correction
 - -> Relativistic quark model -> LFQM
- Finding the missing Roper-like resonances.
 -> Strange baryons in the quark model
 -> Production in J-PARC
- Studying other system.
 - -> Heavy-light meson (D meson, B meson, etc)

Citations per year

Discovery of Roper resonance

Thank you for your attention

Email: <u>ahmad.jafar.arifi@apctp.org</u> Web: <u>https://ajarifi.github.io</u>

Decay widths: Why are they so broad?

Quark model:

- narrow width(Orthogonality of w.f.)
- Relativistic corr. FWT transformation.
- The importance of $1/m^2$ term.

Roper-like state	NR	NR + RC	Exp.
$Λ_c(2765): 1/2^+, λλ$	2 - 5	11 - 49	73 MeV

Suppression of nonresonant contribution

Experimental constraints on the spin and parity of $\Lambda_c(2880)$. Belle. PRL98 262001 (2007)

Comparison with the quark model

Quark model

- The mass has decreasing behaviors.
- lowering behavior of λ mode.
- heavy baryons have better agreements.

Dalitz plot: $\Lambda_c^*(2765)$ decay

34

Ratio

Angular correlation

apctp

Wave function of heavy baryon

Harmonic Oscillator potential

M = 1.50 GeV
m = 0.35 GeV
$$rac{1}{\sim} \omega_{\lambda} = 350 \text{ MeV}$$

k = 0.03 GeV^3

Orbital Spin

$$Y_{c} = \left[\left[\psi_{l_{\lambda}}(\vec{\lambda}) \psi_{l_{\rho}}(\vec{\rho}), d \right]^{j}, s_{c} \right]^{J} \psi_{flavor} \psi_{color} \qquad J = j + s_{Q}$$

36

Symmetric

Anti-Symmetric

Nagahiro, et. al. PRD95 014023 (2017)

$\Omega\, {\rm spectrum}$

We will focus on these 3 states: 1 doublet of P-wave state 1 Roper-like state

> $\Omega(1957)$ $\Omega(2012)$ $\Omega(2159)$

Phys. Rev. D 101, 016002 (2020)