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Introduction

Main question: how are mass/momentum energy and forces spatially
distributed in hadrons?

Hadrons are manifestly relativistc: need a relativistic description.

Light front densities provide that description.

Based on work in:

AF & Gerald Miller,
PRD103, 094023

AF & Gerald Miller,
PRD104, 014024

AF & Gerald Miller,
arxiv:2108.03301
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The energy-momentum tensor

The energy-momentum tensor (EMT) is an operator characterizing the
distribution and flow of energy and momentum.

Matrix elements between hadronic states characterize coveted properties of hadrons:

The distribution & decomposition of mass.
The distribution & decomposition of angular momentum.
The distribution & decomposition of forces, including shear and pressure.
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The EMT from spacetime symmetry

The EMT is obtained by applying Noether’s theorem to spacetime translation
symmetry:

TµνQCD(x) =
∑
q

{
1

2
q̄(x)iγ{µ

←→
D ν}q(x)− gµν q̄(x)

(
i
←→
/D −mq

)
q(x)

}
− Tr

[
GµλGνλ

]
+

1

2
gµνTr

[
GλσGλσ

]
It is conserved: ∇µTµν(x) = 0.
It is symmetric and gauge invariant.

Regarding the Noether EMT being symmetric, see:

Gerardo Muũoz (1996), American Journal of Physics 64, 1153
Ricardo E Gamboa Sarav́ı (2002), J. Phys. A: Math. Gen. 35 9199

A. Freese (UW) Light front densities November 17, 2021 4 / 39



Form factors of the EMT

EMT matrix elements give gravitational form factors (GFFs).

EMT is what gravitates, after all.

For a spin-zero hadron:

〈p′|T̂µν(0)|p〉 = 2PµP νA(t) +
1

2
(∆µ∆ν −∆2gµν)D(t)

A(t) encodes momentum density
(mass in NR limit)

D(t) encodes force distributions.
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How to get the GFFs
Hard exclusive reactions are used to measure GFFs—not gravitational
experiments.

Deeply virtual Compton scattering (DVCS) to probe quark structure.
Deeply virtual meson production (DVMP), e.g., J/ψ or Υ to probe gluon structure.
. . . and more!

Related to GPDs—spin-zero example:∫ 1

−1
dxxHq,g(x, ξ, t) = Aq,g(t) + ξ2Dq,g(t)

x + ξ x − ξ

1 + ξ 1 − ξ

−−−−→∫
dxx
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GFFs and densities
So GFFs are given by:

〈p′|T̂µν(0)|p〉 = 2PµP νA(t) +
1

2
(∆µ∆ν −∆2gµν)D(t)

And densities are given by:

Tµν(r, t = 0) = 〈ψ|T̂µν(r, t = 0)|ψ〉

How are densities related to GFFs, then?
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Fourier transforms and densities

Fourier transforms always work at amplitude level:

〈r|ψ〉 =

∫
d3p

2Ep(2π)3
〈p|ψ〉e−i(p·r)

Densities are defined at a probability level:

Tµν(r, t = 0) = 〈ψ|T̂µν(r, t = 0)|ψ〉

Densities thus involve two momentum integrals:

Tµν(r, t = 0) =

∫
d3p

2Ep(2π)3

∫
d3p′

2Ep′(2π)3
ψ∗(p′)ψ(p)〈p′|T̂µν(r, t = 0)|p〉
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Wave packet dependence

Tµν(r, t = 0) =

∫
d3P

(2π)3

∫
d3∆

(2π)3
ψ∗(p′)ψ(p)

〈p′|T̂µν(0)|p〉
4EpEp′

e−i∆·r

P =
1

2

(
p + p′

)
∆ = p′ − p

ψ(p) is external wave function.
How fast is the hadron, where is it, etc.

This density mixes internal structure with wave function spread.

P dependence encodes wave function spread. Need to get rid of P integral.

Use a Gaussian wave function:

ψ(p) =
√

2Ep (2π)3/4(2R)3/2e−R
2p2

(See Miller:2018ybm.)
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The two limits

Tµν(r) = (2π)3/2(2R)3
∫

d3P

(2π)3
e−2R

2P2

∫
d3∆

(2π)3
〈p′|Tµν(0)|p〉√

4EpE′p
e−

R2

2
∆2

e−i∆·r .

R→∞ gives Breit frame

Initial and final state plane waves.

R→ 0 gives spatially localized state.
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Breit frame fallability

Breit frame density:

TµνBreit(r) = lim
R→∞

∫
d3∆

(2π)3
〈p′|Tµν(0)|p〉√

4EpE′p
e−

R2

2
∆2

e−i∆·r

∣∣∣∣∣
P=0

Most literature using “Breit frame” erroneously drops red factor.

All radii are infinite in the Breit frame, e.g.

〈r2〉(energy) = −∇2
∆

[
〈p′|T 00(0)|p〉√

4EpE′p

] ∣∣∣∣∣
P=0,∆=0

+ lim
R→∞

3MR2

Again, most “Breit frame” literature erroneously drops red term.

Happens because of uncertainty principle.

(Argument and slide title from Miller:2018ybm.)
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Legends of localization

Spatially localized hadron:

Tµνloc(r) = lim
R→0

∫
d3U

(2π)3/2
e−

1
2
U2

∫
d3∆

(2π)3
〈p′|Tµν(0)|p〉√

4EpE′p

∣∣∣∣∣
P=U/(2R)

e−i∆·r

Need finite matrix element at P→∞.

Spin-zero T 00(0) element at large P:

〈p′|T 00(0)|p〉√
4EpE′p

≈ |P|A(t) +O
(
M

|P|

)
−−−−→
|P|→∞

∞

Again happens because of uncertainty principle.

Energy increases with P.
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Fully non-relativistic limit

We can at least use localized limit (R→ 0) in the non-relativistic limit.

Fully non-relativistic limit: c→∞.
Energy becomes mass; no P dependence:

lim
c→∞

1

c2
〈p′|T 00(0)|p〉√

4EpE′p
= MA(t)

No uncertainty principle problems!

Fully non-relativistic mass density:

ρ(NR)
mass (r) = M

∫
d3∆

(2π)3
A(t)e−i∆·r

Downside: it’s non-relativistic.

Consistency requires taking NR limit into form factor.
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Leading order relativistic corrections

What if we expand in powers of v/c?

ρenergy(r) =
ρmass(r)

M

{
Mc2 +

〈P2〉
2M

}
+O(1/c2) ,

where:

ρ(j=0)
mass (r) = M

∫
d3∆

(2π)3

{
A(t) +

∆2

8M2c2

[
A(t) + 2D(t)

]}
e−i∆·r +O(1/c4)

ρ(j=1/2)
mass (r) = M

∫
d3∆

(2π)3

{
A(t) +

∆2

4Mc2

[
A(t) +D(t)− 2J(t)

]}
e−i∆·r +O(1/c4)

〈P2〉 diverges for localized hadron.

Spin-half agrees with standard “Breit frame” density.

At best a leading order relativistic density.
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Beyond leading order?
Is all-orders factorization is possible?

ρenergy(r;R) =
ρmass(r;R)

Mc2

〈√
(Mc2)2 + (Pc)2

〉
R

Energy density depends on wave packet spread R.
Energy diverges when R→ 0, but mass doesn’t?

Need P and ∆ dependence to factorize in:

Tµν(r, t = 0) =

∫
d3P

(2π)3

∫
d3∆

(2π)3
ψ∗(p′)ψ(p)

〈p′|T̂µν(0)|p〉
4EpEp′

e−i∆·r

P =
1

2

(
p + p′

)
∆ = p′ − p

. . . but:

EpEp′ =

√(
(Mc2)2 + (Pc)2 + (∆c)2/4

)2
− (P ·∆)4

All-orders relativistic mass density is impossible
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Light front coordinates

Issues are resolved in light front coordinates.

x± =
t± z√

2
x⊥ = (x, y) τ = x+ = time

t

z

t + z = 0

t − z = 0

Minkowski coordinates

x+x−

x+ − x− = 0

x+ + x− = 0

Light front coordinates
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Galilean subgroup

Poincaré group has a (2 + 1)D Galilean subgroup.

x+ is time and x⊥ is space under this subgroup.
x− can be integrated out.
P+ = 1√

2
(Ep + pz) is the central charge.

Basically, light front coordinates should give a fully relativistic 2D picture that
looks like non-relativistic physics.

But with P+ in place of M .

dP⊥
dx+

= P+ d2x⊥

dx+2

H = P− = Hrest +
P2
⊥

2P+

etc.

A. Freese (UW) Light front densities November 17, 2021 17 / 39



Light front densities

Densities use localized wave function:

TµνLF(b⊥) = lim
R→0

∫
d2U⊥

2π
e−

1
2
U2

⊥

∫
d2∆⊥
(2π)2

〈p′|Tµν(0)|p〉
2P+

∣∣∣∣∣
P⊥=U⊥/(2R)

e−i∆⊥·b⊥

x− has been integrated out.
Fixed light front time (x+ = 0).
Matrix element must be finite when P⊥ →∞.
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Light front momentum density
Spin-zero T++(0) element at all P⊥:

〈p′|T++(0)|p〉
2P+

= P+A(t)

Gives a P+ density:

ρ
(LF)
P+ (b⊥) = P+

∫
d2∆⊥
(2π)2

A(t)e−i∆⊥·b⊥

Fully relativistic.

Compare to NR mass density:

ρ(NR)
mass (r) = M

∫
d3∆

(2π)3
A(t)e−i∆·r (dipole model with f2(1270) pole)
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Relativistic spin effects: transverse polarization
Transverse polarization: superposition of helicity states.

|s⊥〉 =
|λ = +1〉+ eiφs |λ = −1〉√

2
.

Matrix elements get helicity flip contribution:

〈s⊥|Ô|s⊥〉 =
1

2

{
〈+|Ô|+〉+ 〈−|Ô|−〉+ 〈+|Ô|−〉eiφs + 〈−|Ô|+〉e−iφs

}
,

The P+ density:

ρ
(LF)
P+,T

(b⊥, s⊥) = ρ
(LF)
P+ (b⊥) + P+ sin(φb − φs)

2Mc

d

db⊥

∫
d2∆⊥
(2π)2

(
A(t)− 2J(t)

)
e−i∆⊥·b⊥

Now with spin dependence!
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Spin dependence illustrated: P+ density

Model: A(t) dipole & J(t) tripole with f2(1270) mass at pole.
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Features of transversely polarized state

Fully relativistic

Spin along positive y axis.

Not azimuthally symmetric

sin(φ) modulations if A(t) 6= 2J(t)

Cannot obtain from spherically symmetric
density by integrating out z.

Cannot apply inverse Abel transform!
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Why density deforms for transverse polarization

s⊥ (t, z) = (0, 0)

(t, z) = (0, +R)

(t, z) = (0, −R)

s⊥ x+ = 0

x+ = R/
√

2

x+ = −R/
√

2

s⊥ x+ = 0

x+ = R/
√

2

x+ = −R/
√

2

Short answer: because light front time is not instant form time

Must evolve system from equal-t to get to equal-x+.

Small z (closer) at fixed t: must evolve forward in time.
Big z (further) at fixed t: must evolve backward in time.
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The stress tensor

Spatial components of the EMT give the stress tensor.

The stress tensor encodes distribution of forces.

Recommended reading:

Polyakov and Schweitzer,
International Journal of Modern Physics A23 (2018) 1830025
Lorcé, Moutarde and Trawinski,
European Journal of Physics C79 (2019) 89
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Stress tensor and hadron flow

Stress tensor also encodes hadron flow.

Includes wave function dispersion

In Galilean theory (non-relativistic or light front):

T ij(x,v) = vivjρ(x) + Sij(x)

Uncertainty principle: vivjρ(x) blows up when R→ 0.
Sij(x) remains finite.

Comoving stress tensor: Sij(x) = T ij(x,v = 0).

Requires Galilean covariance.
Seen from perspective of comoving observer.
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Momentum conservation and force balance

Conservation law from Noether’s theorem:

∂µT
µν(x) = 0

Additional force balance equation:

F(x) = ∇iSij(x) = 0

Applies to both NR and LF.

Force density acting on a hadron is everywhere zero.

The hadron is in equilibrium.
The hadron is not being acted on by outside forces.
The torque density is also everywhere zero.
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Non-relativistic vs light front

Non-relativistic comoving stress tensor:

SijNR(r) =

∫
d3∆

(2π)3

(
∆i∆j − δij∆2

4M

)
D(t)e−i∆·r

Light front comoving stress tensor (spin zero or helicity case):

SijLF(b⊥) =

∫
d2∆⊥
(2π)2

(
∆i
⊥∆j

⊥ − δij∆2
⊥

4P+

)
D(t)e−i∆⊥·b⊥

Very similar! Differences:

2 vs. 3 dimensions
M vs. P+ (central charge of Galilean group)
Related by Abel transform, see Panteleeva and Polyakov, PRD104, 014008
Also see AF & Miller, arxiv:2108.03301
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Abel transform caveats: Round 1

Abel transform only connects non-relativistic & light front pressures.

Standard “Breit frame” pressures identical to NR only for spin-half.

Spin-half:

SijBF(r) =

∫
d3∆

(2π)3

(
∆i∆j − δij∆2

4M

)
D(t)e−i∆·r = SijNR(r)

Spin-zero:

SijBF(r) =

∫
d3∆

(2π)3

(
∆i∆j − δij∆2

4M
√

1− t/(4M2c2)

)
D(t)e−i∆·r 6= SijNR(r)

It is erroneous to say Abel transforms connect light front to Breit frame

See AF & Miller, arxiv:2108.03301 for more detail

A. Freese (UW) Light front densities November 17, 2021 28 / 39



Experimental pressure data

D(t) experimentally found from DVCS.

V.D. Burkert, L. Elouadrhiri, F.X. Girod, arxiv:2104.02031

All plots I show use D(t) from the above paper:

D(t) =
D(0)

(1− t/Λ2)α

D(0) = −1.47± 0.06± 0.14

Λ2 = 1.02± 0.13± 0.21 GeV2

α = 2.76± 0.23± 0.48
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Radial and tangential eigenpressures
Pressures are elements of comoving stress tensor:

pv(b⊥) = v̂iv̂jS
ij
LF(b⊥)

Has two eigenvectors with eigenpressures.

SijLF(b⊥)v̂j = λv(b⊥)v̂i

Eigenpressures are radial and tangential.
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Net force on slab is zero
A. Freese (UW) Light front densities November 17, 2021 30 / 39



About the signs
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Net force on slab is zero

Net force everywhere is zero

Positive means pressure is pushing from both sides.

Negative means pressure is pulling from both sides.
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Isotropic pressure and pressure anisotropy
Comoving stress tensor can be written:

Sij(b) = δijp(b) +

(
bibj

b2
− 1

2
δij
)
s(b)

p(b) is the isotropic pressure.

p(b) =
1

2

(
pr(b) + pt(b)

)

s(b) is pressure anisotropy.

s(b) = pr(b)− pt(b)
Also called shear.
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Isotropic pressure plot.

Not a net force plot.

Says nothing about force towards
origin.
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Empirical proton pressure: helicity state

Empirical proton pr(b).

Helicity state.

pr(b) > 0

Gives mechanical radius.√
〈b2〉mech = 0.518± 0.062± 0.126 fm

See AF & Gerald Miller,
PRD104, 014024
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Transverse polarization and pressure

Transverse polarization changes comoving stress tensor:

SijT (b, s⊥) = δijpT (b, φ) +

(
bibj

b2
− 1

2
δij
)
sT (b, φ) +

(
bis̃j⊥ + bj s̃i⊥

b
− 2 sin(φ)

bibj

b2

)
vT (b)

pT (b, φ) = p(b) +
sin(φ)

2M
p′(b)

sT (b, φ) = s(b) +
sin(φ)

2M
s′(b)

vT (b) =
s(b)

2Mb

New vT (b) structure

Radial and tangential pressures no longer eigenpressures.
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Empirical proton pressure: transversely polarized state
Deformed radial Deformed tangential
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Features of transversely polarized pressure

Fully relativistic

Deformed from radial pressure

Spin along positive y axis

Eigenpressure not azimuthally
symmetric

Center shifted right

Full expressions in arxiv:2108.03301
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Abel transform caveats: Round 2

Abel transform only connects
azimuthally symmetric &
spherically symmetric functions

For transverse polarization:

NR & “Breit frame” are
spherically symmetric
Light front is
not azimuthally symmetric

It is erroneous to say Abel transforms connect light front to Breit frame

See AF & Miller, arxiv:2108.03301 for more detail
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Summary

Obtaining EMT densities requires non-relativistic limit or light front
coordinates.

Light front coordinates give a fully relativistic picture.

Galilean covariance was needed to isolate comoving stress tensor.

Transverse polarization introduces relativistic spin effects in momentum density &
pressure.
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The End

Thanks for your time!

Based on work in:

AF & Gerald Miller,
PRD103, 094023

AF & Gerald Miller,
PRD104, 014024

AF & Gerald Miller,
arxiv:2108.03301
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