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Detection of CnB

CnB CMB

“Darkness on the Table”

Yeongduk Kim, CUP, IBS
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Neutrino mass

• Neutrino mass is ultra small, and we don’t 
understand its origin. 

• Neutrino mass is constrained by beta decays and 
cosmology.

• Cosmological measurements may soon give finite 
neutrino mass.

KATRIN
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KamLAND-ZEN



3 CnB properties
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Number density  2$ = 56/560

We expect overdensity in our galaxy, ≤104

Dark Matter density ~0.4GeV/cm3 >> Neutrino density

Extremely difficult to detect CnB.

Ringwald &Wong, JCAP 0412, 005 (2004)
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Neutrino capture on bdecaying nuclei
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Nuclear Beta decay

Neutrino Capture on a 
Beta Decaying Nucleus 

(NCB) (A, Z) (A, Z + 1)

This process has no energy threshold ! 
Cross section is non vanishing !

e- in final state has fixed energy (2 body decay) !
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Direct detection IS possible !!

A.G.Cocco, G.Mangano and M.Messina JCAP 06(2007)015
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Neutrino capture on b±decaying nuclei

Nuclear Beta decay Qb

mn Te

Qb

mn Te

The events induced by Neutrino Capture have a unique signature: 
there is a gap of 2mn (centered at Qb) between “signal” and “background”

As s “side result”: measurement of the neutrino mass !

2mn

Neutrino Capture on a 
Beta Decaying Nucleus

dN/dEe

dN/dEe

exploiting mn¹0
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- High cross section (~10-44 cm2)

- Sizeable lifetime (T1/2 = 12 y)

- Low Q value (18.6 keV)

- Nuclear and atomic physics effects 
can be evaluated analytically

PTOLEMY Collaboration M.G.Betti et al., JCAP 07(2019)047

PTOLEMY

νe + 3H 3He+ + e-

100 g T source + EM filter + RF tagging + sub-eV resolution calorimeter

à 7 capture events per year



PTOLEMY prototype layout

Dynamic EM filter 
for kT removal

Trigger and measure 
of E and kT

Etot = q(Vcal - Vsource) + Ecal

1 m

Static electric and magnetic fields are used

Source strength with surface densities of ~2
Ci/m2 (200 µg/m2) à 500 m2 for 100g

EResol (0.05 eV) 
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CnB detection w/ EC decaying nuclei

Electron Capture

Simultaneous nand 
electron Capture

Resonant process
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This process has no energy threshold !

A.G.Cocco, G.Mangano and M.Messina Phys. Rev. D79 (2009) 053009
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• Lusignoli & Vignati,   “Lusignoli”

‘Relic "̅ capture on 163Ho decaying nuclei’
[ PLB 697, 11 (2011) & PLB 701, 673 (2011) (E) ]

• Vergados et al.,
‘Prospects of detection of relic antineutrinos by resonant absorption in
electron capturing nuclei.’ [J. Phys. G. Phys. 41 (2014)]

• Jeong-Yeon Lee, Satoshi Chiba, Yeongduk Kim. “Lee”
“New targets for relic antineutrino capture”, arXiv:1811.05183



10 163Ho EC spectra vs neutrino mass

# of signals at the end point
Need energy resolution < 0.5 eV

“Lusignoli”

The neutrino mass in fact affects the capture 
rates from different levels, and it modifies
the spectra of inner bremsstrahlung photons and 
emitted electrons near to their endpoints.
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Reaction rates !" $̅ induced EC capture
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∑0 .010-20(7 − 50)-

.&' ∶ # density of incoming $̅
.0 : fraction of occupancy of i-th atomic shell
10 : Coulomb amplitude of electron radial wave function
20 : atomic correction for electron exchange and overlap (~1)
30(5&') : density of final state per energy.

“Lusignoli”

Q-value 2.2 keV 2.5 keV 2.8 keV 2.833 keV

7.6×10-22 5.8×10-23 1.4×10-23 1.2×10-23%&'/%()

For 10 events,  a minimum quantity of 163Ho of (23.2, 307, 1274) kg y for Q = (2.3, 2.5, 
2.8) keV.  Q=2.833 keV !  Too large mass is required. 
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Closer to the resonant condition. 

• Search resonant states including nuclear excited states.
• For all s state electron levels. 
• QEC<60 keV

à How close to the resonant condition

à Uncertainty of the Q value 

à How close to the resonant condition

“Lee”



13 Results

For 10 events/year

A few candidates are found.
But, still the best candidates 
need ~ kg for 10 events/year
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New mass measurements

“159Dy electron-capture: a strong new candidate for neutrino mass determination”, Z. Ge et al., 
arXiv:2106.06626
159Dy is measured with Penning Trap since it could have ~ 0 Q value.
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Much more events @ end points.

• smallest Q-value of any known 
electron capture, 1.18(19) keV

• 0.47 keV smaller than previous Q 
value.
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CnB w/ accelerator

“Observing relic neutrinos with an accelerator experiment”, Martin Bauer et al. arXiv:2104.12784
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Later 
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Accelerate Hydrogen-like ion(left) or fully stripped ion  to the resonant velocity.

(A, Z - 1)
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Neutrino induced electron capture Bound-state beta decay

Unlikely to stationary target, there is no decay without neutrino absorption, since 
it needs threshold energy. à In principle, no background.



18 Candidates

• The required energies for the resonance are too high.
• Yet, the production is too small. 
• Need to look at other alternatives.  
• Atomic mass accuracy ~ 10 eV at best, yet the total binding energy for fully 

stripping has error of ~ 100 eV.
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Summary

• Neutrino is one of the best too for BSM physics.
• Cosmological neutrino mass may be determined in near future.
• Resonant reaction is studied for direct CnB detection, yet shows no 

strong candidate. There are rooms to be explore yet.
• PTOLEMY has a definite plan with much improvements, yet a lot of 

technical questions. 
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Experimental Realization

Vacuum Chamber

Segmented
X-ray sensors

Source

X-rays

This configuration has an advantage that we can have a strong source. Bend all the electrons 
from the source by magnet. Only photons(x-rays) are emitted from the source and 


