Detection of CvB
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Neutrino mass
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KATRIN [ * Neutrino mass is ultra small, and we don’t
I understand its origin.
* Neutrino mass is constrained by beta decays and
-1
S0 Taverted cosmology.
= * Cosmological measurements may soon give finite
£ Normal neutrino mass.
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CvB properties
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Number density n,, = 56/cm?3

» Flux (102 em=2s ' n

Neutrine

We expect overdensity in our galaxy, <104
Dark Matter density ~0.4GeV/cm?3 >> Neutrino density

Extremely difficult to detect CvB.

Ringwald & Wong, JCAP 0412, 005 (2004)



Neutrino capture on 3 decaying nuclei
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8 This process has no energy threshold !
o

Cross section is non vanishing !
e- in final state has fixed energy (2 body decay) !

Direct detection IS possible !!

A.G.Cocco, G.Mangano and M.Messina JCAP 06(2007)015
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Neutrino capture on *decaying nudel
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The events induced by Neutrino Capture have a unique signature:
there is a gap of 2m, (centered at Q;) between “signal” and “background”

As s “side result”: measurement of the neutrino mass !



PTOLEMY
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100 g T source + EM filter + RF tagging + sub-eV resolution calorimeter

—> 7 capture events per year

PTOLEMY Collaboration M.G.Betti et al., JCAP 07(2019)047



PTOLEMY prototype layout
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Source strength with surface densities of ~2
Ci/m2 (200 pg/m2) = 500 m2for 100g

Static electric and magnetic fields are used

Etot q(VcaI source) + Ecal




CvB detection w/ EC decaying nuclei
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This process has no energy threshold !

A.G.Cocco, G.Mangano and M.Messina Phys. Rev. D79 (2009) 053009



* Lusignoli & Vignati, “Lusignoli”
‘Relic v capture on 163Ho decaying nuclei’
[ PLB 697, 11 (2011) & PLB 701, 673 (2011) (E) ]

* Vergados et al.,
‘Prospects of detection of relic antineutrinos by resonant absorption in

electron capturing nuclei.’ [J. Phys. G. Phys. 41 (2014)]

e Jeong-Yeon Lee, Satoshi Chiba, Yeongduk Kim. “Lee”
“New targets for relic antineutrino capture”, arXiv:1811.05183



163Ho EC spectra vs neutrino mass

“Lusignoli”
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Reaction rates of v induced EC capture

“Lusignol1”
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ny ¢ # density of incoming v

n; : fraction of occupancy of i-th atomic shell

P; : Coulomb amplitude of electron radial wave function

B; :atomic correction for electron exchange and overlap (~1)
p;(E3) : density of final state per energy.

2.2 keV 2.5keV 28 keV 2.833 keV

A’V/AEC 7.6%x10-22 5.8X10-23 1.4%x10-23 1.2x10-23

For 10 events, a minimum quantity of 13Ho of (23.2, 307, 1274) kg y for Q = (2.3, 2.5,
2.8) keV. Q=2.833 keV ! Too large mass 1s required.



Closer to the resonant condition.

» Search resonant states including nuclear excited states.
* For all s state electron levels.

¢ Qpe<60 keV Lee

Q'sc =Am(z, —Am, Z-l)*' —> How close tof the resonant condition
(' : atomic excitation, *: nuclear excitation)

dQ' .=\ Aml,+ bm ]

(Z-1)

—> Uncertainty|of the Q value

AQ'sc =| Q'EC| —dQ' EC — How close tp the resonant condition

Conditions: T4, >10 days,
Q'ec<10 keV, dQ'ec<10keV, AQ':c<10 keV



Results
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New mass measurements

“I39Dy electron-capture: a strong new candidate for neutrino mass determination”, Z. Ge et al.,

arXiv:2106.06626
139Dy is measured with Penning Trap since it could have ~ 0 Q value.
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CvB w/ accelerator

“Observing relic neutrinos with an accelerator experiment”, Martin Bauer et al. arXiv:2104.12784

e
Vo —> E—> Later
X-rays
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Accelerate Hydrogen-like 1on(left) or fully stripped ion to the resonant velocity.
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Neutrino induced electron capture Bound-state beta decay

Unlikely to stationary target, there is no decay without neutrino absorption, since
it needs threshold energy. = In principle, no background.



Candidates

B Np(z)/N,

System Q (keV)|E/A(TeV) br z(t=1y) p(z)/No
Bpr Np(z)/No

1937, B85, 193py 555 | 5169 1 |250-1077|236-10°%
He REC, 3y 1858 | 17400 | 0031 1303-1077|158.107%

* The required energies for the resonance are too high.

e Yet, the production is too small.
* Need to look at other alternatives.

* Atomic mass accuracy ~ 10 eV at best, yet the total binding energy for fully

stripping has error of ~ 100 eV.




Summary

* Neutrino 1s one of the best too for BSM physics.

* Cosmological neutrino mass may be determined in near future.

* Resonant reaction is studied for direct CnB detection, yet shows no
strong candidate. There are rooms to be explore yet.

« PTOLEMY has a definite plan with much improvements, yet a lot of
technical questions.



Experimental Realization

Vacuum Chamber
Source

Segmented
X-ray sensors

X-rays

This configuration has an advantage that we can have a strong source. Bend all the electrons
from the source by magnet. Only photons(x-rays) are emitted from the source and



