A lab-scale experiment for keV sterile neutrino search from tritium beta decay spectrum

IBS(CUP), KRISS, SNU

Online Workshop : Darkness on the table , 2021/08/10

Overview

- ³H embedded in LiF crystal
- Calorimetric measurement
- Experimental bounds on keV mass sterile neutrino together with the expected sensitivity of this experiment
- Result of first test experiment

Trace of Sterile ν on ³H β decay spectrum

From β decay spectrums, we can investigate the presence of sterile neutrinos

3

Experimental bound

Cosmological bound

- X-ray bound : assumes the present DM is all sterile v's, regardless of its generation mechanism relevant with the mixing angle and possible history of early universe
- There are cosmological models(e.g. low reheating temperature model of MeV) that suppresses the generation of relic sterile neutrino, and bounds on mixing amplitude can be relaxed by 1e+3 [Phys. Rev. Lett. 93, 081302]

³H generation in LiF crystals

Mean free path : 2.3mm in LiF (7.6% ⁶Li)

- Irradiation time : 7days
- Event rate : ~ 22 Hz

³H distribution in LiF

³H location in 1x1x1 cm³ LiF (MC result)

Energy loss at the surface

MC Simulation on energy escape in LiF crystal

- Using the ³H distribution, the MC shows a negligible effect (< 0.06%) would result in a deposit energy spectrum for 10⁶ counts.
- The MC result should be compared with m easured for high statistic data
- Extra energy catcher?

Low Temperature test setup

$LiF(^{3}H)$

dc-SQUID

MMC

Measurement and Analysis

Measurement

• Spectra were measured 3 times for 10 hours at a base temperature of 40mK in ADR

Signal calculation

• Signal amplitude was calculated by time-domain least square fit with the template of around 6keV

Fitting the measured spectrum

- Energy calibration function was assumed to be 2nd polynomial passing through the origin.
- Unresolved pile-up spectrum was assumed to be convolution of expected beta and Fe-55 X-ray spectrum with itself.
- An energy independent term was added as the rest of the background.
- Tried fitting the entire measured spectrum from 2 to 40keV with the function of ³H + Fe-55 + Unresolved pile-up spectrum + Const-bkg (next page)

Measured spectrum

11

Measured spectrum

Results

- Energy resolution in FWHM
 = 791eV±24eV
- Unresolved pileup fraction = $0.40\% \pm 0.05\%$
- $\chi^2/dof = 0.9989$

Systematics on keV sterile ν study

• Surface effect:

 \rightarrow Comparison between the measured and MC.

• Calibration:

 \rightarrow Investigation of possible sources in the structure of refrigerator

• Long term stability:

 \rightarrow Drift correction + Stable refrigerator condition

• Unresolved pileup:

 \rightarrow Setup for fast rise-time + MC studies

• Possible backgrounds:

 \rightarrow Measurement with no ³H source

Summary

- ³H was embedded in a LiF crystal with reasonable activity.
- Simple calorimetric measurement of ${}^{3}H\beta$ spectrum was done for 10 hour
- We plan a long term (several months) with multi-channel setups.

Thank you!