A study of a cryogenic particle detector for low mass WIMPs search

Darkness on the Table 2021.08.10 Hyelim Kim

What is the Dark Matter?

- ✓ The universe is made of about 73% dark energy, about 23% dark matter, and about 4% baryons (commonly known matter).
- ✓ According to the hypothesis of dark matter, they interact only through gravity and the weak force.
- ✓ WIMPs (Weakly Interacting Massive Particles) are one of the most probable candidate for the dark matter.

PHYS. REV. D 101, 052002 (2020)

CRESST-III results

✓ The standard dark matter halo model ($\rho_{DM} = 0.3$ (GeV/c²)/cm³, v_{Θ} : 220 km/s, $v_{esc} = 544$ km/s)

- ✓ 2.39 kg days data (24 g CaWO₄, 5 months data).
- ✓ Spin-Dependent results is calculated with 17 O (neuclear spin, J=5/2, natural abundance : 0.04 %)
- \checkmark 30.1 eV trigger and analysis threshold.

Low temperature detector

- Ideal connection of absorber and thermometer
- Electronic specific heat : $C_e \propto T$
- Lattice specific heat : $C_1 \propto (T/\theta_d)^3$

Metallic Magnetic Calorimeter

(MMC)

- Paramagnetic material with superconducting measurement circuit
- $\neq \delta E$: Occurrence of energy absorption in absorber.

 $\hookrightarrow \frac{\delta E}{C_{tot}} \propto \delta T$: Temperature change.

- $\Rightarrow \frac{\partial M}{\partial T} \frac{\delta E}{C_{tot}} \propto \delta M$: Magnetization change of paramagnet.
- \Rightarrow δ*M* \propto δΦ : Magnetic flux change affecting SQUID.
- $\rightarrow \delta \Phi \propto \delta V$: Voltage change in SQUID.

CaF₂ scintillation crystal

- ✓ The scintillation wav length has a peak at 280 nm (4.4 eV)
- ✓ The absolute light yield is 17 photons/keV (7.6% efficiency) for electric recoil event.
- ✓ Assuming the quenching for CaF2 is about 11 % (Eu doped CaF2), 1.8 photons/keV (1 photon/556 eV) will be emitted for nuclear recoil event.
- The event separation will be very challenge for below 556 eV events, even though using single photon measurement.
- ✓ The ¹⁹F has natural abundance 100 %, low Z number and ½ nuclear spin which can be also used axially coupled dark matter.

Relative signal size about SQUID

$$\delta \Phi_{\rm s} = M_{\rm is} \delta I = \frac{M_{\rm is}}{L_{\rm m} + 2(L_{\rm i} + L_{\rm w})} \delta \Phi_{\rm m}$$

Supercond. Sci. Technol. 30 (2017) 084005 (7pp)

SQUID	L_i	1/M _{is}	Relative signal size		
			L_m : 32 nH	$L_m: 8 \text{ nH}$	<i>L_m</i> : 2.88 nH
CE1K2 (IPHT)	10 nH	$1.6 \ \mu A/\Phi_0$	1	1.82	2.21
VC1ABlue (IPHT)	4.5 nH	$6 \ \mu A / \Phi_0$	0.34	0.78	1.08
X114 (PTB)	2 nH	5.3 $\mu A/\Phi_0$	0.43	1.22	1.99
XS116 (PTB)	27 nH	$2.3 \ \mu \text{A}/\Phi_0$	0.42	0.59	0.64
SQ3006 (Star Cryogenics)	32.3 nH	$6 \ \mu A / \Phi_0$	0.15	0.19	0.21

crystal preparation

Crystal : CaF_2 Size : $5x5x5 \text{ mm}^3$ Mass : 0.3975 gPhonon collector size Area : $3x3 \text{ mm}^2$ & height : 300 nm

Sensors preparation

Experimental set up

Glue : Ge vanish (for fixing) Height matching plate : Si wafer piece Pressing with 1.5 kg (for Metallic thermal connection) Source : ⁵⁵Fe

> > Paper 5EB01 at ASC2006, to appear in IEEE Trans. Appl. Supercond. 17 (2007)

Pulse height calculation (scaled to data)

Pulse height calculation (scaled to data)

10 mK Results (Preliminary)

10 mK Results (Preliminary)

Summary & Conclusion

- ✓ The low threshold detection system was firstly studied with 5x5x5 mm³ CaF₂ crystal for the low mass WIMP study.
- ✓ ~100 μ s rise time can be achieved by direct crystal attachment to the MMC sensor.
- ✓ We could check the potential of CaF₂ cryogenic detector on tabletop experiment for low mass WIMP search.

Thank you