Engineering graphene Josephson junction for sensitive photon detector

Gil-Ho Lee

Dept. of Physics, POSTECH, Korea

[**GHL** et al., Nature **586**, 42–46 (2020), [E. Walsh et al., Science **372**, 409-412 (2021)]

"Darkness on the Table (2021)"

Acknowledgement

POSTECH, Korea

• Woo-Chan Jung

Raytheon BBN technology, USA

• Kin Chung Fong • Leonardo Ranzani • Thomas A. Ohki

MIT, USA

• Evan D. Walsh • Dmitri K. Efetov • Dirk Englund

Harvard University, USA

- Katie Huang
- Philip Kim

NIMS, Japan

• Takashi Taniguchi

• Kenji Watanabe

Sensitive Detectors

- in **IR** range
 - optical quantum communication
 - quantum key distribution
- in THz range
 - galaxy formation via cosmic radiation
 - in **GHz** range

-

- remote entanglement of superconducting
- high-fidelity quantum measurements
- microwave quantum illumination

For Qubit Measurement

Thermal Detector

- No need to collect electron
- No threshold
- Robust against impurities
- More freedom to choose material

- *E*_r: Photon energy
- C : Heat capacity
- G : Thermal conductance

Array of TES

Graphene for Sensor

• Very small electronic heat capacity due vanishing density of state, D(E)near Dirac point (E=0). $D(E) = 2|E|A/\pi(\hbar v_F)^2$

- Faster thermalization, thanks to short el-el scattering time. [Nat. Phys. 9, 248 (2013)]
- Broad absorption bandwidth by impedance matching

Small Electronic Heat Capacity, C_e

Specific heat capacity of monolayer graphene: $C_{e} \sim 10k_{B}/\mu m^{2}$ (@ T=0.1 K, n=1.7×10¹² cm⁻²)

Sommerfeld coefficient: $\gamma = (4\pi^{5/2}k_B^2 n^{1/2})/(3hv_F)$ Carrier density Significant heating of electrons !

For <u> μ w-SPD</u>, we need to detect temperature rise $\Delta T \sim 200 \text{ mK}$ within $\tau_{\text{el-ph}} \sim 100 \text{ ns}$.

[E.D. Walsh et al., PRApplied 8, 024022 (2017)]

Josephson Junction

Al/Graphene/Al Josephson junction,

- Switching current, <*I*_s>, strongly depends on electron temperature of graphene.
 d<*I*_s>/dT~-0.5 μA/K
 - Switching happens very fast, within **~10 ps**. $\omega_{o} \sim 100 \text{ GHz}$

POSTECH

٠

1,550-nm NIR Single Photon Detection

[E. Walsh, W. Jung, GHL, ..., Kin Chung Fong, Science 372, 409-412 (2021)]

Orthogonal-Terminal Josephson Junction

Previous work on orthogonal-terminal JJ

[A. F. Morpurgo et al., APL 72, 23 (1998)]

In this work

[GHL et al., Nature 586, 42-46 (2020)]

Thermal Circuit

GJJ-embedded Resonator

Graphene Absorbing Microwave

Switching Current Distribution

 $P(I_s)$ with microwave input has <u>same shape</u> of $P(I_s)$ with elevated temperature.

Heated electrons get fully equilibrated.

Estimation of Electron Temperature, T_{e}

Cooling Mechanism via Atomic Edge Disorder

Atomic disorders at the edges could greatly enhance the electron-phonon coupling, Σ .

Theoretically estimated $\Sigma \simeq 0.01 \text{ Wm}^{-2}\text{K}^{-3} << \text{Measured } \Sigma \simeq 3 \text{ Wm}^{-2}\text{K}^{-3}$

Measure of sensitivity of a bolometer

Noise equivalent power (NEP): Signal power that gives signal-to-noise ratio of one.

- Minimum power P_{min} for changing $\langle I_s \rangle$ by $\sigma_{\langle s \rangle}$. $\Rightarrow P_{min} \sim 11.4 \text{ fW } @ V_{gate} = 1.9 \text{ V}$
- Time needed for sensing P_{min}
 - 1. Resonator input coupling time, τ_{in} ~1.6 ns (**slowest**)
 - 2. Resonator dissipation time , τ_{dis} ~ ~ 1.3 ns
 - 3. Thermal time constant, $\tau_{th} \sim 0.6$ ns

$$\rightarrow$$
 NEP= $P_{min}/\sqrt{f_{in}}$ =0.45 aW/Hz^{1/2}

Fundamental Limit of NEP

Intrinsic thermal fluctuation imposes the fundamental limit of,

- energy resolution, $\Delta E \sim C_e \sqrt{\langle \Delta T^2 \rangle} = \sqrt{C_e k_B T^2}$
- Fundamental sensitivity of a bolometer,

Fluctuation of temperature: $\sqrt{\langle \Delta T^2 \rangle} = \sqrt{k_B/C_e} \times T$

e.g.) for $C_{\rm e}$ =10k_B, T=0.1 K, ΔE^{\sim} 6 GHz

We reached the *fundamental limit*

Expected energy resolution: $\Delta E = NEP \cdot \sqrt{\tau_{in}} \, ^{\sim} 30 \, \text{GHz}$

[S. H. Moseley et al., JAP 56, 1257 (1984)]

c.f.) graphene-based bolometer with Johnson noise thermometry, NEP ~ 0.4 pW/Hz^{1/2} @ 2 K [K.C. Fong et al., PRX (2012)] NEP ~ 10 pW/Hz^{1/2} @ 5 K [D. K. Efetov et al., Nat. Nano. (2018)]

GJJ for Dark Matter Detection ?

How can we make mg-scale GJJ detector?

Graphene-Based Bolometer for Detecting keV-Range Superlight Dark Matter, Doojin Kim, Jong-Chul Park, Kin Chung Fong, and **GHL**, arXiv:2002.07821 (submitted)

Proposal of 1mg-scale GJJ

For 1mg-scale GJJ, we need ~870 billion (8.7 x 10^{11}) GJJs. *mass density of graphene: agr = 7.62×10^{-8} g·cm⁻² *GJJ dimension: L_{II} =0.5 µm, W_{II} =3 µm. 8-inch wafer superconductors $L_{\rm SC} L_{\rm JJ}$ W W_{I} W_T W_T cutting graphene WG graphene W_G $W_{\rm G}$ L_{G} L_{G} L_{G}

Number of GJJ in a single wafer: N_W = 5.6 billion (5.6 x 10⁹) Then, we need 150 wafers connected.

* number of transistors in modern integrated circuit chips: 10 billion

Progress in Nano-fabrication – 216 GJJs in series (1)

Large piece of graphene

hBN-encapsulated graphene

Etched hBN/Graphene/hBN stack

Progress in Nano-fabrication – 216 GJJs in series (2)

Dark Count Estimation

[Dark count rate measurement] $T_{\rm esc} = 1.10 \ K$ $I_{\rm c0} = 18.89 \, \mu A$ $T_{\text{bath}} = 0.02 \ K$ 10⁰ Dark count rate, G_{dark} (1/s) AND K8 est up et al 10⁻⁵ t free 1 ox 2th 10⁻¹⁰ For *I*_b=15.5 mA, $\Gamma_{\rm dark}^{1\rm GJJ} \sim 10^{-15} \, \rm Hz$ 10⁻¹⁵ 17 15.5 16 16.5 17.5 Bias current(μA)

For 10⁶-GJJ array $\Gamma_{dark}^{10^{6}GJJ} \sim 10^{-9}$ Hz, and Dark count ~ 0.03 for 1-year. (assuming all JJs have uniform I_c .)

Plan for Detector Calibration

- Resonator absorbs only 8 GHz microwave
- Generate fake-signal with 8-GHz mw pulse with varying its height
- Threshold measurement scheme for detection

Summary

- Graphene of minute heat capacity was utilized for sensitive microwave bolometer.
- Graphene Josephson junction was embedded in the resonator and measured with continuous microwave.
- Achieved fundamentally limited NEP of 0.7 aW/Hz^{1/2}, which corresponds to the energy resolution of ~30 GHz (~0.1 meV).
- Implementing fast measurement is underway for microwave single photon detector.
- Detector development and calibration is on going for dark matter search.

Current Efforts – Microwave Single Photon Detector

> Developing fast-enough (faster than τ_{th}) measurement of I_c change

For broadband microwave single photon detector !

Examples of S/N-based Sensor

[P. K. Day et al., Nature 425, 817 (2003)]

[I. V. Borzenets et al., PRL 111, 027001 (2013)]

[S. Gasparinetti et al., PRApplied 3, 014007 (2015)]

	Single Photon Detector	Bolometer
Quantity measured	One photon at a time	The power of photon flux
Energy resolving	No	Have information
Sensitivity	No fundamental limit	Fundamentally limited by thermodynamics
Demonstration of grap short pass polarizer graphene JJ-A 3 µm	bhene-based IR-SPD	 Demonstration of graphene-based bolometer mentary ology Improve the state of the st
[E. Walsh, W. Jung, GHL et al., Science 372, 409-412 (2021)]		[D. K. Efetov et al., Nat. Nano. 13, 797 (2018)]

For Dark Matter Search

CAPP-PACE detector setup in Korea

