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Gravitational lensing

The bullet cluster
Optical  X-ray Gas Dark Matter 

Structure formation

Anisotropies in the Cosmic Microwave Background 21

Fig. 9. Dependence of the temperature-anisotropy power spectrum on the physical
density in baryons (left) and all non-relativistic matter (right). From top to bottom
at the first peak, the baryon densities vary linearly in the range Ωbh2 = 0.06–0.005
(left) and the matter densities in Ωmh2 = 0.05–0.5 (right). The initial conditions
are adiabatic.

angular scales on the sky today. In contrast, those parameters that determine
the energy content of the universe before recombination, such as the physical
densities in (non-relativistic) matter Ωmh2, and radiation Ωrh2 (determined by
the CMB temperature and the physics of neutrinos), play an important role in
acoustic physics by determining the expansion rate and hence the behaviour of
the perturbations. In addition, the physical density in baryons, Ωbh2, affects
the acoustic oscillations through baryon inertia and the dependence of the
photon mean-free path on the electron density. The effect of variations in the
physical densities of the matter and baryon densities on the anisotropy power
spectrum is illustrated in Fig. 9 for adiabatic initial conditions.

The linear scales at last scattering that have reached extrema of their
oscillation are determined by the initial conditions (i.e. adiabatic or isocurva-
ture) and the sound horizon rs(η∗). Increasing the baryon density holding the
total matter density fixed reduces the sound speed while preserving the ex-
pansion rate (and moves last scattering to slightly earlier times). The effect is
to reduce the sound horizon at last scattering and so the wavelength of those
modes that are at extrema of their oscillation, and hence push the acoustic
peaks to smaller scales. This effect could be confused with a change in the
angular diameter distance DA, but fortunately baryons have another distin-
guishing effect. Their inertia shifts the zero point of the acoustic oscillations
to ∼ −(1 + R)ψ, and enhances the amplitude of the oscillations. In adiabatic
models for modes that enter the sound horizon in matter domination, δγ/4
starts out at −2ψ/3, and so the amplitude of the oscillation is −ψ(1+3R)/3.
The combination of these two effects is to enhance the amplitude of Θ0 + ψ
at maximal compression by a factor of 1 + 6R over that at minimal compres-
sion. The effect on the power spectrum is to enhance the amplitude of the
1st, 3rd etc. peaks for adiabatic initial conditions, and the 2nd, 4th etc. for
isocurvature. Current CMB data gives Ωbh2 = 0.023 ± 0.001 for power-law
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2. neutral : NO electromagnetic interaction 

  Only upper bounds on the self interaction

3. 25% of the present energy density of the universe

      stable or lifetime longer than the age of universe

4. cold (or warm) : non-relativistic to seed the structure formation

1. have existed from early Universe up to now
and located around galaxies, clusters

Then how about the interaction is much weaker? They decouple earlier
and the abundance increases. However after inflation epoch there is a highest
temperature, reheating temperature, and the decoupling temperature is higher
than TR, they cannot be in the thermal equilibrium, which means that Y is much
smaller than that in TE. However they can give correct Y for dark matter. That
is E-WIMP for dark matter, and the Y depends on the Tr after inflation. Even
though interaction is extremely weak, still they can be dark matter without any
problem.

The popular example of E-WIMP is gravitino and axino.

m ≫ T σ/m ! 10−24 cm2/GeV (1)

Ωh2
WIMP =≃ ⟨σann⟩ ≃ 10−10 GeV−2 ≃ 10−38 cm2 (2)

Ωh2 = mn ≃ 0.28

(

Y

10−11

)

( m

100 GeV

)

(3)

dn

dt
+ 3Hn = −n2⟨σannv⟩ Y ≃ H

s⟨σannv⟩
(4)

n ∝ a−3 Y ≡ n

s
s ≡ 2π2

45
g∗T

3 sa3 = constant (5)

H =
ȧ

a
(6)

3Hn ≪ (Collision terms) 3Hn ≫ (Collision terms) (7)

dn

dt
+ 3Hn = (Collision terms) (8)

σ∗ ∼ v

σ∗ ≫ v
(9)

λ, v andσ∗ (10)

3 +A2 ≠ 0 fNL ∼
1

f
(11)

2

No lower bound down to gravity!
from bullet cluster

In fact all the evidences are gravitational.

Dark Matter as a particle must (be)

4
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Strong CP problem : axion 

Supersymmetry : neutralino, gravitino, axino, scalar neutrino

Neutrino sector : sterile neutrino, RH neutrino, Majoron

Technicolor : Techni-baryon, Techni-dilaton

Extra dimension : Kaluza-Klein particle

and more ....

5

Candidates of DM

related to the symmetry. The interactions of new particles can be made weak or
weaker than that. The most non-trivial thing is to explain the relic density. The
dark matter was produced in the early Universe within the expanding history
and the abundance is connected to the interactions and the mass, both are
usually determined in the theory. The coldness of Dark is deeply connected to
the production mechanism of dark matter.

Maybe to explain the relic density is the most non-trivial problem in dark
matter. The present relic density of dark matter can be estimated with the
number density and the average energy in the phase distribution. Here Y is
the abundance, the ratio of number density to the entropy density, which is
constant after DM is decoupled from the thermal equilibrium. The average
energy can be the mass when DM is non-relativistic. The observed relic density
of DM Ωh2 ∼ 0.1 implies the relation between number density Y and the average
energy of DM at present, inversely proportional to each other. For heavy non-
relativistic DM, with the mass 100 GeV, the abundance is around 10−11 or for
the light DM with average energy is around 100 eV then the abundance must
be around 0.01. To be dark matter it must be located on around this red line

One of the famous is the WIMP. It was initially in the thermal equilibrium
and but becomes non-relativistic due to its heavy mass and the number density
is Boltzmann suppressed, which makes the decoupling happen much earlier than
the temperature of MeV for the light weakly interacting particles. So the Y is
really suppressed than 1. For light weakly interacting particles, they decouple
still they are in the relativistic, so Y is around order of 1. For this weakly
interacting particles, we could draw the plot of Y and the mass. For light
particles less than MeV, Y is constant and changes for the mass above MeV and
decreases inversely proportional to cubic of the mass. The line of relic density
Omega 1 is this red line. Above it is overproduced and ruled out. For heavy
neutrino case, the mass must be larger than around 2 GeV, and this is called
Lee-Weinberg bound. For GeV particles with weak interaction, the relic density
can be of the order of 1 for dark matter, it is the WIMP. Yes there is another
cross of red and blue lines with around keV mass range. That is called warm
dark matter.

The light gravitinos or sterile neutrinos with keV mass can be the good can-
didate for this. However at scales smaller than the free-streaming, cosmological
perturbations are erased and gravitational clustering is significantly suppressed.

ΩWDMh2 ≃
( m

1 keV

)

(

106.75

g∗

)

1040 (1)

m ! 10 keV 10−6 eV 10−19 eV 1 keV 100GeV eV ∼ 100GeV 1013GeV
(2)

Y ∼ 10−20 Y ≃ ηB ≃ 10−9 (3)
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Interaction

Mass

4 H. Baer et al. / Physics Reports 555 (2015) 1–60

Fig. 1. Several well-motivated candidates of DM are shown in the log–log plane of DM relic mass and �int representing the typical strength of interactions
with ordinary matter. The red, pink and blue colors represent HDM, WDM and CDM, respectively. This plot is an update of the previous figures [13,17].
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of candidate. For reference, a SM neutrino with mass of order 0.1 eV and weak interaction strength of order 10�36 cm2 =
1 pb ' 1 GeV�2/3.92 is shown, although such a candidate would constitute hot DM (HDM) and thus does not meet the
need (of its velocity not exceeding the escape velocity in galaxies) for cold relics. For more details see Section 4.1.

The box marked ‘‘WIMP’’ represents ‘‘generic’’ weakly interacting massive particle candidates as thermal relics. Their
mass can lie in the range between a few GeV [15] (below which it would overclose the Universe) and some ⇠100 TeV from
unitarity constraints [18,19]. Their detection cross section is limited from above by direct DM search limits. Recently, the
strongest of these come from the Xenon100 [20] experiment and the LUX [21] experiment. A firm lower limit on the other
hand does not really exist; it can only be estimated on the basis of some kind of theoretical arguments of ‘‘naturalness’’. A
more detailed discussion of thermal WIMPs will be presented in Section 4.2.

The most highly scrutinized thermal relic is the lightest neutralino particle of supersymmetric (SUSY) theories [22,23],
hereafter referred to as simply the neutralino.5 The neutralino is particularly well-motivated since, in addition to solving
the DM problem, SUSY extensions of the SM contain a number of other attractive features both on the particle physics side
and in early Universe cosmology. From below, the neutralinomass is limited by LEP2 searches to lie above⇠50 GeV in GUT-
based SUSY models, but could be significantly lighter in more general SUSY models [27]. As an upper bound, the neutralino
mass is not expected to significantly exceed the⇠1 TeV scale based on the theoretical expectation of ‘‘naturalness’’. We will
discuss this important candidate in more detail below and in Section 4.2.

Another type of dark matter relic is called asymmetric dark matter (ADM). In this case, in contrast to the standardWIMP
scenario, one postulates both DM and anti-DM particles where an asymmetry can develop between the two, in analogy
to baryonic matter. The ADM possibility has recently received renewed interest and will be discussed in more detail in
Section 4.4.

An alternative possibility consists of strongly interacting massive particles (SIMPs). Candidate SIMP particles with mass
values around the MeV scale have been suggested as a DM possibility in Ref. [28]. While usually DM is not expected to
interact strongly, such candidates have been considered in the past (and for the most part been excluded [29] for instance
by searches for anomalous heavy nuclei or even by collider searches).

Moving down the vertical axis, the axion is a well known example of a non-thermal relic. Its interaction strength is
strongly suppressed relative to the weak strength by a factor (mW/fa)2, where fa ⇠ 1011 GeV is the PQ breaking scale.
Despite being of very light mass (⇠10�5 eV), the axion is nonetheless a CDM candidate since it is produced basically at rest
in the early Universe. The axion is a highly motivated and interesting candidate for CDM. It will be discussed in more detail
below and in Section 3.3.

In SUSY axion models, the axion supermultiplet contains, along with the axion, the spin- 12R-parity odd axino field ã and
the R-parity even spin-0 saxion field s. The axino, as the fermionic partner of the axion, is an example of an extremely–weakly

5 For reviews see, e.g., [24–26].

and WIMPzillas, primordial Balck-Hole, dilaton
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Neutrinos	neutral	and	weakly	
interacting	but	massless!	



Neutrino Oscillation

For	two-body	case,

As you can see, the oscillatory behaviour comes from the di↵erence in the energy eigenvalues of
|⌫1 > and |⌫2 > (E2 � E1), which we interpret as coming from di↵erent masses for each of the mass
eigenvalues.

A plot of this function is shown in Figure 7 for a particular set of parameters : �m
2 = 3⇥10�3

eV
2,

sin
2(2✓) = 0.8 and E⌫ = 1GeV. At L = 0, the oscillation probability is zero and the corresponding

survival probability is one. As L increases the oscillatios begin to switch on until 1.27�m
2 L
E = ⇡

2
or L = 400 km. At this point the oscillation is a maximum. However, the mixing angle is just
sin

2(2✓) = 0.8 so at maximal mixing, only 80% of the initial neutrinos have oscillated away. As L
increases furthur, the oscillation dies down until, around L = 820 km, the beam is entirely composed
of the initial neutrino flavour. If sin2(2✓) = 1.0, the oscillations would be referred to as maximal,
meaning that at some point on the path to the detector 100% of the neutrinos have oscillated.

Figure 7: The oscillation probability as a function of the baseline, L, for a given set of parameters :
�m

2 = 3⇥ 10�3
eV

2, sin2(2✓) = 0.8 and E⌫ = 1GeV.

As a side comment, the derivation of the oscillation probability depends on two assumptions : that
the neutrino flavour and mass states are mixed and that we create a coherent superposition of mass
states at the weak vertex. This coherent superposition reflects the fact that we can’t experimentally
resolve which mass state was created at the vertex. One might ask oneself what we would expect
to see if we did know which mass state was created at the vertex. If we knew that, we would know
the mass of the neutrino state that propagates to the detector. There would be no superposition, no
phase di↵erence and no flavour oscillation. However there would be flavour change. Suppose that at
the vertex we create a lepton of flavour ↵ and a specific mass state, |⌫k >. Mixing implies that we’ve
picked out the k

th mass state from the ↵ flavour state. The probability of doing this is just

| < ⌫k|⌫↵ > |2 = U
2
k↵ (47)

This mass state then propagates to the detector, and is detected as a neutrino of flavour � with
probability | < ⌫�|⌫k > |2 = |U�k|2. The flavour change probability is then the incoherent sum

P (⌫↵ ! ⌫�)
mixing =

X

k

| < ⌫�|⌫k > e
�i�k < ⌫k|⌫↵ > |2 =

X

k

|U↵k|2|U�k|2 (48)

In the two-flavour approximation, we would have a ⌫e flavour transition probability of

16

The identification of dark matter is one of the most important problem of
modern cosmology. I will talk about the candidates of dark matter beyond
standard WIMPs, especially for the gravitino and axino dark matter and its
relation to the early Universe and collider experiments.

P (⌫1 ! ⌫2) = |h⌫2(0)|⌫1(t)i|2 = sin2(2✓) sin2
✓
�m

2
L

4E

◆
(1)

P (⌫1 ! ⌫1) = |h⌫1(0)|⌫1(t)i|2 = 1� sin2(2✓) sin2
✓
�m

2
L

4E

◆
(2)

t ' L E � pi ' m
2
i
/2E (3)

|⌫1(t)i =e
�i(Ht�px)|⌫1(0)i

' cos ✓e
�i

✓
m2

1
2E

◆
L

|⌫m1i+ sin ✓e
�i

✓
m2

1
2E

◆
L

|⌫m2i
(4)

|⌫1(0)i = cos ✓|⌫m1i+ sin ✓|⌫m2i (5)

|⌫m1i |⌫m2i (6)

p+ e
� ! n+ ⌫e n ! p+ e

� + ⌫̄e p ! n+ e
+ + ⌫e (7)

X
m⌫ � 0.0572 eV (8)

X
m⌫ � 0.0962 eV (9)

⌧⇡+ = 2.6⇥ 10�8 sec (10)

⌧ ' 2.9⇥ 10�13 sec (11)

e
�

µ
�

⌧
�

⌫e ⌫µ ⌫⌧ (12)

Tkd = 10MeV Tkd = 1GeV (13)

�m =
3

4
�r k � aH k ⌧ aH (14)

�(t,x) ⌘ �⇢

⇢
(t,x) '

X

k

�k(t) (15)

1

Change	of	flavors	with	time

Pure		
e-neutrino



I. INTRODUCTION

Neutrino mass parameters [1]

�m2
� = (7.58+0.22

�0.26)⇥ 10
�5

eV
2,

|�m2
A| = (2.35+0.12

�0.09)⇥ 10
�3.

(1)

We define

�m2
ab ⌘ m2

a �m2
b . (2)

Normal hierarchy

m1 < m2 < m3, �m2
A = �m2

31 > 0, �m2
� = �m2

21 > 0,

m2(3) = (m2
1 +�m2

21(31))
1/2.

(3)

For the lightest neutrino mass is massless,

m1 = 0,m2 = 0.00870632,m3 = 0.0484768,
X

m

= 0.057183 (4)

Inverted hierarchy

m3 < m1 < m2, �m2
A = �m2

32 < 0, �m2
� = �m2

21 > 0,

m2 = (m2
3 +�m2

23)
1/2, m1 = (m2

3 +�m2
23 ��m2

21)
1/2.

(5)

For the lightest neutrino mass is massless,

m1 = 0.047688,m2 = 0.0484768,m3 = 0,
X

m

= 0.0961654 (6)

When the sum of neutrino is given we can find the mass spectrum.

Case A :
P

m⌫ = 0.06 eV

NH : m1 = 0.002425, m2 = 0.00904, m3 = 0.0485 ,

IH : not available.

Case B :
P

m⌫ = 0.1 eV

NH : m1 = 0.02247, m2 = 0.024098, m3 = 0.05343 ,

IH : m1 = 0.047822, m2 = 0.048608, m3 = 0.0035699.

Case C :
P

m⌫ = 0.15 eV

NH : m1 = 0.0423667, m2 = 0.0432521, m3 = 0.0643812 ,

IH : m1 = 0.0580903, m2 = 0.0587391, m3 = 0.0331705.
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solar	neutrino

atm.	neutrino

Three	masses	with	two	conditions:	one	is	free	parameter.

14. Neutrino mixing 49

Table 14.7: The best-fit values and 3σ allowed ranges of the 3-neutrino
oscillation parameters, derived from a global fit of the current neutrino oscillation
data (from [174]) . The values (values in brackets) correspond to m1 < m2 < m3
(m3 < m1 < m2). The definition of ∆m2 used is: ∆m2 = m2

3 − (m2
2 +m2

1)/2. Thus,
∆m2 = ∆m2

31 − ∆m2
21/2 > 0, if m1 < m2 < m3, and ∆m2 = ∆m2

32 + ∆m2
21/2 < 0

for m3 < m1 < m2.

Parameter best-fit (±1σ) 3σ

∆m2
21 [10−5 eV 2] 7.54+0.26

−0.22 6.99 − 8.18

|∆m2| [10−3 eV 2] 2.43 ± 0.06 (2.38 ± 0.06) 2.23 − 2.61 (2.19 − 2.56)

sin2 θ12 0.308 ± 0.017 0.259 − 0.359

sin2 θ23, ∆m2 > 0 0.437+0.033
−0.023 0.374 − 0.628

sin2 θ23, ∆m2 < 0 0.455+0.039
−0.031, 0.380 − 0.641

sin2 θ13, ∆m2 > 0 0.0234+0.0020
−0.0019 0.0176− 0.0295

sin2 θ13, ∆m2 < 0 0.0240+0.0019
−0.0022 0.0178− 0.0298

δ/π (2σ range quoted) 1.39+0.38
−0.27 (1.31+0.29

−0.33) (0.00 − 0.16) ⊕ (0.86 − 2.00)

((0.00− 0.02) ⊕ (0.70 − 2.00))

phases in the neutrino mixing matrix is available. Thus, the status of CP symmetry in
the lepton sector is unknown. With θ13 ≠ 0, the Dirac phase δ can generate CP violation
effects in neutrino oscillations [43,55,56]. The magnitude of CP violation in νl → νl′ and
ν̄l → ν̄l′ oscillations, l ≠ l′ = e, µ, τ , is determined, as we have seen, by the rephasing
invariant JCP (see Eq. (14.19)), which in the “standard” parametrisation of the neutrino
mixing matrix (Eq. (14.78)) has the form:

JCP ≡ Im (Uµ3 U∗
e3 Ue2 U∗

µ2) =
1

8
cos θ13 sin 2θ12 sin 2θ23 sin 2θ13 sin δ . (14.79)

Thus, given the fact that sin 2θ12, sin 2θ23 and sin 2θ13 have been determined
experimentally with a relatively good precision, the size of CP violation effects in
neutrino oscillations depends essentially only on the magnitude of the currently not well
determined value of the Dirac phase δ. The current data implies |JCP |! 0.040 | sin δ|,
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Neutrino Oscillation



The only EM neutral and stable particles, neutrino, was a candidate
for hot dark matter.

Neutrinos decouple from a relativistic thermal bath at T~ 1 MeV in the 
early Universe with a relic density today as 

30

A. Types of dark matter

1. Hot Dark Matter

If the dark matter particle is collisionless, then they
can damp the fluctuations from higher to lower density
regions above the free-streaming scale. This hot dark
matter consists of particles which are relativistic at the
time of structure formation and therefore lead to large
damping scales (Bond and Szalay, 1983).
The SM neutrinos are the simplest examples of hot

dark matter. In the early universe they can be decoupled
from a relativistic bath at T ∼ 1 MeV, leading to a relic
abundance today that depends on the sum of the flavor
masses:

Ωνh
2 =

∑
i mνi

90 eV
. (188)

Various observational constraints combining Ly-α for-
est, CMB, SuperNovae and Galaxy Clusters data leads
to (Fogli et al., 2008; Seljak et al., 2006):

∑
mν <

0.17 eV (95 % CL). Similar limits can be applied to
any generic hot dark matter candidate, such as ax-
ions (Hannestad et al., 2010) or to hot sterile neutri-
nos (Dodelson et al., 2006; Kusenko, 2009). The free-
streaming length for neutrinos is (Kolb and Turner,
1988):

λFS ∼ 20

(
30 eV

mν

)
Mpc. (189)

For instance, the universe dominated by the eV neutri-
nos would lead to suppressed structures at 600 Mpc scale,
roughly the size of supercluster. Furthermore, hot dark
matter would predict a top-down hierarchy in the forma-
tion of structures, with small structures forming by frag-
mentation of larger ones, while observations show that
larger galaxies have formed from the mergers of the ini-
tially small galaxies.

2. Cold Dark Matter

The standard theory of structure formation requires
cold dark matter (CDM), whose free-streaming length is
such that only fluctuations roughly below the Earth mass
scale are suppressed (Bertschinger, 2006; Green et al.,
2004, 2005; Hofmann et al., 2001; Loeb and Zaldarriaga,
2005). The CDM candidates are heavy and non-
relativistic at the time of their freeze-out from thermal
plasma. The current paradigm of ΛCDM is falsifiable
whose predictive power can be used to probe the struc-
tures at various cosmological scales, such as the abun-
dance of clusters at z ≤ 1 and the galaxy-galaxy corre-
lation functions have proven it a successful and widely
accepted cosmological model of large scale structure for-
mation.
The N-body simulations based on ΛCDM provide a

strong hint of a universal dark matter profile, with the

same shape for all masses, and initial power spectrum.
The halo density can be parametrized by:

ρ(r) =
ρ0

(r/Rs)γ [1 + (r/Rs)α]
(β−γ)/α

, (190)

where ρ0 and the radius Rs vary from halo to halo. the
parameters α, β and γ vary slightly from one profile to
other. The four most popular ones are:

• Navarro, Frenk and White (NFW) pro-
file (Navarro et al., 1997), where α = 1, β =
3, γ = 1, and Rs = 20 Kpc.

• Moore profile (Moore et al., 1999), where α =
1.5, β = 3, γ = 1.5, and Rs = 28 Kpc.

• Kra profile (Kravtsov et al., 1998), where α =
2, β = 3, γ = 0.4, and Rs = 10 Kpc.

• Modified Isothermal profile (Bergstrom et al.,
1998), where α = 2, β = 3, γ = 0, and Rs =
3.5 Kpc.

Amongst all the four profiles, the scales where devia-
tions are most pronounced (the inner few kiloparsecs) are
also the most compromised by numerical uncertainties.
The power-law index value, γ, in the inner most regions is
part of the numerical uncertainties and still under debate,
as all four simulations provide different numbers. The
simulations hint towards a cuspy profile, as the density in
the inner regions becomes large, while from the rotation
curves of low surface brightness (LSB) galaxies point to-
wards uniform dark matter density profile with constant
density cores (Gentile et al., 2004). In our own galaxy
the situation is even more murky, as the observations
of the velocity dispersion of stars near the core suggests
a supermassive black hole at the center of our Galaxy,
with a mass MSMBH ≈ 2.6×106M⊙ (Ghez et al., 1998).
Many galaxies have been found to host supermassive
blackholes of 106 − 108M⊙. It has been argued that
if supermassive blackhole exists at the galactic center,
the accretion of dark matter by the blackhole would
enhance the dark matter density (Peebles, 1994). To
alleviate some of these problems, dark matter with a
strong elastic scattering cross section (Dave et al., 2001;
Spergel and Steinhardt, 2000), or large annihilation cross
sections (Kaplinghat et al., 2000) have been proposed.
There are further discrepancies between observations

and numerical simulations. The number of satellite ha-
los as predicted by simulations exceeds the number of
observed Dwarf galaxies in a typical galaxy like Milky-
Way (Klypin et al., 1999; Moore et al., 1999). However
recent hydrodynamical simulations with ΛCDM, includ-
ing the supernovae induced outflows suggest a fall in the
dark-matter density to less than half of what it would
otherwise be within the central Kpc.

With observational constraints

[Komatsu et al., 2011]

The fluctuations are damped smaller than the neutrino free streaming scale 
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Tremaine-Gunn bound (1979):  minimal mass for fermion DM around 400 MeV

It is too small!

It is too hot! 
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mã

mX
ΩXh2 (2)
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Neutrino as DM?

⌧ ⌦DMh2
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It is too light!due to exclusion principle
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Neutrinos become massive!

See-saw mechanism

Dirac neutrino

Mass from the interaction with background matter

- small Yukawa coupling ⇠ 10�12
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- suppressed mass from the heavy Majorana mass

Radiative mass
- massless at classical level, quantum correction generates 
mass with small couplings

- massless at vacuum, effective mass generated when 
interacting with background medium [Choi, Chun, Kim, 2020]

and more …….
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Neutrino Minimal Standard Model (nuMSM)

additional symmetry-breaking sector in these models. That makes it difficult to explain m⌫ in
terms of a simple symmetry and a small number of parameters, and interest in anarchic mod-
els [235] with random values has grown. A more detailed overview of models that incorporate
sterile neutrinos with keV masses that could act as DM candidates is given in section 6. In
the following we briefly review the main features of the probably minimal and most studied
mechanism for neutrino masses, the (type I) seesaw mechanism. Is particularly important in
the present context because i) it predicts the existence of heavy sterile neutrinos, ii) these
heavy particles mix with ordinary neutrinos (which is the basis for many experimental and
astrophysical searches) ans iii) the type I seesaw is implemented in many theories of particle
physics, such as grand unified theories based on SO(10) or any other theories that involve a
(spontaneously broken) gauged B � L symmetry.

1.5.2 The seesaw mechanism

The type-I seesaw model is defined by adding n RH neutrinos ⌫R to the SM, i.e., singlet
fermions with RH chirality to the SM that couple to the SM neutrinos ⌫L in the same way
as the RH and LH components of the charged leptons. The Lagrangian reads

L = LSM + i⌫R /@⌫R � `LF⌫R�̃ � �̃†⌫RF †`L � 1

2
(⌫c

R
MM⌫R + ⌫RM †

M
⌫c

R). (1.25)

Here, flavor and isospin indices have been suppressed. LSM is the Lagrangian of the SM,
`L = (⌫L, eL)T are the LH lepton doublets, � is the Higgs doublet and �̃ = ✏�⇤, where ✏
is the antisymmetric SU(2)-invariant tensor, and F is a matrix of Yukawa interactions. An
explicit Majorana mass term MM is allowed for ⌫R because the ⌫R are gauge singlets. This is
a specific realization of the term mS in (1.21). It is often assumed that the eigenvalues MI of
MM are far above the electroweak scale. Then the ⌫R are experimentally unobservable. The
only effect they have on low energy physics is mediated by the dimension-5 operator [236]:

Le↵ = LSM +
1

2
¯̀
L�̃FM�1

M
F T �̃T `cL, (1.26)

as obtained by integrating out the fields ⌫R instead of (1.25). The Higgs mechanism generates
a Majorana mass term ⌫Lm⌫⌫c

L
, with m⌫ is given by

m⌫ = �v2FM�1
M

F T , (1.27)

where v = 174 GeV is the Higgs field expectation value. This case is not interesting in
the context of this review because superheavy ⌫R are too short-lived to be DM candidates.
However, experimentally the magnitude of the MI is almost unconstrained, and different
choices have very different implications for particle physics, cosmology and astrophysics, see
e.g. [67, 159]. There are several scenarios that predict eigenvalues of MM at or below the
electroweak scale, including the inverse seesaw [237] and linear seesaw [238], the ⌫MSM [239,
240], low-scale seesaw (e.g. [220–222]), or Coleman-Weinberg type models [216], see also
section 6. The full neutrino mass term after electroweak symmetry breaking reads
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where mD ⌘ Fv and v = 174 is the Higgs field vacuum expectation value. For MI � 1 eV
there is a hierarchy mD ⌧ MM , and one observes two distinct sets of mass eigenstates: one
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After electroweak symmetry breaking, the mass term
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where mD ⌘ Fv and v = 174 is the Higgs field vacuum expectation value. For MI � 1 eV
there is a hierarchy mD ⌧ MM , and one observes two distinct sets of mass eigenstates: one
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additional symmetry-breaking sector in these models. That makes it difficult to explain m⌫ in
terms of a simple symmetry and a small number of parameters, and interest in anarchic mod-
els [235] with random values has grown. A more detailed overview of models that incorporate
sterile neutrinos with keV masses that could act as DM candidates is given in section 6. In
the following we briefly review the main features of the probably minimal and most studied
mechanism for neutrino masses, the (type I) seesaw mechanism. Is particularly important in
the present context because i) it predicts the existence of heavy sterile neutrinos, ii) these
heavy particles mix with ordinary neutrinos (which is the basis for many experimental and
astrophysical searches) ans iii) the type I seesaw is implemented in many theories of particle
physics, such as grand unified theories based on SO(10) or any other theories that involve a
(spontaneously broken) gauged B � L symmetry.

1.5.2 The seesaw mechanism

The type-I seesaw model is defined by adding n RH neutrinos ⌫R to the SM, i.e., singlet
fermions with RH chirality to the SM that couple to the SM neutrinos ⌫L in the same way
as the RH and LH components of the charged leptons. The Lagrangian reads
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`L = (⌫L, eL)T are the LH lepton doublets, � is the Higgs doublet and �̃ = ✏�⇤, where ✏
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MM are far above the electroweak scale. Then the ⌫R are experimentally unobservable. The
only effect they have on low energy physics is mediated by the dimension-5 operator [236]:

Le↵ = LSM +
1

2
¯̀
L�̃FM�1

M
F T �̃T `cL, (1.26)

as obtained by integrating out the fields ⌫R instead of (1.25). The Higgs mechanism generates
a Majorana mass term ⌫Lm⌫⌫c
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where v = 174 GeV is the Higgs field expectation value. This case is not interesting in
the context of this review because superheavy ⌫R are too short-lived to be DM candidates.
However, experimentally the magnitude of the MI is almost unconstrained, and different
choices have very different implications for particle physics, cosmology and astrophysics, see
e.g. [67, 159]. There are several scenarios that predict eigenvalues of MM at or below the
electroweak scale, including the inverse seesaw [237] and linear seesaw [238], the ⌫MSM [239,
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The mass hierarchy gives mass eigenvalues

: the light active neutrino and heavy sterile neutrino.

1.4 Sterile Neutrinos – General Introduction (Author: P. Langacker)

Sterile neutrinos, also known as singlet or right-handed neutrinos, are SU(2) ⇥ U(1)-singlet
leptons. They therefore have no ordinary charged or neutral current weak interactions except
those induced by mixing. Most extensions of the original standard model involve one or
more sterile neutrinos, with model-dependent masses which can vary from zero to extremely
large. One usually defines the right-chiral component of a sterile neutrino field as ⌫R, i.e., ⌫R
annihilates a right-chiral state, where chirality coincides with helicity in the massless limit.
The CP-conjugate field is then

(⌫R)c ⌘ C ⌫R
T , (1.19)

where we are following the notation in ref. [67]. In Eq. (1.19), C is the charge conjugation
matrix, given by = i�2�0 in the Weyl representation, and ⌫R ⌘ (⌫R)†�0 is the Dirac adjoint.
Note that the CP conjugate in Eq. (1.19) is always well-defined, independent of whether CP
is violated, and that (⌫R)c is the field which annihilates a left-chiral antineutrino.7

In contrast, an active (or doublet or ordinary) neutrino is in an SU(2) doublet with a
charged lepton, and it has conventional weak interactions. There are three known left-chiral
active neutrinos ⌫L,↵, where the flavor index ↵ = e, µ, ⌧ denotes the associated charged lepton.
The CP-conjugate (⌫L)c ⌘ C ⌫LT (suppressing the flavor index) is the field associated with a
right-chiral antineutrino. The number n of right chiral neutrinos is unknown (and could even
be zero, as there are alternative explanations of neutrino masses, see section 1.5.1). In the
remainder of this subsections we use an illustrative toy model with only one LH and one RH
neutrino flavour.

⌫L $ (⌫L)c and ⌫R $ (⌫R)c each describe two degrees of freedom and are known as
Weyl spinors. Fermion mass terms describe transitions between left and right-chiral states.
There are two possible types for neutrinos. A Dirac mass term connects the left and right
components of two different Weyl spinors. These are typically active and sterile, such as

LD = �mD (⌫L⌫R + ⌫R⌫L) , (1.20)

where we have chosen the phases of the fields so that mD is real. LD allows a conserved lepton
number L, but violates weak isospin by 1/2 unit. It can be generated by the Higgs mechanism,
as in fig. 6, and it is analogous to the quark and charged lepton masses. That is, mD = yDv,8
where v = 174 GeV is the expectation value of the neutral Higgs field. If eq. (1.20) is the
only neutrino mass term, then ⌫L and ⌫R can be combined to form a four-component Dirac
spinor ⌫D ⌘ ⌫L + ⌫R, with CP conjugate (⌫D)c ⌘ (⌫L)c + (⌫R)c.

Unlike quarks and charged leptons, neutrinos are not charged under any unbroken gauge
symmetries. They may therefore have Majorana mass terms, which connect a Weyl spinor
with its own CP conjugate. These could be present for either active or sterile neutrinos,

LM = �1

2
mT

�
⌫L⌫c

L + ⌫c

L
⌫L

�
� 1

2
mS

�
⌫R⌫c

R + ⌫c

R
⌫R

�
⌘ �1

2
mT (⌫a⌫a) � 1

2
mS (⌫s⌫s) , (1.21)

where ⌫a ⌘ ⌫L + (⌫L)c and ⌫s ⌘ ⌫R + (⌫R)c are active (a) and sterile (s) Majorana two-
component spinors. They are self-conjugate, i.e., ⌫a = C ⌫aT and ⌫s = C ⌫sT . Both mT and
ms violate lepton number by two units. The mass mT also violates weak isospin by one unit.
It can be generated by the expectation value of a Higgs triplet �T = (�0

T
, ��

T
, ���

T
)T , i.e.,

7Some authors use alternative notations, such as ⌫
c
R,L for C ⌫R,L

T .
8In the minimal seesaw model, (1.25), the number yD is to be identified with the matrix F .
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Three RH neutrinos with Majorana mass and Yukawa couplings.
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Sterile Neutrinos and mixing

negligible, however in the cosmological scale they may change the evolution of the Universe.

In this paper, we consider the magnetic moments between the right-handed sterile neu-

trinos in the context

II. MODEL

We consider a model with Lagrangian of standard model (SM) LSM and additional one

containing three right-handed neutrinos L⌫R as

L =LSM + L⌫R , (1)

where

L⌫R = �
1

2
⌫
c
RiM⌫Rij

⌫Rj + y⌫↵iL↵
e�⌫Ri + Cij⌫

c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ + h.c.. (2)

Here Bµ⌫ is the gauge field strength of U(1)Y gauge field Bµ in the SM, L↵ are lepton

doublets with ↵ flavor, and � is the Higgs doublet and e� = ✏�⇤ with the superscript c and ⇤

for charge conjugation. The Majorana mass of ⌫R are taken to be diagonal, real and positive

as M⌫Rij
= diag(M⌫R1

, M⌫R2
, M⌫R3

) without loss of generality. We also note that the above

dipole interaction is the most general form for ⌫R because of the identity �5PR = PR. The

dipole interaction is dimension-5 operator and the coupling Cij = cij
⇤5

is suppressed by high

energy scale ⇤5 with anti-symmetric coupling cij of the order of unity.

After the electroweak symmetry breaking, with the vacuum expectation value (VEV)

v = 246 GeV of the SM Higgs field �, the B gauge boson and neutrinos are decomposed

into the mass basis as

Bµ =cWAµ � sWZµ, (3)

⌫L↵ =U↵i⌫i + ⇥↵i⌫
c
si, (4)

⌫
c
Ri =(⇥†

U)ij⌫j + ⌫
c
si, (5)

where cW (sW ) is cosine (sine) of the Weinberg angle, and Aµ and Zµ are the photon and

Z-boson. We denote the mass eigenvalues of the light and heavy neutrinos as (m1, m2, m3)

and (ms1, ms2, ms3), respectively. Here, msj ' M⌫Rj due to the mass hierarchy.

The left- and right-handed neutrinos mix with each other parameterized by the mixing

matrix

⇥ = mDM
�1
⌫R

⌧ 1, (6)
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3

After electroweak symmetry breaking, the mass eigenstates are

and the mixing parameter
with the Dirac mass (mD)↵i = y⌫↵iv/

p
2. In the right-handed side, ⌫i and ⌫si are the mass

eigenstates of light active neutrinos and heavy sterile neutrinos, respectively. The mass of

the light neutrinos are generated through the seesaw mechanism [1–4], and given by

m⌫ ' �mD
1

M⌫R

m
T
D = �⇥M⌫R⇥T

. (7)

The typical magnitude of the left-right mixing can be estimated as

⇥2
⇠

m⌫

M⌫R

. (8)

For the lightest sterile neutrino ⌫s ⌘ ⌫s1 being DM candidate, its lifetime should be long

enough compared to the age of the Universe. This is obtained when y⌫↵1 is practically zero

so that we consider the Yukawa coupling

y⌫ =

0

BBB@

0 y⌫e2 y⌫e3

0 y⌫µ2 y⌫µ3

0 y⌫⌧2 y⌫⌧3

1

CCCA
. (9)

However, with this Yukawa couplings, it is still possible to reproduce the light neutrino

masses to explain the observed neutrino oscillations [39]. Following the parametrization

of Casas and Ibarra [27], the Dirac mass term or the neutrino Yukawa coupling can be

expressed as

y⌫↵i
v

p
2

= iU(mdiag
⌫ )1/2⌦(M⌫R)1/2, (10)

with U
†
m⌫U

⇤ = diag(m1, m2, m3) = m
diag
⌫ and ⌦ being a complex orthogonal matrix with

⌦⌦T = 1. As an example, if we take the masses

M⌫R =O(M⌫R1 , 1, 10)GeV, (11)

with M⌫R1 ⌧ 1 GeV, and m1 = 0 assuming normal hierarchy, and ⌦ = I, we find Yukawa

matrix in the form of Eq. (9), with non-vanishing values of the order of O(10�7), and mixing

⇥ ⇠ 10�6. Explicitly,

y⌫ =

0

BBB@

0 9.3 ⇥ 10�9
i �5.0 ⇥ 10�8

� 1.9 ⇥ 10�9
i

0 �2.7 ⇥ 10�10 + 1.0 ⇥ 10�8
i 9.6 ⇥ 10�8

i

0 �2.4 ⇥ 10�10
� 9.8 ⇥ 10�9

i 8.4 ⇥ 10�8
i

1
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, (12)
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Figure 1. What is known about the square of the neutrino masses for the two atmospheric mass
orderings.

The mass splittings of the neutrinos are approximately [84]:

�m2
32 ' ±2.5 ⇥ 10�3eV2 and �m2

21 ' +7.5 ⇥ 10�5eV2, (1.4)

and the sum of the masses of the neutrinos satisfies
q

�m2
A

' 0.05 eV <
3X

i=1

mi < 0.5 eV. (1.5)

So the sum of neutrino masses ranges from 10�7 to 10�6 times me, however the mass of
the lightest neutrino, m, could be very small. If m ⌧

q
�m2

� ⇠ 0.01 eV2, then this is an
additional scale to be explained by a theory of neutrino masses and mixings.

The standard representation [85] of the PMNS mixing matrix is given as follows:

U =

0

@
Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

U⌧1 U⌧2 U⌧3

1

A =

0

@
1 0 0
0 c23 s23

0 �s23 c23

1

A

0

@
c13 0 s13e�i�

0 1 0
�s13ei� 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A

0

@
ei↵1 0 0
0 ei↵2 0
0 0 1

1

A

=

0

@
c12c13 s12c13 s13e�i�

�s12c23 � c12s13s23ei� c12c23 � s12s13s23ei� c13s23

s12s23 � c12s13c23ei� �c12s23 � s12s13c23ei� c13c23

1

A

0

@
ei↵1 0 0
0 ei↵2 0
0 0 1

1

A , (1.6)

where sij = sin ✓ij and cij = cos ✓ij . The Dirac phase, �, allows for the possibility of CP
violation in the neutrino oscillation appearance channels. The Majorana phases ↵1 and ↵2

are unobservable in oscillations since oscillations depend on U⇤
↵i

U�i but they have observable,
CP conserving effects, in neutrinoless double beta decay. If the neutrinos are Dirac, then
neutrinoless double beta decay will be absent and the Majorana phases in the PMNS matrix

– 6 –

with PMNS matrix U

seesaw mechanism
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Interaction of RH Neutrino

RH sterile neutrinos can interaction with SM sector through
- mass mixing after electroweak symmetry breaking
-Yukawa interaction with Higgs and LH neutrino

The interactions induce
- Decay of sterile neutrino DM: X-ray signal 

  

Sterile neutrinos as dark matterSterile neutrinos as dark matter

4   Sterile neutrinos are fermions and obey the exclusion principle. It is

     not possible to have an arbitrarily large ns number density.

     The observed DM density in dwarf galaxies implies a lower limit
     on the DM mass. 

5   Sterile neutrinos are not absolutely stable

X
X
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Sterile Neutrino DM in the nuMSM

To explain the mass-squared difference observed in the neutrino 
oscillation, only 2 RH neutrino are required. So the 3rd RH neutrino 
mass can be light and candidate dark matter. [Asaka et al., 2005]
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Figure 9. Bounds on the mass M1 and the mixing angle ✓1 of the sterile neutrino dark matter for the models,
discussed in Section I D: DM in the ⌫MSM (Panel a, see text for details); DM produced in the model with
entropy dilution (Panel b); and DM produced in the light singlet Higgs decays (Panel c).

Neutrinos in gauge multiplets – thermal production of DM neutrinos

In this model sterile neutrinos are charged under some beyond the SM gauge group [65]. A natural
candidate are here left-right symmetric theories, in which the sterile neutrinos are sterile only under
the SM S U(2)L gauge group, but are active with respect to an additional S U(2)R, under which the
left-handed SM particles are sterile. The steriles couple in particular to a new gauge boson WR,
which belongs to S U(2)R. One of the sterile neutrinos N1 is light and plays the role of dark
matter, entering in thermal equilibrium before freeze-out. Other sterile neutrinos N2,3 should dilute
its abundance up to the correct amount via out-of-equilibrium decays. This entropy production
happens if there are heavy particles with long lifetimes, which first decouple while still relativistic
and then decay when already non-relativistic [197]. The proper DM abundance is controlled by the
properties of this long-lived particle through the entropy dilution factor S ' 0.76 ḡ1/4

⇤ M2
g⇤ f
p
�MPl

, where
g⇤ is an averaged number of d.o.f. during entropy generation, and M2 is the mass of the sterile
neutrino, responsible for the dilution. The X-ray constraint here bounds the mixing angle ✓1 of the
DM neutrino in the same way as for the ⌫MSM. The mixing between new and SM gauge bosons is
also severely constrained. The structure formation from the Lyman-↵ analysis constraints the DM
neutrino mass:, M1 > 1.6 keV, because its velocity distribution is that of the cooled thermal relic
[65, 160]. At the same time, this implies that the DM in this model is cold (CDM).

All other constraints in this scenario apply to the heavier sterile neutrinos and to the new gauge
sector. The correct abundance of the CDM sterile neutrino requires entropy dilution. To properly
provide the entropy dilution, N2 should decouple while relativistic and has a decay width

� ' 0.50 ⇥ 10�6 g2
N

4
g2
⇤f

g2
⇤

ḡ1/2
⇤

M2
2

MPl

 
1 keV

M1

!2

. (32)

At the same time, the heavy neutrino N2 should decay before BBN, which bounds its lifetime to
be shorter than approximately 0.1÷ 2 s. Then, the proper entropy can be generated only if its mass
is larger than

M2 >
✓ M1

1 keV

◆
(1.7 ÷ 10) GeV. (33)

The entropy is e↵ectively generated by out-of-equilibrium decays if the particle decoupled while
still relativistic. The bound on the decoupling temperature leads to a bound on the new gauge
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Figure 4: The central region of Fig. 3, M1 = 0.3 . . .100.0 keV, compared with regions excluded
by various X-ray constraints [22, 25, 30, 31], coming from XMM-Newton observations of the Large
Magellanic Cloud (LMC), the Milky Way (MW), and the Andromeda galaxy (M31). SPI marks the
constraints from 5 years of observations of the Milky Way galactic center by the SPI spectrometer on
board the Integral observatory.

dark matter simulations, which have not been carried out with actual non-equilibrium spec-

tra so far. Nevertheless, adopting a simple recipe for estimating the non-equilibrium effects

(cf. Eq. (5.1)), the results of refs. [34, 35] can be re-interpreted as the constraints M1 >∼ 11.6

keV and M1 >∼ 8 keV, respectively (95% CL), at vanishing asymmetry [12]. Very recently

limits stronger by a factor 2–3 have been reported [36]. We return to how the constraints

change in the case of a non-zero lepton asymmetry in Sec. 5. We note, however, that the

most conservative bound, the so-called Tremaine-Gunn bound [52, 53], is much weaker and

reads M1 >∼ 0.3 keV [54], which we have chosen as the lower end of the horizontal axes in

Figs. 4, 6.

In Fig. 5 we show examples of the spectra, for a relatively small mass M1 = 3 keV (like

in Fig. 1), at which point the significant changes caused by the asymmetry can be clearly

identified. The general pattern to be observed in Fig. 5 is that for a small asymmetry, the

distribution function is boosted only at very small momenta. Quantities like the average

momentum ⟨q⟩s then decrease, as can be seen in Fig. 6. For large asymmetry, the resonance

affects all q; the total abundance is strongly enhanced with respect to the case without a

resonance, but the shape of the distribution function is less distorted than at small asymmetry,

so that the average momentum ⟨q⟩s returns back towards the value in the non-resonant case.

Therefore, for any given mass, we can observe a minimal value of ⟨q⟩s in Fig. 6, ⟨q⟩s >∼ 0.3⟨q⟩a.
This minimal value is remarkably independent of M1, but the value of asymmetry at which
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to accurate characterizations of WDM particle mass limits in general. For the case of resonantly-produced Shi–Fuller sterile
neutrino dark matter the quasi-thermal momentum space distribution of Eq. (53) is invalid, with the momentum space
distribution highly nonthermal and ‘‘cooler’’ than thermal (Fig. 4). Therefore, the full momentum space distribution must be
employed in its effects on structure formation [104] and that then used for structure formation constraints [173,137].

One of the most potentially powerful constraints on the matter power spectrum at small scales affected by WDM is the
clustering of gas as measured along the line of sight to distant quasars in the Lyman-↵ forest [170,172–181]. The claimed
level of the most recent constraints by Ir≤i£ et al. [181] place an approximate limit on the ideal Dodelson–Widrowmass (Eq.
(55)) when mapped from the thermal WDM limits of mthermal � 5.3 keV to be mDW,ideal � 41 keV (95% CL). When combined
with X-ray limits, they strongly exclude Dodelson–Widrow sterile neutrino dark matter from being all of the dark matter.
These are considerably weakened when sterile neutrinos are only partially the dark matter [182]. The Lyman-↵ forest is a
potentially very powerful tool to measure the small-scale matter power spectrum. It relies on mapping the clustering of
neutral gas in one dimension to the 3-dimensional full matter power spectrum. For some time, this has been known to have
potential systematic problems in entangling the thermal history of the intergalactic medium – via the thermal broadening
and Jeans pressure-support of the gas – with the underlying matter power spectrum [183]. This has become more apparent
with very high resolution hydrodynamic simulations like those in Kulkarni et al. [184], where pressure support in the gas
was shown to greatly affect the flux power spectrum at high redshift, and the recovered nonlinear flux power spectrum
at late time varied greatly from the linear theory methods typically used in cosmological analyses like that done to probe
WDM. Kulkarni et al. also show the temperature –density relation has a dispersion that is highly non-Gaussian and that
temperature–density relation should be augmentedwith a third pressure smoothing scale parameter �F . The Lyman-↵ forest
is argued further to be best used as a probe of the epoch of cosmological reionization [185].

A potentially strong probe ofWDMvs. CDM is the formation of structure at high redshift probed by galaxy number counts
[186] as well as reionization [187]. The limits from reionization from the optical depth to the cosmic microwave background
as measured by Planck are at the level of mthermal & 1.3 keV [186], while recent limits from the luminosity function of high
redshift galaxies are at the level ofmthermal � 2.5 keV at 2� [156]. The sensitivity of the JamesWebb Space Telescope (JWST) to
galaxy counts at even higher redshift, which are even more sensitive to WDM suppression of structure formation, will push
to sensitivities to even higher thermal WDM particle masses [186]. JWST is planned to launch in October 2018.4 Detailed
observations of reionization, the Lyman-↵ forest and high-redshift galaxy counts could differentiate between the variations
of the shape of the suppression scales of different WDM production scenarios [188].

In studies of the formation of the small scale structure as probed in the Local Group of galaxies and the cores and central
densities of galaxies, there remain too-low of a central density profile compared to that expected in CDM of dwarf galaxies
that are satellites as well as in the field—i.e., not gravitationally bound to another galaxy [189]. This has been dubbed the too-
big-to-fail problem, and it can be alleviated byWDM of the proper free streaming scale, at approximately the free streaming
scale provided bymthermal ⇡ 2 keV [190,130]. Very significantly, itwas pointed out that this free streaming scalewasmatched
by sterile neutrino dark matter in the region of parameter space consistent with the 3.5 keV candidate dark matter decay
signal in the X-ray, discussed below [158,191]. Resonantly-produced Shi–Fuller sterile neutrino dark matter in the 7 keV,
sin2 2✓ ⇠ 10�10 region produce a range of cutoff scale consistent with 1.5 keV . mthermal . 3.0 keV [158,104].

The Milky Way’s Local Group satellite galaxy counts can also provide limits on the free streaming scale since the
free streaming suppresses dwarf galaxy formation [192,193,191,173]. As dwarf galaxies are discovered by deep all-sky
observations, the limits have increased to place tension with WDM suppression scales in the region consistent with
resonantly-produced 7.1 keV sterile neutrino dark matter in the region of the 3.55 keV signal [137]. This tension may make
more attractive the scenariowhere 10% to 20% of the darkmatter is Dodelson–Widrow sterile neutrino darkmatter, with the
rest being some other form. A 10% to 20% fraction of Dodelson–Widrow sterile neutrinos can produce the 3.55 keV signal,
with a mixing angle that is commensurately approximately five to then times larger, in order to continue to match the
observed flux in the signal with a smaller sterile neutrino dark matter mass in the field of view [29]. This case, where there
is a mixed cold plus warm dark matter, escapes constraints from galaxy counts and the Lyman-↵ forest [182], and may still
alleviate small-scale structure challenges [130].

7. keV sterile neutrino dark matter detectability in X-ray observations

7.1. Methods & current results

The fact that a light, neutral lepton, like a sterile neutrino, would have a radiative decay mode was first pointed out and
calculated by Shrock [194] and independently by Pal & Wolfenstein [195]. For the Majorana neutrino case, the decay rate is

�� (ms, sin2 2✓ ) ⇡ 1.36 ⇥ 10�30 s�1
✓
sin22✓
10�7

◆⇣ ms

1 keV

⌘5
, (56)

where ms is the mass eigenstate most closely associated with the sterile neutrino, and ✓ is the mixing angle between the
sterile and active neutrino. For the case of a Dirac sterile neutrino, the decay rate is reduced by a factor of two. The decay of
a nonrelativistic sterile neutrino into two (nearly) massless particles produces a line at energy E� = ms/2.

4 https://jwst.nasa.gov.
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Shi-Fuller with
Lepton asymmetry

angles and small lepton asymmetry, the mixing angle can be approximated as

sin θm ≈
sin θ

1 + 0.27ζ
(

T
100MeV

)6 (keV2

∆m2

)
(16)

where ζ = 1.0 for mixing with the electron neutrino, and ζ = 0.30 for νµ and ντ .

Obviously, thermal effects suppress the effective mixing significantly for temperatures T >
150 (m/keV)1/3MeV. If the singlet neutrinos interact only through mixing, all the interaction
rates are suppressed by the square of the mixing angle, sin2 θm. It is easy to see that these
sterile neutrinos are never in thermal equilibrium in the early universe. Thus, in contrast
with the case of the active neutrinos, the relic population of sterile neutrinos is not a result
of a freeze-out 2 .

In the relevant range of parameters, one can roughly approximate the numerical results for
the amount of dark matter produced in this scenario [21,23,24,26,97,152]:

Ωs ∼ 0.2

(

sin2 θ

3× 10−9

)

(

ms

3 keV

)1.8

. (17)

The range of the masses and mixing angles consistent with dark matter and with the X-ray
bounds discussed below forces the mass of the sterile neutrino to be as low as 1-3 keV. The
much improved state-of-the-art calculations [30,152] reinforce this conclusion. However, the
Lyman-α bounds [91,92,123,101,94] appear to disfavor this mass range for the production via
neutrino oscillations 3 .

4.2 Lepton asymmetry and the Shi–Fuller scenario

The production scenario proposed by Dodelson and Widrow [21] is altered in the presence
of a lepton asymmetry of the universe, in which case the production of relic sterile neutri-
nos can be enhanced by MSW effect [148,149]. Shi and Fuller [22] showed that the MSW
resonance makes the production more efficient for small missing angles, hence opening up
some additional parameter space that is less constrained by the X-ray data. In addition, the
momentum distribution of non-thermal sterile neutrinos produced in this case is colder than
in the case of zero lepton asymmetry. [22,28,158]. This helps ameliorate the tension with the

2 One immediate consequence of this observation is that the Gershtein–Zeldovich bound [153,154]
and the Lee–Weinberg bound [155] do not apply to these sterile neutrinos.
3 Since different production mechanisms can can generate sterile neutrinos with very different free-
streaming properties for the same mass, the mass bounds from Refs. [92,123,94] do not apply to
models that consider production by other mechanisms, different from Dodelson–Widrow mecha-
nism. For example, if sterile dark matter is generated at the electroweak scale, the corresponding
mass bounds are relaxed by more than factor 3 [17,33,156,157].
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which leads to

⇤µ(q) = �0⇤†
µ(�q)�0. (3.11)

Using the properties of the Dirac matrices (see Ap-
pendix A), one can find that this constraint implies that

2, 3, 4 are real, (3.12)

and

1, 5, 6 are imaginary. (3.13)

The number of independent form factors can be re-

duced by imposing current conservation, @µj(⌫)µ (x) = 0,
which is required by gauge invariance (i.e. invariance

of H(⌫)
em (x) under the transformation Aµ(x) ! Aµ(x) +

@µ'(x) for any '(x), which leaves invariant the electro-
magnetic tensor Fµ⌫ = @µA⌫ � @⌫Aµ). Using Eq. (3.4),
current conservation implies that

h⌫(pf )|
h
Pµ, j(⌫)µ (0)

i
|⌫(pi)i = 0. (3.14)

Hence, in momentum space we have the constraint

qµ u(pf )⇤µ(q)u(pi) = 0, (3.15)

which implies that

1(q
2)q2 + 2(q

2)q2�5 + 2m 4(q
2)�5 = 0. (3.16)

Since �5 and the unity matrix are linearly independent,
we obtain the constraints

1(q
2) = 0, 4(q

2) = � 2(q
2)q2/2m. (3.17)

Therefore, in the most general case consistent with
Lorentz and electromagnetic gauge invariance, the ver-
tex function ⇤µ(q) is defined in terms of four form factors
(Nieves, 1982; Kayser, 1982, 1984),

⇤µ(q) = Q(q
2)�µ � M (q2)i�µ⌫q

⌫ + E(q
2)�µ⌫q

⌫�5

+ A(q
2)(q2�µ � qµ/q)�5, (3.18)

where Q = 3, M = i 5, E = �2i 6 and A = � 2/2m
are the real charge, dipole magnetic and electric, and
anapole neutrino form factors. The term involving the
electric form factor corresponds to the last term in
Eq. (3.8), in which we took into account the identity in
Eq. (A26). In the term involving the anapole form factor
we used the identity u(pf )/q�5u(pi) = 2mu(pf )�5u(pi),
which is easily obtained from Eqs. (A17) and (A42).

The physical meaning of the dipole magnetic and elec-
tric neutrino form factors is discussed in Section IV and
that of the charge and anapole in Section VII. Here we
only remark that for the coupling with a real photon
(q2 = 0)

Q(0) = , M (0) = µ, E(0) = ✏, A(0) = ,
(3.19)

where , µ, ✏ and are, respectively, the neutrino charge,
magnetic moment, electric moment and anapole moment.
Although above we stated that = 0, here we did not
enforce this equality because in some theories beyond the
Standard Model neutrinos can be millicharged particles,
as explained in Subsection VII.A.

Now it is interesting to study the properties of H(⌫)
em (x)

under a CP transformation, in order to find which of
the terms in Eq. (3.18) violate CP. The reason is that,
whereas it is well known that weak interactions violate
maximally C and P, the violation of CP is a more exotic
phenomenon, which has been observed so far only in the
hadron sector (see Bilenky (2008)).
Using the transformation (A66) of a fermion field un-

der an active CP transformation one can find that for
the Standard Model electric current jµ(x) in Eq. (3.1)
we have

jµ(x)
CP���! UCPjµ(x)U

†
CP = �jµ(xP). (3.20)

Hence, the Standard Model electromagnetic interaction

Hamiltonian H(⌫)
em (x) is left invariant by4

Aµ(x)
CP���! �Aµ(xP). (3.21)

CP is conserved in neutrino electromagnetic interactions

(in the one-photon approximation) if j(⌫)µ (x) transforms
as jµ(x):

CP () UCPj
(⌫)
µ (x)U†

CP = �jµ(⌫)(xP). (3.22)

For the matrix element (3.7) we obtain

CP () ⇤µ(q)
CP���! �⇤µ(q). (3.23)

Using the formulae in Appendix A, one can find that
under a CP transformation we have5

⇤µ(q)
CP���! �0C⇤T

µ (qP)C†�0, (3.24)

with qµP = qµ. Using the form-factor expansion in
Eq. (3.18), we obtain

⇤µ(q)
CP���! �

⇥
Q(q

2)�µ � M (q2)i�µ⌫q⌫

� E(q
2)�µ⌫q⌫�5 + A(q

2)(q2�µ � qµ/q)�5
⇤
. (3.25)

Therefore, only the electric dipole form factor violates
CP:

CP () E(q
2) = 0. (3.26)

4 The transformation x ! xP is irrelevant since all amplitudes
are obtained by integrating over d4x, as in Eq. (5.2).

5 The operators in j
(⌫)
µ (x) are implicitly assumed to be normally

ordered (see Giunti and Kim (2007)).
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FIG. 4 Tree-level coupling of a charged fermion f with a
photon � (a) and e↵ective one-photon coupling of a neutrino
with a photon (b).

no electromagnetic interactions at tree-level2. However,
such interactions can arise at the quantum level from loop
diagrams at higher order of the perturbative expansion of
the interaction. In the one-photon approximation3, the
electromagnetic interactions of a neutrino field ⌫(x) can
be described by the e↵ective interaction Hamiltonian

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) = ⌫(x)⇤µ⌫(x)A

µ(x), (3.2)

where, j(⌫)µ (x) is the neutrino e↵ective electromagnetic
current four-vector and ⇤µ is a 4 ⇥ 4 matrix in spinor
space which can contain space-time derivatives, such that

j(⌫)µ (x) transforms as a four-vector. Since radiative cor-
rections are generated by weak interactions which are not

invariant under a parity transformation, j(⌫)µ (x) can be a
sum of polar and axial parts. The corresponding diagram
for the interaction of a neutrino with a photon is shown
in Fig. 4(b), where the blob represents the quantum loop
contributions.

As we will see in the following, the neutrino elec-
tromagnetic properties corresponding to the diagram in
Fig. 4(b) include charge and magnetic form factors. Let
us emphasize that these neutrino electromagnetic prop-
erties can exist even if neutrinos are elementary particles,
without an internal structure, because they are generated
by quantum loop e↵ects. Thus, the neutrino charge and
magnetic form factors have a di↵erent origin from the
neutron charge and magnetic form factors (also called
Dirac and Pauli form factors), which are mainly due to
its internal quark structure. For example, the neutrino
magnetic moment (which is the magnetic form factor for
interactions with real photons, i.e. q2 = 0 in Fig. 4(b))
have the same quantum origin as the anomalous mag-
netic moment of the electron (see Greiner and Reinhardt
(2009)).

We are interested in the neutrino part of the amplitude
corresponding to the diagram in Fig. 4(b), which is given

2 However, in some theories beyond the Standard Model neutrinos
can be millicharged particles (see Subsection VII.A).

3 Some cases in which the one-photon approximation breaks down
are discussed in Subsection VII.A.

by the matrix element

h⌫(pf , hf )|j(⌫)µ (x)|⌫(pi, hi)i, (3.3)

where pi (pf ) and hi (hf ) are the four-momentum and
helicity of the initial (final) neutrino. Taking into account
that

@µj(⌫)µ (x) = i
h
Pµ, j(⌫)µ (x)

i
, (3.4)

where Pµ is the four-momentum operator which generate
translations, the e↵ective current can be written as

j(⌫)µ (x) = eiP·xj(⌫)µ (0)e�iP·x. (3.5)

Since Pµ|⌫(p)i = pµ|⌫(p)i, we have

h⌫(pf )|j(⌫)µ (x)|⌫(pi)i = ei(pf�pi)·xh⌫(pf )|j(⌫)µ (0)|⌫(pi)i,
(3.6)

where we suppressed for simplicity the helicity labels
which are not of immediate relevance. Here we see that
the unknown quantity which determines the neutrino-

photon interaction is h⌫(pf )|j(⌫)µ (0)|⌫(pi)i. Considering
that the incoming and outgoing neutrinos are free par-
ticles which are described by free Dirac fields with the
Fourier expansion in Eq. (A55), we have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = u(pf )⇤µ(pf , pi)u(pi). (3.7)

The electromagnetic properties of neutrinos are embod-
ied by the vertex function ⇤µ(pf , pi), which is a matrix
in spinor space and can be decomposed in terms of lin-
early independent products of Dirac � matrices and the
available kinematical four-vectors pi and pf . As shown
in Appendix B, the most general decomposition can be
written as

⇤µ(pf , pi) = 1(q
2)qµ + 2(q

2)qµ�5 + 3(q
2)�µ

+ 4(q
2)�µ�5 + 5(q

2)�µ⌫q
⌫ + 6(q

2)✏µ⌫⇢�q
⌫�⇢� , (3.8)

where k(q2) are six Lorentz-invariant form factors (k =
1, . . . , 6) and q is the four-momentum of the photon,
which is given by

q = pi � pf , (3.9)

from energy-momentum conservation. Notice that the
form factors depend only on q2, which is the only avail-
able Lorentz-invariant kinematical quantity, since (pi +
pf )2 = 4m2 � q2. Therefore, ⇤µ(pf , pi) depends only on
q and from now on we will denote it as ⇤µ(q).
Since the Hamiltonian and the electromagnetic field

are Hermitian (H(⌫)†
em = H(⌫)

em and Aµ† = Aµ), the e↵ec-

tive current must be Hermitian, j(⌫)†µ = j(⌫)µ . Hence, we
have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = h⌫(pi)|j(⌫)µ (0)|⌫(pf )i⇤, (3.10)
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no electromagnetic interactions at tree-level2. However,
such interactions can arise at the quantum level from loop
diagrams at higher order of the perturbative expansion of
the interaction. In the one-photon approximation3, the
electromagnetic interactions of a neutrino field ⌫(x) can
be described by the e↵ective interaction Hamiltonian

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) = ⌫(x)⇤µ⌫(x)A

µ(x), (3.2)

where, j(⌫)µ (x) is the neutrino e↵ective electromagnetic
current four-vector and ⇤µ is a 4 ⇥ 4 matrix in spinor
space which can contain space-time derivatives, such that

j(⌫)µ (x) transforms as a four-vector. Since radiative cor-
rections are generated by weak interactions which are not

invariant under a parity transformation, j(⌫)µ (x) can be a
sum of polar and axial parts. The corresponding diagram
for the interaction of a neutrino with a photon is shown
in Fig. 4(b), where the blob represents the quantum loop
contributions.

As we will see in the following, the neutrino elec-
tromagnetic properties corresponding to the diagram in
Fig. 4(b) include charge and magnetic form factors. Let
us emphasize that these neutrino electromagnetic prop-
erties can exist even if neutrinos are elementary particles,
without an internal structure, because they are generated
by quantum loop e↵ects. Thus, the neutrino charge and
magnetic form factors have a di↵erent origin from the
neutron charge and magnetic form factors (also called
Dirac and Pauli form factors), which are mainly due to
its internal quark structure. For example, the neutrino
magnetic moment (which is the magnetic form factor for
interactions with real photons, i.e. q2 = 0 in Fig. 4(b))
have the same quantum origin as the anomalous mag-
netic moment of the electron (see Greiner and Reinhardt
(2009)).

We are interested in the neutrino part of the amplitude
corresponding to the diagram in Fig. 4(b), which is given

2 However, in some theories beyond the Standard Model neutrinos
can be millicharged particles (see Subsection VII.A).

3 Some cases in which the one-photon approximation breaks down
are discussed in Subsection VII.A.

by the matrix element

h⌫(pf , hf )|j(⌫)µ (x)|⌫(pi, hi)i, (3.3)

where pi (pf ) and hi (hf ) are the four-momentum and
helicity of the initial (final) neutrino. Taking into account
that

@µj(⌫)µ (x) = i
h
Pµ, j(⌫)µ (x)

i
, (3.4)

where Pµ is the four-momentum operator which generate
translations, the e↵ective current can be written as

j(⌫)µ (x) = eiP·xj(⌫)µ (0)e�iP·x. (3.5)

Since Pµ|⌫(p)i = pµ|⌫(p)i, we have

h⌫(pf )|j(⌫)µ (x)|⌫(pi)i = ei(pf�pi)·xh⌫(pf )|j(⌫)µ (0)|⌫(pi)i,
(3.6)

where we suppressed for simplicity the helicity labels
which are not of immediate relevance. Here we see that
the unknown quantity which determines the neutrino-

photon interaction is h⌫(pf )|j(⌫)µ (0)|⌫(pi)i. Considering
that the incoming and outgoing neutrinos are free par-
ticles which are described by free Dirac fields with the
Fourier expansion in Eq. (A55), we have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = u(pf )⇤µ(pf , pi)u(pi). (3.7)

The electromagnetic properties of neutrinos are embod-
ied by the vertex function ⇤µ(pf , pi), which is a matrix
in spinor space and can be decomposed in terms of lin-
early independent products of Dirac � matrices and the
available kinematical four-vectors pi and pf . As shown
in Appendix B, the most general decomposition can be
written as

⇤µ(pf , pi) = 1(q
2)qµ + 2(q

2)qµ�5 + 3(q
2)�µ

+ 4(q
2)�µ�5 + 5(q

2)�µ⌫q
⌫ + 6(q

2)✏µ⌫⇢�q
⌫�⇢� , (3.8)

where k(q2) are six Lorentz-invariant form factors (k =
1, . . . , 6) and q is the four-momentum of the photon,
which is given by

q = pi � pf , (3.9)

from energy-momentum conservation. Notice that the
form factors depend only on q2, which is the only avail-
able Lorentz-invariant kinematical quantity, since (pi +
pf )2 = 4m2 � q2. Therefore, ⇤µ(pf , pi) depends only on
q and from now on we will denote it as ⇤µ(q).
Since the Hamiltonian and the electromagnetic field

are Hermitian (H(⌫)†
em = H(⌫)

em and Aµ† = Aµ), the e↵ec-

tive current must be Hermitian, j(⌫)†µ = j(⌫)µ . Hence, we
have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = h⌫(pi)|j(⌫)µ (0)|⌫(pf )i⇤, (3.10)

charge magnetic electric dipole

anapole
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which leads to

⇤µ(q) = �0⇤†
µ(�q)�0. (3.11)

Using the properties of the Dirac matrices (see Ap-
pendix A), one can find that this constraint implies that

2, 3, 4 are real, (3.12)

and

1, 5, 6 are imaginary. (3.13)

The number of independent form factors can be re-

duced by imposing current conservation, @µj(⌫)µ (x) = 0,
which is required by gauge invariance (i.e. invariance

of H(⌫)
em (x) under the transformation Aµ(x) ! Aµ(x) +

@µ'(x) for any '(x), which leaves invariant the electro-
magnetic tensor Fµ⌫ = @µA⌫ � @⌫Aµ). Using Eq. (3.4),
current conservation implies that

h⌫(pf )|
h
Pµ, j(⌫)µ (0)

i
|⌫(pi)i = 0. (3.14)

Hence, in momentum space we have the constraint

qµ u(pf )⇤µ(q)u(pi) = 0, (3.15)

which implies that

1(q
2)q2 + 2(q

2)q2�5 + 2m 4(q
2)�5 = 0. (3.16)

Since �5 and the unity matrix are linearly independent,
we obtain the constraints

1(q
2) = 0, 4(q

2) = � 2(q
2)q2/2m. (3.17)

Therefore, in the most general case consistent with
Lorentz and electromagnetic gauge invariance, the ver-
tex function ⇤µ(q) is defined in terms of four form factors
(Nieves, 1982; Kayser, 1982, 1984),

⇤µ(q) = Q(q
2)�µ � M (q2)i�µ⌫q

⌫ + E(q
2)�µ⌫q

⌫�5

+ A(q
2)(q2�µ � qµ/q)�5, (3.18)

where Q = 3, M = i 5, E = �2i 6 and A = � 2/2m
are the real charge, dipole magnetic and electric, and
anapole neutrino form factors. The term involving the
electric form factor corresponds to the last term in
Eq. (3.8), in which we took into account the identity in
Eq. (A26). In the term involving the anapole form factor
we used the identity u(pf )/q�5u(pi) = 2mu(pf )�5u(pi),
which is easily obtained from Eqs. (A17) and (A42).

The physical meaning of the dipole magnetic and elec-
tric neutrino form factors is discussed in Section IV and
that of the charge and anapole in Section VII. Here we
only remark that for the coupling with a real photon
(q2 = 0)

Q(0) = , M (0) = µ, E(0) = ✏, A(0) = ,
(3.19)

where , µ, ✏ and are, respectively, the neutrino charge,
magnetic moment, electric moment and anapole moment.
Although above we stated that = 0, here we did not
enforce this equality because in some theories beyond the
Standard Model neutrinos can be millicharged particles,
as explained in Subsection VII.A.

Now it is interesting to study the properties of H(⌫)
em (x)

under a CP transformation, in order to find which of
the terms in Eq. (3.18) violate CP. The reason is that,
whereas it is well known that weak interactions violate
maximally C and P, the violation of CP is a more exotic
phenomenon, which has been observed so far only in the
hadron sector (see Bilenky (2008)).
Using the transformation (A66) of a fermion field un-

der an active CP transformation one can find that for
the Standard Model electric current jµ(x) in Eq. (3.1)
we have

jµ(x)
CP���! UCPjµ(x)U

†
CP = �jµ(xP). (3.20)

Hence, the Standard Model electromagnetic interaction

Hamiltonian H(⌫)
em (x) is left invariant by4

Aµ(x)
CP���! �Aµ(xP). (3.21)

CP is conserved in neutrino electromagnetic interactions

(in the one-photon approximation) if j(⌫)µ (x) transforms
as jµ(x):

CP () UCPj
(⌫)
µ (x)U†

CP = �jµ(⌫)(xP). (3.22)

For the matrix element (3.7) we obtain

CP () ⇤µ(q)
CP���! �⇤µ(q). (3.23)

Using the formulae in Appendix A, one can find that
under a CP transformation we have5

⇤µ(q)
CP���! �0C⇤T

µ (qP)C†�0, (3.24)

with qµP = qµ. Using the form-factor expansion in
Eq. (3.18), we obtain

⇤µ(q)
CP���! �

⇥
Q(q

2)�µ � M (q2)i�µ⌫q⌫

� E(q
2)�µ⌫q⌫�5 + A(q

2)(q2�µ � qµ/q)�5
⇤
. (3.25)

Therefore, only the electric dipole form factor violates
CP:

CP () E(q
2) = 0. (3.26)

4 The transformation x ! xP is irrelevant since all amplitudes
are obtained by integrating over d4x, as in Eq. (5.2).

5 The operators in j
(⌫)
µ (x) are implicitly assumed to be normally

ordered (see Giunti and Kim (2007)).

At the zero momentum of photon,

charge magnetic electric moment anapole moment

Only EDM violates CP.
(toroidal dipole moment)
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FIG. 4 Tree-level coupling of a charged fermion f with a
photon � (a) and e↵ective one-photon coupling of a neutrino
with a photon (b).

no electromagnetic interactions at tree-level2. However,
such interactions can arise at the quantum level from loop
diagrams at higher order of the perturbative expansion of
the interaction. In the one-photon approximation3, the
electromagnetic interactions of a neutrino field ⌫(x) can
be described by the e↵ective interaction Hamiltonian

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) = ⌫(x)⇤µ⌫(x)A

µ(x), (3.2)

where, j(⌫)µ (x) is the neutrino e↵ective electromagnetic
current four-vector and ⇤µ is a 4 ⇥ 4 matrix in spinor
space which can contain space-time derivatives, such that

j(⌫)µ (x) transforms as a four-vector. Since radiative cor-
rections are generated by weak interactions which are not

invariant under a parity transformation, j(⌫)µ (x) can be a
sum of polar and axial parts. The corresponding diagram
for the interaction of a neutrino with a photon is shown
in Fig. 4(b), where the blob represents the quantum loop
contributions.

As we will see in the following, the neutrino elec-
tromagnetic properties corresponding to the diagram in
Fig. 4(b) include charge and magnetic form factors. Let
us emphasize that these neutrino electromagnetic prop-
erties can exist even if neutrinos are elementary particles,
without an internal structure, because they are generated
by quantum loop e↵ects. Thus, the neutrino charge and
magnetic form factors have a di↵erent origin from the
neutron charge and magnetic form factors (also called
Dirac and Pauli form factors), which are mainly due to
its internal quark structure. For example, the neutrino
magnetic moment (which is the magnetic form factor for
interactions with real photons, i.e. q2 = 0 in Fig. 4(b))
have the same quantum origin as the anomalous mag-
netic moment of the electron (see Greiner and Reinhardt
(2009)).

We are interested in the neutrino part of the amplitude
corresponding to the diagram in Fig. 4(b), which is given

2 However, in some theories beyond the Standard Model neutrinos
can be millicharged particles (see Subsection VII.A).

3 Some cases in which the one-photon approximation breaks down
are discussed in Subsection VII.A.

by the matrix element

h⌫(pf , hf )|j(⌫)µ (x)|⌫(pi, hi)i, (3.3)

where pi (pf ) and hi (hf ) are the four-momentum and
helicity of the initial (final) neutrino. Taking into account
that

@µj(⌫)µ (x) = i
h
Pµ, j(⌫)µ (x)

i
, (3.4)

where Pµ is the four-momentum operator which generate
translations, the e↵ective current can be written as

j(⌫)µ (x) = eiP·xj(⌫)µ (0)e�iP·x. (3.5)

Since Pµ|⌫(p)i = pµ|⌫(p)i, we have

h⌫(pf )|j(⌫)µ (x)|⌫(pi)i = ei(pf�pi)·xh⌫(pf )|j(⌫)µ (0)|⌫(pi)i,
(3.6)

where we suppressed for simplicity the helicity labels
which are not of immediate relevance. Here we see that
the unknown quantity which determines the neutrino-

photon interaction is h⌫(pf )|j(⌫)µ (0)|⌫(pi)i. Considering
that the incoming and outgoing neutrinos are free par-
ticles which are described by free Dirac fields with the
Fourier expansion in Eq. (A55), we have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = u(pf )⇤µ(pf , pi)u(pi). (3.7)

The electromagnetic properties of neutrinos are embod-
ied by the vertex function ⇤µ(pf , pi), which is a matrix
in spinor space and can be decomposed in terms of lin-
early independent products of Dirac � matrices and the
available kinematical four-vectors pi and pf . As shown
in Appendix B, the most general decomposition can be
written as

⇤µ(pf , pi) = 1(q
2)qµ + 2(q

2)qµ�5 + 3(q
2)�µ

+ 4(q
2)�µ�5 + 5(q

2)�µ⌫q
⌫ + 6(q

2)✏µ⌫⇢�q
⌫�⇢� , (3.8)

where k(q2) are six Lorentz-invariant form factors (k =
1, . . . , 6) and q is the four-momentum of the photon,
which is given by

q = pi � pf , (3.9)

from energy-momentum conservation. Notice that the
form factors depend only on q2, which is the only avail-
able Lorentz-invariant kinematical quantity, since (pi +
pf )2 = 4m2 � q2. Therefore, ⇤µ(pf , pi) depends only on
q and from now on we will denote it as ⇤µ(q).
Since the Hamiltonian and the electromagnetic field

are Hermitian (H(⌫)†
em = H(⌫)

em and Aµ† = Aµ), the e↵ec-

tive current must be Hermitian, j(⌫)†µ = j(⌫)µ . Hence, we
have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = h⌫(pi)|j(⌫)µ (0)|⌫(pf )i⇤, (3.10)

At the zero momentum of photon,

charge magnetic electric moment anapole moment

There are diagonal and off-diagonal (transition) types.
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FIG. 5 E↵ective one-photon coupling of neutrinos with the
electromagnetic field, taking into account possible transitions
between two di↵erent initial and final massive neutrinos ⌫i
and ⌫f .

So far, in this Section we have considered only one
massive neutrino field ⌫(x), but from the discussion of
neutrino mixing in Section II we know that there are
at least three massive neutrino fields in nature. There-
fore, we must generalize the discussion to the case of N
massive neutrino fields ⌫k(x) with respective masses mk

(k = 1, . . . , N). The e↵ective electromagnetic interaction
Hamiltonian in Eq. (3.2) is generalized to

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) =

NX

k,j=1

⌫k(x)⇤
kj
µ ⌫j(x)A

µ(x),

(3.27)
where we take into account possible transitions between

di↵erent massive neutrinos. The physical e↵ect of H(⌫)
em

is described by the e↵ective electromagnetic vertex in
Fig. 5, with the neutrino matrix element

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = uf (pf )⇤
fi
µ (pf , pi)ui(pi).

(3.28)
As in the case of one massive neutrino field (see
Appendix B), ⇤fi

µ (pf , pi) depends only on the four-
momentum q transferred to the photon and can be ex-
pressed in terms of six Lorentz-invariant form factors:

⇤fi
µ (q) = fi

1 (q2)qµ + fi
2 (q2)qµ�5 +

fi
3 (q2)�µ

+ fi
4 (q2)�µ�5 +

fi
5 (q2)�µ⌫q

⌫ + fi
6 (q2)✏µ⌫⇢�q

⌫�⇢� .
(3.29)

The Hermitian nature of j(⌫)µ implies that

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = h⌫i(pi)|j(⌫)µ (0)|⌫f (pf )i⇤, leading
to the constraint

⇤fi
µ (q) = �0[⇤if

µ (�q)]†�0. (3.30)

Considering the N⇥N form-factor matrices k in the
space of massive neutrinos with components fi

k for k =
1, . . . , 6, we find that

2, 3, 4 are Hermitian, (3.31)

and

1, 5, 6 are antihermitian. (3.32)

Following the same method used in Eqs. (3.4)–(3.16),
one can find that current conservation implies the con-
straints

fi
1 (q2)q2 + fi

3 (q2)(mf �mi) = 0, (3.33)
fi
2 (q2)q2 + fi

4 (q2)(mf +mi) = 0. (3.34)

Therefore, we obtain

⇤fi
µ (q) =

�
�µ � qµ/q/q

2
� h fi

Q (q2) + fi
A (q2)q2�5

i

� i�µ⌫q
⌫
h

fi
M (q2) + i fi

E (q2)�5
i
, (3.35)

where fi
Q = fi

3 , fi
M = i fi

5 , fi
E = �2i fi

6 and fi
A =

� fi
2 /(mf +mi), with

fi
⌦ = ( if

⌦ )⇤ (⌦ = Q,M,E,A). (3.36)

Note that since uf (pf )/qui(pi) = (mf �mi)uf (pf )ui(pi),
if f = i Eq. (3.35) correctly reduces to Eq. (3.18).
The form-factors with f = i are called “diagonal”,

whereas those with f 6=i are called “o↵-diagonal” or
“transition form-factors”. This terminology follows from
the expression

⇤µ(q) =
�
�µ � qµ/q/q

2
� ⇥

Q(q
2) + A(q

2)q2�5
⇤

� i�µ⌫q
⌫
⇥

M (q2) + i E(q
2)�5

⇤
, (3.37)

in which ⇤µ(q) is a N⇥N matrix in the space of massive
neutrinos expressed in terms of the four Hermitian N⇥N
matrices of form factors

⌦ = †
⌦ (⌦ = Q,M,E,A). (3.38)

For the coupling with a real photon (q2 = 0) we have

fi
Q (0) = fi,

fi
M (0) = µfi,

fi
E (0) = ✏fi,

fi
A (0) = fi,

(3.39)
where fi, µfi, ✏fi and fi are, respectively, the neutrino
charge, magnetic moment, electric moment and anapole
moment of diagonal (f = i) and transition (f 6=i) types.
Considering now CP invariance, the transformation

(3.22) of j(⌫)µ (x) implies the constraint in Eq. (3.23) for
theN⇥N matrix ⇤µ(q) in the space of massive neutrinos.
Using the formulae in Appendix A, we obtain

⇤fi
µ (q)

CP���! ⇠CP
f ⇠CP

i
⇤
�0C[⇤if

µ (qP)]
T C†�0, (3.40)

where ⇠CP
k is the CP phase of ⌫k. Since the massive

neutrinos take part to standard charged-current weak in-
teractions6, their CP phases are equal if CP is conserved

6 Here we consider massive neutrinos which are mixed with the
three active flavor neutrinos ⌫e, ⌫µ, ⌫⌧ . This is the case in stan-
dard three-neutrino mixing (see Section II) and in its extensions
with Dirac sterile neutrinos which mix with the active ones. If
there are Dirac sterile neutrinos which are not mixed with the
active ones and have nonstandard interactions, the CP phases
of the corresponding massive neutrinos could be di↵erent from
that of the standard massive neutrinos. However, since the pro-
duction and detection of such sterile neutrinos would be very
problematic, this case is not interesting in practice.
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FIG. 5 E↵ective one-photon coupling of neutrinos with the
electromagnetic field, taking into account possible transitions
between two di↵erent initial and final massive neutrinos ⌫i
and ⌫f .
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where we take into account possible transitions between
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problematic, this case is not interesting in practice.
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⌫i(pi) ⌫f (pf )

�(q)

⇤fi

FIG. 5 E↵ective one-photon coupling of neutrinos with the
electromagnetic field, taking into account possible transitions
between two di↵erent initial and final massive neutrinos ⌫i
and ⌫f .

So far, in this Section we have considered only one
massive neutrino field ⌫(x), but from the discussion of
neutrino mixing in Section II we know that there are
at least three massive neutrino fields in nature. There-
fore, we must generalize the discussion to the case of N
massive neutrino fields ⌫k(x) with respective masses mk

(k = 1, . . . , N). The e↵ective electromagnetic interaction
Hamiltonian in Eq. (3.2) is generalized to

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) =

NX

k,j=1

⌫k(x)⇤
kj
µ ⌫j(x)A

µ(x),

(3.27)
where we take into account possible transitions between

di↵erent massive neutrinos. The physical e↵ect of H(⌫)
em

is described by the e↵ective electromagnetic vertex in
Fig. 5, with the neutrino matrix element

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = uf (pf )⇤
fi
µ (pf , pi)ui(pi).

(3.28)
As in the case of one massive neutrino field (see
Appendix B), ⇤fi

µ (pf , pi) depends only on the four-
momentum q transferred to the photon and can be ex-
pressed in terms of six Lorentz-invariant form factors:

⇤fi
µ (q) = fi

1 (q2)qµ + fi
2 (q2)qµ�5 +

fi
3 (q2)�µ

+ fi
4 (q2)�µ�5 +

fi
5 (q2)�µ⌫q

⌫ + fi
6 (q2)✏µ⌫⇢�q

⌫�⇢� .
(3.29)

The Hermitian nature of j(⌫)µ implies that

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = h⌫i(pi)|j(⌫)µ (0)|⌫f (pf )i⇤, leading
to the constraint

⇤fi
µ (q) = �0[⇤if

µ (�q)]†�0. (3.30)

Considering the N⇥N form-factor matrices k in the
space of massive neutrinos with components fi

k for k =
1, . . . , 6, we find that

2, 3, 4 are Hermitian, (3.31)

and

1, 5, 6 are antihermitian. (3.32)

Following the same method used in Eqs. (3.4)–(3.16),
one can find that current conservation implies the con-
straints

fi
1 (q2)q2 + fi

3 (q2)(mf �mi) = 0, (3.33)
fi
2 (q2)q2 + fi

4 (q2)(mf +mi) = 0. (3.34)

Therefore, we obtain

⇤fi
µ (q) =

�
�µ � qµ/q/q

2
� h fi

Q (q2) + fi
A (q2)q2�5

i

� i�µ⌫q
⌫
h

fi
M (q2) + i fi

E (q2)�5
i
, (3.35)

where fi
Q = fi

3 , fi
M = i fi

5 , fi
E = �2i fi

6 and fi
A =

� fi
2 /(mf +mi), with

fi
⌦ = ( if

⌦ )⇤ (⌦ = Q,M,E,A). (3.36)

Note that since uf (pf )/qui(pi) = (mf �mi)uf (pf )ui(pi),
if f = i Eq. (3.35) correctly reduces to Eq. (3.18).
The form-factors with f = i are called “diagonal”,

whereas those with f 6=i are called “o↵-diagonal” or
“transition form-factors”. This terminology follows from
the expression

⇤µ(q) =
�
�µ � qµ/q/q

2
� ⇥

Q(q
2) + A(q

2)q2�5
⇤

� i�µ⌫q
⌫
⇥

M (q2) + i E(q
2)�5

⇤
, (3.37)

in which ⇤µ(q) is a N⇥N matrix in the space of massive
neutrinos expressed in terms of the four Hermitian N⇥N
matrices of form factors

⌦ = †
⌦ (⌦ = Q,M,E,A). (3.38)

For the coupling with a real photon (q2 = 0) we have

fi
Q (0) = fi,

fi
M (0) = µfi,

fi
E (0) = ✏fi,

fi
A (0) = fi,

(3.39)
where fi, µfi, ✏fi and fi are, respectively, the neutrino
charge, magnetic moment, electric moment and anapole
moment of diagonal (f = i) and transition (f 6=i) types.
Considering now CP invariance, the transformation

(3.22) of j(⌫)µ (x) implies the constraint in Eq. (3.23) for
theN⇥N matrix ⇤µ(q) in the space of massive neutrinos.
Using the formulae in Appendix A, we obtain

⇤fi
µ (q)

CP���! ⇠CP
f ⇠CP

i
⇤
�0C[⇤if

µ (qP)]
T C†�0, (3.40)

where ⇠CP
k is the CP phase of ⌫k. Since the massive

neutrinos take part to standard charged-current weak in-
teractions6, their CP phases are equal if CP is conserved

6 Here we consider massive neutrinos which are mixed with the
three active flavor neutrinos ⌫e, ⌫µ, ⌫⌧ . This is the case in stan-
dard three-neutrino mixing (see Section II) and in its extensions
with Dirac sterile neutrinos which mix with the active ones. If
there are Dirac sterile neutrinos which are not mixed with the
active ones and have nonstandard interactions, the CP phases
of the corresponding massive neutrinos could be di↵erent from
that of the standard massive neutrinos. However, since the pro-
duction and detection of such sterile neutrinos would be very
problematic, this case is not interesting in practice.
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(see Giunti and Kim (2007)). Hence, we have

⇤fi
µ (q)

CP���! �0C[⇤if
µ (qP)]

T C†�0. (3.41)

Using the form-factor expansion in Eq. (3.35), we obtain

⇤fi
µ (q)

CP���! �
n�

�µ � qµ/q/q
2
� h if

Q (q2) + if
A (q2)q2�5

i

� i�µ⌫q⌫
h

if
M (q2)� i if

E (q2)�5
io

. (3.42)

Imposing the constraint in Eq. (3.23), for the form factors
we obtain

CP ()
⇢ fi

⌦ = if
⌦ = ( fi

⌦ )⇤ (⌦ = Q,M,A),
fi
E = � if

E = �( fi
E )⇤,

(3.43)
where, in the last equalities, we took into account the
constraints (3.36). Therefore, diagonal electric form fac-
tors violate CP, in agreement with the one-generation
constraint in Eq. (3.26). For the Hermitian N⇥N form-
factor matrices, we obtain that if CP is conserved Q, M

and A are real and symmetric and E is imaginary and
antisymmetric:

CP ()
⇢

⌦ = T
⌦ = ⇤

⌦ (⌦ = Q,M,A),

E = � T
E = � ⇤

E .
(3.44)

Let us now consider antineutrinos. Using for the mas-
sive neutrino fields the Fourier expansion in Eq. (A55),
the e↵ective antineutrino matrix element for ⌫̄i(pi) !
⌫̄f (pf ) transitions is given by

h⌫̄f (pf )|j(⌫)µ (0)|⌫̄i(pi)i = �vi(pi)⇤
if
µ (q)vf (pf ). (3.45)

Using the relation (A47) we can write it as

h⌫̄f (pf )|j(⌫)µ (0)|⌫̄i(pi)i = uf (pf )C[⇤if
µ (q)]T C†ui(pi),

(3.46)
where transposition operates in spinor space. Therefore,
the e↵ective form-factor matrix in spinor space for an-
tineutrinos is given by

⇤
fi
µ (q) = C[⇤if

µ (q)]T C†. (3.47)

Using the properties of the charge-conjugation matrix,
the expression (3.35) for ⇤if

µ (q), and the hermiticity in
Eq. (3.36), we obtain the antineutrino form factors

fi
⌦ = � if

⌦ = �( fi
⌦ )⇤ (⌦ = Q,M,E), (3.48)

fi
A = if

A = ( fi
A )⇤. (3.49)

Therefore, in particular the diagonal magnetic and elec-
tric moments of neutrinos and antineutrinos, which are
real, have the same size with opposite signs, as the
charge, if it exists. On the other hand, the real diagonal
neutrino and antineutrino anapole moments are equal.

It is interesting to note that the relations in Eqs. (3.48)
and (3.49) between neutrino and antineutrino form fac-
tors are a consequence of CPT symmetry, which is a fun-
damental symmetry of local relativistic Quantum Field
Theory (see Greenberg (2006)). In order to prove this
statement, let us first consider the CPT transformation
of the Standard Model electric current jµ(x) in Eq. (3.1):
using Eq. (A68) we have

jµ(x)
CPT����! UCPTjµ(x)U

†
CPT = �jµ(�x). (3.50)

Therefore, the Standard Model electromagnetic interac-

tion Hamiltonian H(⌫)
em (x) is left invariant by

Aµ(x)
CPT����! �Aµ(�x). (3.51)

CPT is conserved by the neutrino e↵ective electromag-

netic interaction Hamiltonian in Eq. (3.27) if j(⌫)µ (x)
transforms as jµ(x):

CPT () UCPTj
(⌫)
µ (x)U†

CPT = �j(⌫)µ (�x). (3.52)

In order to find the implications of this relation for the
antineutrino matrix element in Eq. (3.45), we need to
consider it taking into account the helicities of the ini-
tial and final neutrinos, because CPT reverses helicities.
Thus, assuming CPT and inserting U†

CPTUCPT = 1 on

both sides of j(⌫)µ (0), we obtain

Mfi = h⌫̄f (pf , hf )|j(⌫)µ (0)|⌫̄i(pi, hi)i

= �h⌫̄f (pf , hf )|U†
CPTj

(⌫)
µ (0)UCPT|⌫̄i(pi, hi)i. (3.53)

Now we take into account that the application of UCPT to
a neutrino state transforms it into an antineutrino state.
Using the notation and conventions of Giunti and Kim
(2007) we have

UCPT|⌫̄k(pk, hk)i = �⇣(h) ⇠CPT
k

⇤|⌫k(pk,�hk)i, (3.54)

where ⇣(h) is a phase coming from the relation

�5 v(�h)(p) = ⇣(h)u(h)(p), (3.55)

and ⇣(�h) = �⇣(h). For the CPT phases ⇠CPT
k , we as-

sume that they are all equal, as we have done for the CP
phases in Eq. (3.40). Then, using Eq. (3.54) and tak-
ing into account the antiunitarity of UCPT, Eq. (3.53)
becomes

Mfi = �⇣(hf )⇣
⇤(hi)h⌫i(pi,�hi)|j(⌫)µ (0)|⌫f (pf ,�hf )i.

(3.56)
This is the crucial relation between the neutrino and an-
tineutrino matrix elements which follows from CPT in-
variance. Using for the neutrino matrix element the ex-
pression (3.28) and the relation (3.55), we obtain

Mfi = v(hi)
i (pi)�

5⇤if
µ (�q)�5v

(hf )
f (pf ). (3.57)

CP invariance
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Taking into account the form-factor expression of ⇤fi
µ (q)

in Eq. (3.35), we have �5⇤if
µ (�q)�5 = �⇤if

µ (q), which
leads to

Mfi = �v(hi)
i (pi)⇤

if
µ (q)v

(hf )
f (pf ). (3.58)

This expression for the antineutrino matrix element co-
incides with Eq. (3.45) and implies the relations (3.48)
and (3.49) for the form factors.

Thus, we obtained the expression (3.45) for the an-
tineutrino matrix element in a complicated way, assum-
ing only CPT invariance and the expression (3.28) for the
neutrino matrix element. This result is a tautology in the
theoretical framework in which we are working, because
CPT is a fundamental symmetry of any local relativistic
Quantum Field Theory (see Greenberg (2006)). How-
ever, in some theories beyond the Standard Model small
CPT violations can exist (see Tsukerman (2010)), which
may be revealed by finding violations of the equalities in
Eqs. (3.48) and (3.49).

B. Majorana neutrinos

A Majorana neutrino is a neutral spin 1/2 particle
which coincides with its antiparticle. The four degrees of
freedom of a Dirac field (two helicities and two particle-
antiparticle) are reduced to two (two helicities) by the
Majorana constraint in Eq. (2.24). Since a Majorana
field has half the degrees of freedom of a Dirac field, it is
possible that its electromagnetic properties are reduced.
From the relations (3.48) and (3.49) between neutrino
and antineutrino form factors in the Dirac case, we can
infer that in the Majorana case the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric. In order to con-
firm this deduction, let us calculate the neutrino matrix
element corresponding to the e↵ective electromagnetic
vertex in Fig. 5, with the e↵ective interaction Hamil-
tonian in Eq. (3.27), which takes into account possible
transitions between two di↵erent initial and final mas-
sive Majorana neutrinos ⌫i and ⌫f . Using the Fourier
expansion (A59) for the neutrino Majorana fields we ob-
tain

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = uf (pf )⇤
fi
µ (pf , pi)ui(pi)

� vi(pi)⇤
if
µ (pf , pi)vf (pf ). (3.59)

Using Eq. (A47), we can write it as

uf (pf )
�
⇤fi
µ (pf , pi) + C[⇤if

µ (pf , pi)]
T C† ui(pi), (3.60)

where transposition operates in spinor space. Therefore
the e↵ective form-factor matrix in spinor space for Ma-
jorana neutrinos is given by

⇤Mfi
µ (pf , pi) = ⇤fi

µ (pf , pi) + C[⇤if
µ (pf , pi)]

T C†. (3.61)

As in the case of Dirac neutrinos, ⇤fi
µ (pf , pi) depends

only on q = pf � pi and can be expressed in terms of six
Lorentz-invariant form factors according to Eq. (3.29).
Hence, we can write the N⇥N matrix ⇤M

µ (pf , pi) in the
space of massive Majorana neutrinos as

⇤M
µ (q) = M

1 (q2)qµ + M
2 (q2)qµ�5 +

M
3 (q2)�µ

+ M
4 (q2)�µ�5 +

M
5 (q2)�µ⌫q

⌫

+ M
6 (q2)✏µ⌫⇢�q

⌫�⇢� , (3.62)

with

M
k = k + T

k ) M
k = ( M

k )T for k = 1, 2, 4, (3.63)
M
k = k � T

k ) M
k = �( M

k )T for k = 3, 5, 6. (3.64)

Now we can follow the discussion in Subsection III.A for
Dirac neutrinos taking into account the additional con-
straints (3.63) and (3.64) for Majorana neutrinos. The

hermiticity of j(⌫)µ and current conservation lead to an
expression similar to that in Eq. (3.37):

⇤M
µ (q) =

�
�µ � qµ/q/q

2
� ⇥

M
Q (q2) + M

A (q2)q2�5
⇤

� i�µ⌫q
⌫
⇥

M
M (q2) + i M

E (q2)�5
⇤
, (3.65)

with M
Q = M

3 , M
M = i M

5 , M
E = �2i M

6 and M
A =

� M
2 /(mf + mi). For the Hermitian N⇥N form-factor

matrices in the space of massive neutrinos,

M
⌦ = ( M

⌦ )† (⌦ = Q,M,E,A), (3.66)

the Majorana constraints (3.63) and (3.64) imply that

M
⌦ = �( M

⌦ )T (⌦ = Q,M,E), (3.67)
M
A = ( M

A )T . (3.68)

These relations confirm the expectation discussed above
that for Majorana neutrinos the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric.
Since M

Q , M
M and M

E are antisymmetric, a Majorana
neutrino does not have diagonal charge and dipole mag-
netic and electric form factors (Radicati and Touschek,
1957; Case, 1957). It can only have a diagonal anapole
form factor. On the other hand, Majorana neutrinos
can have as many o↵-diagonal (transition) form-factors
as Dirac neutrinos.
Since the form-factor matrices are Hermitian as in the

Dirac case, M
Q , M

M and M
E are imaginary, whereas M

A is
real:

M
⌦ = �( M

⌦ )⇤ (⌦ = Q,M,E), (3.69)
M
A = ( M

A )⇤. (3.70)

Taking into account these properties, in the standard case
of three-neutrino mixing the charge, magnetic and elec-
tric Majorana form factors can be written as

Mfi
⌦ (q2) = i

3X

j=1

✏fij ˜Mj
⌦ (q2), (3.71)
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f(pi) f(pf )

�(q)
(a)

⌫(pi) ⌫(pf )

�(q)

⇤

(b)

FIG. 4 Tree-level coupling of a charged fermion f with a
photon � (a) and e↵ective one-photon coupling of a neutrino
with a photon (b).

no electromagnetic interactions at tree-level2. However,
such interactions can arise at the quantum level from loop
diagrams at higher order of the perturbative expansion of
the interaction. In the one-photon approximation3, the
electromagnetic interactions of a neutrino field ⌫(x) can
be described by the e↵ective interaction Hamiltonian

H(⌫)
em (x) = j(⌫)µ (x)Aµ(x) = ⌫(x)⇤µ⌫(x)A

µ(x), (3.2)

where, j(⌫)µ (x) is the neutrino e↵ective electromagnetic
current four-vector and ⇤µ is a 4 ⇥ 4 matrix in spinor
space which can contain space-time derivatives, such that

j(⌫)µ (x) transforms as a four-vector. Since radiative cor-
rections are generated by weak interactions which are not

invariant under a parity transformation, j(⌫)µ (x) can be a
sum of polar and axial parts. The corresponding diagram
for the interaction of a neutrino with a photon is shown
in Fig. 4(b), where the blob represents the quantum loop
contributions.

As we will see in the following, the neutrino elec-
tromagnetic properties corresponding to the diagram in
Fig. 4(b) include charge and magnetic form factors. Let
us emphasize that these neutrino electromagnetic prop-
erties can exist even if neutrinos are elementary particles,
without an internal structure, because they are generated
by quantum loop e↵ects. Thus, the neutrino charge and
magnetic form factors have a di↵erent origin from the
neutron charge and magnetic form factors (also called
Dirac and Pauli form factors), which are mainly due to
its internal quark structure. For example, the neutrino
magnetic moment (which is the magnetic form factor for
interactions with real photons, i.e. q2 = 0 in Fig. 4(b))
have the same quantum origin as the anomalous mag-
netic moment of the electron (see Greiner and Reinhardt
(2009)).

We are interested in the neutrino part of the amplitude
corresponding to the diagram in Fig. 4(b), which is given

2 However, in some theories beyond the Standard Model neutrinos
can be millicharged particles (see Subsection VII.A).

3 Some cases in which the one-photon approximation breaks down
are discussed in Subsection VII.A.

by the matrix element

h⌫(pf , hf )|j(⌫)µ (x)|⌫(pi, hi)i, (3.3)

where pi (pf ) and hi (hf ) are the four-momentum and
helicity of the initial (final) neutrino. Taking into account
that

@µj(⌫)µ (x) = i
h
Pµ, j(⌫)µ (x)

i
, (3.4)

where Pµ is the four-momentum operator which generate
translations, the e↵ective current can be written as

j(⌫)µ (x) = eiP·xj(⌫)µ (0)e�iP·x. (3.5)

Since Pµ|⌫(p)i = pµ|⌫(p)i, we have

h⌫(pf )|j(⌫)µ (x)|⌫(pi)i = ei(pf�pi)·xh⌫(pf )|j(⌫)µ (0)|⌫(pi)i,
(3.6)

where we suppressed for simplicity the helicity labels
which are not of immediate relevance. Here we see that
the unknown quantity which determines the neutrino-

photon interaction is h⌫(pf )|j(⌫)µ (0)|⌫(pi)i. Considering
that the incoming and outgoing neutrinos are free par-
ticles which are described by free Dirac fields with the
Fourier expansion in Eq. (A55), we have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = u(pf )⇤µ(pf , pi)u(pi). (3.7)

The electromagnetic properties of neutrinos are embod-
ied by the vertex function ⇤µ(pf , pi), which is a matrix
in spinor space and can be decomposed in terms of lin-
early independent products of Dirac � matrices and the
available kinematical four-vectors pi and pf . As shown
in Appendix B, the most general decomposition can be
written as

⇤µ(pf , pi) = 1(q
2)qµ + 2(q

2)qµ�5 + 3(q
2)�µ

+ 4(q
2)�µ�5 + 5(q

2)�µ⌫q
⌫ + 6(q

2)✏µ⌫⇢�q
⌫�⇢� , (3.8)

where k(q2) are six Lorentz-invariant form factors (k =
1, . . . , 6) and q is the four-momentum of the photon,
which is given by

q = pi � pf , (3.9)

from energy-momentum conservation. Notice that the
form factors depend only on q2, which is the only avail-
able Lorentz-invariant kinematical quantity, since (pi +
pf )2 = 4m2 � q2. Therefore, ⇤µ(pf , pi) depends only on
q and from now on we will denote it as ⇤µ(q).
Since the Hamiltonian and the electromagnetic field

are Hermitian (H(⌫)†
em = H(⌫)

em and Aµ† = Aµ), the e↵ec-

tive current must be Hermitian, j(⌫)†µ = j(⌫)µ . Hence, we
have

h⌫(pf )|j(⌫)µ (0)|⌫(pi)i = h⌫(pi)|j(⌫)µ (0)|⌫(pf )i⇤, (3.10)
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Taking into account the form-factor expression of ⇤fi
µ (q)

in Eq. (3.35), we have �5⇤if
µ (�q)�5 = �⇤if

µ (q), which
leads to

Mfi = �v(hi)
i (pi)⇤

if
µ (q)v

(hf )
f (pf ). (3.58)

This expression for the antineutrino matrix element co-
incides with Eq. (3.45) and implies the relations (3.48)
and (3.49) for the form factors.

Thus, we obtained the expression (3.45) for the an-
tineutrino matrix element in a complicated way, assum-
ing only CPT invariance and the expression (3.28) for the
neutrino matrix element. This result is a tautology in the
theoretical framework in which we are working, because
CPT is a fundamental symmetry of any local relativistic
Quantum Field Theory (see Greenberg (2006)). How-
ever, in some theories beyond the Standard Model small
CPT violations can exist (see Tsukerman (2010)), which
may be revealed by finding violations of the equalities in
Eqs. (3.48) and (3.49).

B. Majorana neutrinos

A Majorana neutrino is a neutral spin 1/2 particle
which coincides with its antiparticle. The four degrees of
freedom of a Dirac field (two helicities and two particle-
antiparticle) are reduced to two (two helicities) by the
Majorana constraint in Eq. (2.24). Since a Majorana
field has half the degrees of freedom of a Dirac field, it is
possible that its electromagnetic properties are reduced.
From the relations (3.48) and (3.49) between neutrino
and antineutrino form factors in the Dirac case, we can
infer that in the Majorana case the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric. In order to con-
firm this deduction, let us calculate the neutrino matrix
element corresponding to the e↵ective electromagnetic
vertex in Fig. 5, with the e↵ective interaction Hamil-
tonian in Eq. (3.27), which takes into account possible
transitions between two di↵erent initial and final mas-
sive Majorana neutrinos ⌫i and ⌫f . Using the Fourier
expansion (A59) for the neutrino Majorana fields we ob-
tain

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = uf (pf )⇤
fi
µ (pf , pi)ui(pi)

� vi(pi)⇤
if
µ (pf , pi)vf (pf ). (3.59)

Using Eq. (A47), we can write it as

uf (pf )
�
⇤fi
µ (pf , pi) + C[⇤if

µ (pf , pi)]
T C† ui(pi), (3.60)

where transposition operates in spinor space. Therefore
the e↵ective form-factor matrix in spinor space for Ma-
jorana neutrinos is given by

⇤Mfi
µ (pf , pi) = ⇤fi

µ (pf , pi) + C[⇤if
µ (pf , pi)]

T C†. (3.61)

As in the case of Dirac neutrinos, ⇤fi
µ (pf , pi) depends

only on q = pf � pi and can be expressed in terms of six
Lorentz-invariant form factors according to Eq. (3.29).
Hence, we can write the N⇥N matrix ⇤M

µ (pf , pi) in the
space of massive Majorana neutrinos as
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k )T for k = 1, 2, 4, (3.63)
M
k = k � T

k ) M
k = �( M

k )T for k = 3, 5, 6. (3.64)

Now we can follow the discussion in Subsection III.A for
Dirac neutrinos taking into account the additional con-
straints (3.63) and (3.64) for Majorana neutrinos. The

hermiticity of j(⌫)µ and current conservation lead to an
expression similar to that in Eq. (3.37):
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with M
Q = M

3 , M
M = i M

5 , M
E = �2i M

6 and M
A =

� M
2 /(mf + mi). For the Hermitian N⇥N form-factor

matrices in the space of massive neutrinos,

M
⌦ = ( M

⌦ )† (⌦ = Q,M,E,A), (3.66)

the Majorana constraints (3.63) and (3.64) imply that

M
⌦ = �( M

⌦ )T (⌦ = Q,M,E), (3.67)
M
A = ( M

A )T . (3.68)

These relations confirm the expectation discussed above
that for Majorana neutrinos the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric.
Since M

Q , M
M and M

E are antisymmetric, a Majorana
neutrino does not have diagonal charge and dipole mag-
netic and electric form factors (Radicati and Touschek,
1957; Case, 1957). It can only have a diagonal anapole
form factor. On the other hand, Majorana neutrinos
can have as many o↵-diagonal (transition) form-factors
as Dirac neutrinos.
Since the form-factor matrices are Hermitian as in the

Dirac case, M
Q , M

M and M
E are imaginary, whereas M

A is
real:
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M
A = ( M

A )⇤. (3.70)

Taking into account these properties, in the standard case
of three-neutrino mixing the charge, magnetic and elec-
tric Majorana form factors can be written as

Mfi
⌦ (q2) = i

3X

j=1

✏fij ˜Mj
⌦ (q2), (3.71)
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Taking into account the form-factor expression of ⇤fi
µ (q)

in Eq. (3.35), we have �5⇤if
µ (�q)�5 = �⇤if

µ (q), which
leads to

Mfi = �v(hi)
i (pi)⇤

if
µ (q)v

(hf )
f (pf ). (3.58)

This expression for the antineutrino matrix element co-
incides with Eq. (3.45) and implies the relations (3.48)
and (3.49) for the form factors.

Thus, we obtained the expression (3.45) for the an-
tineutrino matrix element in a complicated way, assum-
ing only CPT invariance and the expression (3.28) for the
neutrino matrix element. This result is a tautology in the
theoretical framework in which we are working, because
CPT is a fundamental symmetry of any local relativistic
Quantum Field Theory (see Greenberg (2006)). How-
ever, in some theories beyond the Standard Model small
CPT violations can exist (see Tsukerman (2010)), which
may be revealed by finding violations of the equalities in
Eqs. (3.48) and (3.49).

B. Majorana neutrinos

A Majorana neutrino is a neutral spin 1/2 particle
which coincides with its antiparticle. The four degrees of
freedom of a Dirac field (two helicities and two particle-
antiparticle) are reduced to two (two helicities) by the
Majorana constraint in Eq. (2.24). Since a Majorana
field has half the degrees of freedom of a Dirac field, it is
possible that its electromagnetic properties are reduced.
From the relations (3.48) and (3.49) between neutrino
and antineutrino form factors in the Dirac case, we can
infer that in the Majorana case the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric. In order to con-
firm this deduction, let us calculate the neutrino matrix
element corresponding to the e↵ective electromagnetic
vertex in Fig. 5, with the e↵ective interaction Hamil-
tonian in Eq. (3.27), which takes into account possible
transitions between two di↵erent initial and final mas-
sive Majorana neutrinos ⌫i and ⌫f . Using the Fourier
expansion (A59) for the neutrino Majorana fields we ob-
tain

h⌫f (pf )|j(⌫)µ (0)|⌫i(pi)i = uf (pf )⇤
fi
µ (pf , pi)ui(pi)

� vi(pi)⇤
if
µ (pf , pi)vf (pf ). (3.59)

Using Eq. (A47), we can write it as

uf (pf )
�
⇤fi
µ (pf , pi) + C[⇤if

µ (pf , pi)]
T C† ui(pi), (3.60)

where transposition operates in spinor space. Therefore
the e↵ective form-factor matrix in spinor space for Ma-
jorana neutrinos is given by

⇤Mfi
µ (pf , pi) = ⇤fi

µ (pf , pi) + C[⇤if
µ (pf , pi)]

T C†. (3.61)

As in the case of Dirac neutrinos, ⇤fi
µ (pf , pi) depends

only on q = pf � pi and can be expressed in terms of six
Lorentz-invariant form factors according to Eq. (3.29).
Hence, we can write the N⇥N matrix ⇤M

µ (pf , pi) in the
space of massive Majorana neutrinos as

⇤M
µ (q) = M

1 (q2)qµ + M
2 (q2)qµ�5 +

M
3 (q2)�µ

+ M
4 (q2)�µ�5 +

M
5 (q2)�µ⌫q

⌫

+ M
6 (q2)✏µ⌫⇢�q

⌫�⇢� , (3.62)

with

M
k = k + T

k ) M
k = ( M

k )T for k = 1, 2, 4, (3.63)
M
k = k � T

k ) M
k = �( M

k )T for k = 3, 5, 6. (3.64)

Now we can follow the discussion in Subsection III.A for
Dirac neutrinos taking into account the additional con-
straints (3.63) and (3.64) for Majorana neutrinos. The

hermiticity of j(⌫)µ and current conservation lead to an
expression similar to that in Eq. (3.37):

⇤M
µ (q) =

�
�µ � qµ/q/q

2
� ⇥

M
Q (q2) + M

A (q2)q2�5
⇤

� i�µ⌫q
⌫
⇥

M
M (q2) + i M

E (q2)�5
⇤
, (3.65)

with M
Q = M

3 , M
M = i M

5 , M
E = �2i M

6 and M
A =

� M
2 /(mf + mi). For the Hermitian N⇥N form-factor

matrices in the space of massive neutrinos,

M
⌦ = ( M

⌦ )† (⌦ = Q,M,E,A), (3.66)

the Majorana constraints (3.63) and (3.64) imply that

M
⌦ = �( M

⌦ )T (⌦ = Q,M,E), (3.67)
M
A = ( M

A )T . (3.68)

These relations confirm the expectation discussed above
that for Majorana neutrinos the charge, magnetic and
electric form-factor matrices are antisymmetric and the
anapole form-factor matrix is symmetric.
Since M

Q , M
M and M

E are antisymmetric, a Majorana
neutrino does not have diagonal charge and dipole mag-
netic and electric form factors (Radicati and Touschek,
1957; Case, 1957). It can only have a diagonal anapole
form factor. On the other hand, Majorana neutrinos
can have as many o↵-diagonal (transition) form-factors
as Dirac neutrinos.
Since the form-factor matrices are Hermitian as in the

Dirac case, M
Q , M

M and M
E are imaginary, whereas M

A is
real:

M
⌦ = �( M

⌦ )⇤ (⌦ = Q,M,E), (3.69)
M
A = ( M

A )⇤. (3.70)

Taking into account these properties, in the standard case
of three-neutrino mixing the charge, magnetic and elec-
tric Majorana form factors can be written as

Mfi
⌦ (q2) = i

3X

j=1

✏fij ˜Mj
⌦ (q2), (3.71)

For Majorana neutrinos, 

charge, magnetic, and electric form factors are antisymmetric
and anapole form factors are symmetric.

Majorana neutrinos have only transition dipole moment.
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negligible, however in the cosmological scale they may change the evolution of the Universe.

In this paper, we consider the magnetic moments between the right-handed sterile neu-

trinos in the context

II. MODEL

We consider a model with Lagrangian of standard model (SM) LSM and additional one

containing three right-handed neutrinos L⌫R as

L =LSM + L⌫R , (1)

where

L⌫R = �
1

2
⌫
c
RiM⌫Rij

⌫Rj + y⌫↵iL↵
e�⌫Ri + Cij⌫

c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ + h.c.. (2)

Here Bµ⌫ is the gauge field strength of U(1)Y gauge field Bµ in the SM, L↵ are lepton

doublets with ↵ flavor, and � is the Higgs doublet and e� = ✏�⇤ with the superscript c and ⇤

for charge conjugation. The Majorana mass of ⌫R are taken to be diagonal, real and positive

as M⌫Rij
= diag(M⌫R1

, M⌫R2
, M⌫R3

) without loss of generality. We also note that the above

dipole interaction is the most general form for ⌫R because of the identity �5PR = PR. The

dipole interaction is dimension-5 operator and the coupling Cij = cij
⇤5

is suppressed by high

energy scale ⇤5 with anti-symmetric coupling cij of the order of unity.

After the electroweak symmetry breaking, with the vacuum expectation value (VEV)

v = 246 GeV of the SM Higgs field �, the B gauge boson and neutrinos are decomposed

into the mass basis as

Bµ =cWAµ � sWZµ, (3)

⌫L↵ =U↵i⌫i + ⇥↵i⌫
c
si, (4)

⌫
c
Ri =(⇥†

U)ij⌫j + ⌫
c
si, (5)

where cW (sW ) is cosine (sine) of the Weinberg angle, and Aµ and Zµ are the photon and

Z-boson. We denote the mass eigenvalues of the light and heavy neutrinos as (m1, m2, m3)

and (ms1, ms2, ms3), respectively. Here, msj ' M⌫Rj due to the mass hierarchy.

The left- and right-handed neutrinos mix with each other parameterized by the mixing

matrix

⇥ = mDM
�1
⌫R

⌧ 1, (6)
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antisymmetric

dim-5 operator from new physics

We don’t consider Dirac dipole operator, since it is dim-6 operator

In the last equation, we used Majorana nature ⌫ = ⌫
c and ⌫s = ⌫

c
s and the corresponding

vector and axial-vector couplings are defined as

(C⌫⌫
V + C

⌫⌫
A �5)ij =(U †⇥)ikCkl(⇥

T
U

⇤)ljPL � (UT⇥⇤)ikC
†
kl(⇥

†
U)ljPR,

(C⌫⌫s
V + C

⌫⌫s
A �5)ij =(U †⇥)ikCkjPL � (UT⇥⇤)ikC

†
kjPR,

(C⌫s⌫
V + C

⌫s⌫
A �5)ij =Cik(⇥

T
U

⇤)kjPR � C
†
ik(⇥

†
U)kjPL,

(C⌫s⌫s
V + C

⌫s⌫s
A �5)ij =CijPR � C

†
ijPL,

(19)

with the chiral projection operator

PL,R =
1 ⌥ �5

2
. (20)

The dipole interaction operator ⌫[�µ
, �

⌫ ]⌫sFµ⌫ can be induced also from the Dirac dipole

operator, ⌫L[�µ
, �

⌫ ]⌫RBµ⌫ . However, this is actually a dimension 6 operator with

1

⇤2
6

Le�[�µ
, �

⌫ ]⌫RBµ⌫ !
v

⇤2
6

⌫[�µ
, �

⌫ ]⌫sFµ⌫ , (21)

while the operator ⌫
c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ is dimension five. Thus, as usual if we assume that the

cut-o↵ scale is common for all higher dimensional operator, then the operator with lower

dimension must be more important. In this respect we don’t consider dimension-6 operator

in the rest of this paper.

III. LIGHTEST STERILE NEUTRINO AS DARK MATTER

A. Stability of sterile neutrino DM

The lightest sterile neutrino ⌫s can decay through the Yukawa coupling and the dipole

term. In the case of vanishing, y⌫↵1 = 0, ⌫s can decay dominantly into a photon and an

active neutrino ⌫i through the dipole operator. The decay rate is given by

�(⌫s ! ⌫�) '
1

2⇡
c
2
W

3X

i=2

[|C⌫⌫s
V i1|

2 + |C
⌫⌫s
Ai1|

2]m3
⌫s1

⇠
1

1028 sec

✓
1015 GeV

⇤5

◆2✓
|⇥|

10�6

◆2⇣
m⌫s

1 MeV

⌘3

.

(22)

Here i is the index of the mass eigenstate of light active neutrinos, and ⇥ is the non-vanishing

mixing between active and heavy sterile neutrinos. In the second line, we used the relation

6

[Aparici etal, 0904.3244]

Collider, astrophysical, cosmological study in [Aparici etal, 0904.3244]
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antisymmetric

dim-5 operator from new physics

seesaw, DM in nuMSM effect on DM

RH Majorana mass Yukawa coupling

We don’t consider Dirac dipole operator, since it is dim-6 operator

In the last equation, we used Majorana nature ⌫ = ⌫
c and ⌫s = ⌫

c
s and the corresponding

vector and axial-vector couplings are defined as

(C⌫⌫
V + C

⌫⌫
A �5)ij =(U †⇥)ikCkl(⇥

T
U

⇤)ljPL � (UT⇥⇤)ikC
†
kl(⇥

†
U)ljPR,

(C⌫⌫s
V + C

⌫⌫s
A �5)ij =(U †⇥)ikCkjPL � (UT⇥⇤)ikC

†
kjPR,

(C⌫s⌫
V + C

⌫s⌫
A �5)ij =Cik(⇥

T
U

⇤)kjPR � C
†
ik(⇥

†
U)kjPL,

(C⌫s⌫s
V + C

⌫s⌫s
A �5)ij =CijPR � C

†
ijPL,

(19)

with the chiral projection operator

PL,R =
1 ⌥ �5

2
. (20)

The dipole interaction operator ⌫[�µ
, �

⌫ ]⌫sFµ⌫ can be induced also from the Dirac dipole

operator, ⌫L[�µ
, �

⌫ ]⌫RBµ⌫ . However, this is actually a dimension 6 operator with

1

⇤2
6

Le�[�µ
, �

⌫ ]⌫RBµ⌫ !
v

⇤2
6

⌫[�µ
, �

⌫ ]⌫sFµ⌫ , (21)

while the operator ⌫
c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ is dimension five. Thus, as usual if we assume that the

cut-o↵ scale is common for all higher dimensional operator, then the operator with lower

dimension must be more important. In this respect we don’t consider dimension-6 operator

in the rest of this paper.

III. LIGHTEST STERILE NEUTRINO AS DARK MATTER

A. Stability of sterile neutrino DM

The lightest sterile neutrino ⌫s can decay through the Yukawa coupling and the dipole

term. In the case of vanishing, y⌫↵1 = 0, ⌫s can decay dominantly into a photon and an

active neutrino ⌫i through the dipole operator. The decay rate is given by

�(⌫s ! ⌫�) '
1

2⇡
c
2
W

3X

i=2

[|C⌫⌫s
V i1|

2 + |C
⌫⌫s
Ai1|

2]m3
⌫s1

⇠
1

1028 sec

✓
1015 GeV

⇤5

◆2✓
|⇥|

10�6

◆2⇣
m⌫s

1 MeV

⌘3

.

(22)

Here i is the index of the mass eigenstate of light active neutrinos, and ⇥ is the non-vanishing

mixing between active and heavy sterile neutrinos. In the second line, we used the relation
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Sterile Neutrino DM

To explain the mass-squared difference observed in the neutrino 
oscillation, only 2 RH neutrino are required. So the 3rd RH neutrino 
mass can be light and candidate dark matter. [Asaka et al., 2005]

In this case, the lightest active neutrino mass is effectively zero, 
and the Yukawa coupling can be written as

with the Dirac mass (mD)↵i = y⌫↵iv/
p

2. In the right-handed side, ⌫i and ⌫si are the mass

eigenstates of light active neutrinos and heavy sterile neutrinos, respectively. The mass of

the light neutrinos are generated through the seesaw mechanism [1–4], and given by

m⌫ ' �mD
1

M⌫R

m
T
D = �⇥M⌫R⇥T

. (7)

The typical magnitude of the left-right mixing can be estimated as

⇥2
⇠

m⌫

M⌫R

. (8)

For the lightest sterile neutrino ⌫s ⌘ ⌫s1 being DM candidate, its lifetime should be long

enough compared to the age of the Universe. This is obtained when y⌫↵1 is practically zero

so that we consider the Yukawa coupling

y⌫ =

0

BBB@

0 y⌫e2 y⌫e3

0 y⌫µ2 y⌫µ3

0 y⌫⌧2 y⌫⌧3

1

CCCA
. (9)

However, with this Yukawa couplings, it is still possible to reproduce the light neutrino

masses to explain the observed neutrino oscillations [39]. Following the parametrization

of Casas and Ibarra [27], the Dirac mass term or the neutrino Yukawa coupling can be

expressed as

y⌫↵i
v

p
2

= iU(mdiag
⌫ )1/2⌦(M⌫R)1/2, (10)

with U
†
m⌫U

⇤ = diag(m1, m2, m3) = m
diag
⌫ and ⌦ being a complex orthogonal matrix with

⌦⌦T = 1. As an example, if we take the masses

M⌫R =O(M⌫R1 , 1, 10)GeV, (11)

with M⌫R1 ⌧ 1 GeV, and m1 = 0 assuming normal hierarchy, and ⌦ = I, we find Yukawa

matrix in the form of Eq. (9), with non-vanishing values of the order of O(10�7), and mixing

⇥ ⇠ 10�6. Explicitly,

y⌫ =

0

BBB@

0 9.3 ⇥ 10�9
i �5.0 ⇥ 10�8

� 1.9 ⇥ 10�9
i

0 �2.7 ⇥ 10�10 + 1.0 ⇥ 10�8
i 9.6 ⇥ 10�8

i

0 �2.4 ⇥ 10�10
� 9.8 ⇥ 10�9

i 8.4 ⇥ 10�8
i

1

CCCA
, (12)
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complex orthogonal 
matrix

DM has no mixing 
with active neutrinos
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To be Dark Matter

Lifetime is long enough

Amount of present relic density

Other constraints 
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and

⇥ =

0

BBB@

0 1.6 ⇥ 10�6
i �8.6 ⇥ 10�8

� 3.2 ⇥ 10�7
i

0 �4.7 ⇥ 10�8 + 1.8 ⇥ 10�6
i 1.7 ⇥ 10�6

i

0 �4.1 ⇥ 10�8
� 1.7 ⇥ 10�6

i 1.5 ⇥ 10�6
i

1

CCCA
. (13)

However, when the imaginary values for the complex orthogonal matrix are allowed, the

components of Yukawa couplings and mixings can be enhanced. As an example, if we take

⌦ =

0

BBB@

1 0 0

0 cos ! � sin !

0 sin ! cos !

1

CCCA
, (14)

with ! = i↵, then the Yukawa couplings and mixings can be enhanced by cosh ↵ or sinh ↵

which is roughly e
↵ for a large ↵. Therefore we can consider the mixing angle of the heavier

sterile neutrinos are independent of their mass with lower value given by Eq. (8) for non-

vanishing comonents.

For specific example, when ↵ = 3 and m⌫s2
= 1 GeV, and m⌫s3

= 10 GeV, the mixing

matrix ⇥ is

⇥ =

0

BBB@

0 1.0 ⇥ 10�5 + 1.3 ⇥ 10�5
i 4.2 ⇥ 10�6

� 3.2 ⇥ 10�6
i

0 �5.3 ⇥ 10�5 + 1.8 ⇥ 10�5
i 5.7 ⇥ 10�6 + 1.7 ⇥ 10�5

i

0 �4.6 ⇥ 10�5
� 1.7 ⇥ 10�5

i �5.4 ⇥ 10�6 + 1.5 ⇥ 10�5
i

1

CCCA
(15)

By substituting the decomposition in Eqs. (3), (4) and (5) into the Lagrangian, we obtain

the interaction of the mass eigenstate neutrinos

LCC =
1

p
2
g2e↵W

�
µ �

µ(U↵iPL⌫i + ⇥↵iPL⌫
c
si) + H.c., (16)

LNC =
1

2

q
g
2
2 + g

2
1Zµ(⌫̄i�

µ
PL⌫i + ⌫

c
sj(⇥

†
U)ji�

µ
PL⌫i + ⌫̄i�

µ
PL(U †⇥)ij⌫

c
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and

⇥ =

0
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� 3.2 ⇥ 10�7
i

0 �4.7 ⇥ 10�8 + 1.8 ⇥ 10�6
i 1.7 ⇥ 10�6
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However, when the imaginary values for the complex orthogonal matrix are allowed, the

components of Yukawa couplings and mixings can be enhanced. As an example, if we take

⌦ =
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0 sin ! cos !
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, (14)

with ! = i↵, then the Yukawa couplings and mixings can be enhanced by cosh ↵ or sinh ↵

which is roughly e
↵ for a large ↵. Therefore we can consider the mixing angle of the heavier

sterile neutrinos are independent of their mass with lower value given by Eq. (8) for non-

vanishing comonents.
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= 1 GeV, and m⌫s3
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By substituting the decomposition in Eqs. (3), (4) and (5) into the Lagrangian, we obtain
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Lagrangian in the mass eigenstates

In the last equation, we used Majorana nature ⌫ = ⌫
c and ⌫s = ⌫

c
s and the corresponding

vector and axial-vector couplings are defined as

(C⌫⌫
V + C

⌫⌫
A �5)ij =(U †⇥)ikCkl(⇥

T
U

⇤)ljPL � (UT⇥⇤)ikC
†
kl(⇥

†
U)ljPR,

(C⌫⌫s
V + C

⌫⌫s
A �5)ij =(U †⇥)ikCkjPL � (UT⇥⇤)ikC

†
kjPR,

(C⌫s⌫
V + C

⌫s⌫
A �5)ij =Cik(⇥

T
U

⇤)kjPR � C
†
ik(⇥

†
U)kjPL,

(C⌫s⌫s
V + C

⌫s⌫s
A �5)ij =CijPR � C

†
ijPL,

(19)

with the chiral projection operator

PL,R =
1 ⌥ �5

2
. (20)

The dipole interaction operator ⌫[�µ
, �

⌫ ]⌫sFµ⌫ can be induced also from the Dirac dipole

operator, ⌫L[�µ
, �

⌫ ]⌫RBµ⌫ . However, this is actually a dimension 6 operator with

1

⇤2
6

Le�[�µ
, �

⌫ ]⌫RBµ⌫ !
v

⇤2
6

⌫[�µ
, �

⌫ ]⌫sFµ⌫ , (21)

while the operator ⌫
c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ is dimension five. Thus, as usual if we assume that the

cut-o↵ scale is common for all higher dimensional operator, then the operator with lower

dimension must be more important. In this respect we don’t consider dimension-6 operator

in the rest of this paper.

III. LIGHTEST STERILE NEUTRINO AS DARK MATTER

A. Stability of sterile neutrino DM

The lightest sterile neutrino ⌫s can decay through the Yukawa coupling and the dipole

term. In the case of vanishing, y⌫↵1 = 0, ⌫s can decay dominantly into a photon and an

active neutrino ⌫i through the dipole operator. The decay rate is given by

�(⌫s ! ⌫�) '
1

2⇡
c
2
W

3X

i=2

[|C⌫⌫s
V i1|

2 + |C
⌫⌫s
Ai1|

2]m3
⌫s1

⇠
1

1028 sec

✓
1015 GeV

⇤5

◆2✓
|⇥|

10�6

◆2⇣
m⌫s

1 MeV

⌘3

.

(22)

Here i is the index of the mass eigenstate of light active neutrinos, and ⇥ is the non-vanishing

mixing between active and heavy sterile neutrinos. In the second line, we used the relation

6

negligible, however in the cosmological scale they may change the evolution of the Universe.

In this paper, we consider the magnetic moments between the right-handed sterile neu-

trinos in the context

II. MODEL

We consider a model with Lagrangian of standard model (SM) LSM and additional one

containing three right-handed neutrinos L⌫R as

L =LSM + L⌫R , (1)

where

L⌫R = �
1

2
⌫
c
RiM⌫Rij

⌫Rj + y⌫↵iL↵
e�⌫Ri + Cij⌫

c
Ri[�

µ
, �

⌫ ]⌫RjBµ⌫ + h.c.. (2)

Here Bµ⌫ is the gauge field strength of U(1)Y gauge field Bµ in the SM, L↵ are lepton

doublets with ↵ flavor, and � is the Higgs doublet and e� = ✏�⇤ with the superscript c and ⇤

for charge conjugation. The Majorana mass of ⌫R are taken to be diagonal, real and positive

as M⌫Rij
= diag(M⌫R1

, M⌫R2
, M⌫R3

) without loss of generality. We also note that the above

dipole interaction is the most general form for ⌫R because of the identity �5PR = PR. The

dipole interaction is dimension-5 operator and the coupling Cij = cij
⇤5

is suppressed by high

energy scale ⇤5 with anti-symmetric coupling cij of the order of unity.

After the electroweak symmetry breaking, with the vacuum expectation value (VEV)

v = 246 GeV of the SM Higgs field �, the B gauge boson and neutrinos are decomposed

into the mass basis as

Bµ =cWAµ � sWZµ, (3)

⌫L↵ =U↵i⌫i + ⇥↵i⌫
c
si, (4)

⌫
c
Ri =(⇥†

U)ij⌫j + ⌫
c
si, (5)

where cW (sW ) is cosine (sine) of the Weinberg angle, and Aµ and Zµ are the photon and

Z-boson. We denote the mass eigenvalues of the light and heavy neutrinos as (m1, m2, m3)

and (ms1, ms2, ms3), respectively. Here, msj ' M⌫Rj due to the mass hierarchy.

The left- and right-handed neutrinos mix with each other parameterized by the mixing

matrix

⇥ = mDM
�1
⌫R

⌧ 1, (6)

3

dipole interaction between 
sterile neutrinos
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Stability of RH neutrino DM

In the last equation, we used Majorana nature ⌫ = ⌫
c and ⌫s = ⌫

c
s and the corresponding

vector and axial-vector couplings are defined as
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with the chiral projection operator
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2
. (20)

The dipole interaction operator ⌫[�µ
, �

⌫ ]⌫sFµ⌫ can be induced also from the Dirac dipole

operator, ⌫L[�µ
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⌫ ]⌫RBµ⌫ . However, this is actually a dimension 6 operator with
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while the operator ⌫
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µ
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⌫ ]⌫RjBµ⌫ is dimension five. Thus, as usual if we assume that the

cut-o↵ scale is common for all higher dimensional operator, then the operator with lower

dimension must be more important. In this respect we don’t consider dimension-6 operator

in the rest of this paper.

III. LIGHTEST STERILE NEUTRINO AS DARK MATTER

A. Stability of sterile neutrino DM

The lightest sterile neutrino ⌫s can decay through the Yukawa coupling and the dipole

term. In the case of vanishing, y⌫↵1 = 0, ⌫s can decay dominantly into a photon and an

active neutrino ⌫i through the dipole operator. The decay rate is given by
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Here i is the index of the mass eigenstate of light active neutrinos, and ⇥ is the non-vanishing

mixing between active and heavy sterile neutrinos. In the second line, we used the relation

6

The decay rate and its lifetime is 

We require that the lifetime is longer than around            .

In the last equation, we used Majorana nature ⌫ = ⌫
c and ⌫s = ⌫
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s and the corresponding

vector and axial-vector couplings are defined as
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with the chiral projection operator
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The dipole interaction operator ⌫[�µ
, �

⌫ ]⌫sFµ⌫ can be induced also from the Dirac dipole

operator, ⌫L[�µ
, �

⌫ ]⌫RBµ⌫ . However, this is actually a dimension 6 operator with
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⌫ ]⌫sFµ⌫ , (21)

while the operator ⌫
c
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µ
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⌫ ]⌫RjBµ⌫ is dimension five. Thus, as usual if we assume that the

cut-o↵ scale is common for all higher dimensional operator, then the operator with lower

dimension must be more important. In this respect we don’t consider dimension-6 operator

in the rest of this paper.

III. LIGHTEST STERILE NEUTRINO AS DARK MATTER

A. Stability of sterile neutrino DM

The lightest sterile neutrino ⌫s can decay through the Yukawa coupling and the dipole

term. In the case of vanishing, y⌫↵1 = 0, ⌫s can decay dominantly into a photon and an

active neutrino ⌫i through the dipole operator. The decay rate is given by
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1
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V i1|

2 + |C
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Here i is the index of the mass eigenstate of light active neutrinos, and ⇥ is the non-vanishing

mixing between active and heavy sterile neutrinos. In the second line, we used the relation

6

It means large scale of new physics, and no constraints or signals  
from collider or astrophysics.

DM has negligible direct mixing with active neutrinos but it can 
decay through the off-diagonal dipole term and mixing of the 
heavier sterile neutrinos with active neutrinos.

[Cho, Choi, Seto, in preparation]
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Thermal Production of DM 

The lightest RH neutrino DM can produced from the scatterings 
of the thermal particles through the off-diagonal magnetic dipole 
interaction. The interaction is very small small, but small amount 
is produced, which is similar to that of FIMP.

Here K1(z) is the modified Bessel function of the 1st kind, with T , gi, mi, and Ei being the

photon temperature, the internal degrees of freedom, and the mass and energy of i particle,

respectively.

For heavy sterile neutrinos, the dominant production comes from the thermal scattering

through Yukawa interactions, dominantly through the Higgs boson mediation q⌫ ! q⌫sj

(t-channel) and q̄q ! ⌫̄⌫sj (s-channel). They also decay into the active neutrinos and also

into the lightest sterile neutrino. However, for the lightest sterile neutrinos with vanishing

Yukawa coupling, the production can happen through the dipole interaction from scattering

processes (thermal production) dominantly through ff̄ ! �, Z(s � channel) ! ⌫s⌫s2, 1 and

from the decay (non-thermal production) of heavy sterile neutrinos such as ⌫s2(⌫s3) ! ⌫s�.

Since the interaction of the sterile neutrino DM is too small, their production mechanism is

the same as that of gravitino or axino which have very weak interactions [13] 2. We consider

both production in the following subsections one by one.

C. Thermal production of sterile neutrino DM

The thermal production (TP) of the lightest sterile neutrino DM considers the production

directly from the particles in the thermal equilibrium. Since ⌫s is weakly interacting with

the other particles and always in the out of equilibrium, we can estimate its abundance as

Y
TP
⌫s =

Z TR

T0

1

sTH
h�v(ij ! ⌫s1X)ininjdT, (30)

and the relic density is given by

⌦TP
⌫s h

2 =
m⌫s

⇢crit/s0
Y

TP
⌫s ' 0.28

⇣
m⌫s

1 MeV

⌘✓
Y

TP
⌫s

10�6

◆
, (31)

where we used the present entropy density s0 = 2⇡2

45 ⇥ 3.91 ⇥ T
3
0 and the critical density

⇢crit = 3M2
PH

2
0 . Thus (⇢crit/s0)�1 = 2.8 ⇥ 108/GeV.

At high temperature before the electroweak symmetry breaking, the most dominant pro-

duction modes for the lightest sterile neutrino are the scattering f⌫sj ! f⌫si via t-channel

1 There are other production modes �W± or ZW±
! ⌫s2(t � channel) ! ⌫sf± (and interchange of W± and

f±), however they are subdominant due to the suppression by the mixing and ⇤5.
2 The massive particle with very weak interaction has been called as super-WIMP [47], E-WIMP [46], or

FIMP [14]
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FIG. 1: The plot of ⌦TPh2 vs TR with m⌫s = 1MeV for ⇤5 = 1015GeV and 1016GeV (Dashed).

and ff̄ ! ⌫s⌫sj via s-channel mediated by B boson through the dipole interaction. The

scattering cross section for each mode is

�t '
Nc(YfgY )2c21jgfg⌫sj

2⇡⇤2
5


�2 � (1 + 2m2

B/s) log

✓
m

2
B

s + m
2
B

◆�
,

�s '
Nc(YfgY )2c21jgfgf̄

12⇡⇤2
5

,

(32)

where we used the thermal mass for the B-boson mB ⇠ gY T to regulate the divergence in

the t-channel. The corresponding abundance is [38]
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2⇡7g
3/2
⇤

MPTreh, (33)

' 7.4 ⇥ 10�7

✓
1016 GeV
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◆2✓
TR

1011 GeV

◆
, (34)

where we used �0 =
P

f (�s + �t). Therefore

⌦TP
⌫s h

2
' 0.2

⇣
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1 MeV

⌘✓1016 GeV

⇤5

◆2✓
TR

1011 GeV

◆
. (35)

We consider reheating temperature lower than ⇤5, otherwise we may need to consider the

UV complete theory for the temperature higher than the cuto↵ scale ⇤5.

D. Non-thermal production of sterile neutrino DM

Production of heavier sterile neutrinos

The heavier sterile neutrinos ⌫sj(j 6= 1) can be produced via scatterings which include

9

The dominant ones are scatterings mediated by B-bosons

s-channel

t-channel
FIG. 1: The plot of ⌦TPh2 vs TR with m⌫s = 1MeV for ⇤5 = 1015GeV and 1016GeV (Dashed).

and ff̄ ! ⌫s⌫sj via s-channel mediated by B boson through the dipole interaction. The

scattering cross section for each mode is
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where we used the thermal mass for the B-boson mB ⇠ gY T to regulate the divergence in

the t-channel. The corresponding abundance is [38]
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We consider reheating temperature lower than ⇤5, otherwise we may need to consider the

UV complete theory for the temperature higher than the cuto↵ scale ⇤5.

D. Non-thermal production of sterile neutrino DM

Production of heavier sterile neutrinos

The heavier sterile neutrinos ⌫sj(j 6= 1) can be produced via scatterings which include

9
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Thermal Production of very weakly interacting particles

3

Scattering Process Number of modes

Z + ℓ̃j → W− + Ñj 3× 3g

W± + ν̃j → W± + Ñj 2× 3g × 2±

ui(νi) + ℓ̃j → dk(ℓi) + Ñj 3× 32g(3× 32g × 3susy)

qi(ℓi, νi) + ν̃j → qi(ℓi, νi) + Ñj 3× 32g(3× 32g × 3susy × 2l,ν)

W+ + ℓ̃j → h(γ) + Ñj 3× 3g × 2h,γ

Z + ν̃j → h(γ) + Ñj 3× 3g × 2h,γ

TABLE II: Relevant scattering processes for thermal produc-
tion of Ñ with light external particles. i, j, k denote the gen-
eration. In the second column, we show the number of modes
for the process in the left column. There are additional pro-
cesses of charge conjugate.

to the SM particles are very small, which is suppressed
by the Yukawa coupling or by the mixing between LH
and RH sneutrinos. Their interactions are not enough
to make the RH sneutrinos in the thermal equilibrium,
small amount of RH sneutrinos can be produced from the
thermal particles by scattering or decay nevertheless.
For heavy RH sneutrinos with GeV mass, the small

amount of RH sneutrinos of the number density around
10−9 times of photon number density is enough to explain
dark matter. The present relic density of non-relativistic
RH sneutrinos dark matter with the mass mÑ can be
expressed by

ΩÑh2 ≃ 0.28

(

YÑ
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)

( mÑ
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, (9)

where the abundance yield Y is defined as YÑ ≡ nÑ/s
with the number density nÑ , the entropy density s =
(2π2/45)gs∗T 3 and the relativistic degrees of freedom in
the entropy density gs∗.
There are two mechanisms for producing RH sneutri-

nos: thermal production (TP) and non-thermal produc-
tion (NTP). TP includes the production via scatterings
or decay processes of the particles in the thermal equi-
librium. NTP is the production from particles that are
already out of the thermal bath, typically by the late
time decay of NLSPs after their freeze out.

A. Thermal production

The number density of RH sneutrinos from TP can be
obtained by solving the Boltzmann equation with scat-
tering and decay processes. Since the number density of
the RH sneutrinos is well below the equilibrium value ini-
tially, which is well justified after inflation, we can ignore
the inverse processes. Thus, we have
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where H is the Hubble parameter and ni is the comoving
number density of i-th particle. The first and the second
term in the RHS are due to the two-body scatterings and
the decay of i-th particle into Ñ and other species. Here
’⟨· · ·⟩’ denotes the thermal average, σvrel is the product
of the scattering cross section and the relative velocity,
and Γ is the decay rate for a process presented in round
brackets.
The solution for the Boltzmann equation Eq. (10) can

be expressed in terms of the abundance of RH sneutrinos,
which has two contributions from scattering and decay
respectively, as
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Here T0 is the present temperature and TR is the reheat-
ing temperature after inflation. Especially for two-body
scatterings, the abundance of dark matter from scatter-
ing is given by [16]
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ḡMP

16π4

∫ ∞

tR

dt t3K1(t)

∫ tTR

(m1+m2)
d(
√
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where m1 and m2 are the masses of initial state particles,
and T0 = 0 is taken as usual.
The scattering processes relevant in our scenario are

listed in Tab. II. Here, we show processes dominant
for the production of RH sneutrinos, which include the
light initial particles such as LH and RH sneutrinos,
the charged sleptons, as well as the number of scatter-
ing modes possible for each process in the right column.
The number of modes include the crossing of the process,
three generations, and supersymmetric counterparts. We
note that there is another factor 2 from the processes of
charge conjugate.
The thermal production from decays, when the tem-

perature of the early Universe was much higher than the
decaying particles, can be well approximated by [16]
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YÑ

10−11

)

( mÑ
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⟨Γ(i → Ñ + · · · )⟩ni,
(10)

where H is the Hubble parameter and ni is the comoving
number density of i-th particle. The first and the second
term in the RHS are due to the two-body scatterings and
the decay of i-th particle into Ñ and other species. Here
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where m1 and m2 are the masses of initial state particles,
and T0 = 0 is taken as usual.
The scattering processes relevant in our scenario are

listed in Tab. II. Here, we show processes dominant
for the production of RH sneutrinos, which include the
light initial particles such as LH and RH sneutrinos,
the charged sleptons, as well as the number of scatter-
ing modes possible for each process in the right column.
The number of modes include the crossing of the process,
three generations, and supersymmetric counterparts. We
note that there is another factor 2 from the processes of
charge conjugate.
The thermal production from decays, when the tem-

perature of the early Universe was much higher than the
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Thermal production from scattering and decay

from thermal particles

: the destruction can be ignores since their number density is too small
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The abundance of the super-weakly interacting particles from the 
scatterings are given by

Here K1(z) is the modified Bessel function of the 1st kind, with T , gi, mi, and Ei being the

photon temperature, the internal degrees of freedom, and the mass and energy of i particle,

respectively.
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from the decay (non-thermal production) of heavy sterile neutrinos such as ⌫s2(⌫s3) ! ⌫s�.

Since the interaction of the sterile neutrino DM is too small, their production mechanism is

the same as that of gravitino or axino which have very weak interactions [13] 2. We consider

both production in the following subsections one by one.

C. Thermal production of sterile neutrino DM

The thermal production (TP) of the lightest sterile neutrino DM considers the production

directly from the particles in the thermal equilibrium. Since ⌫s is weakly interacting with

the other particles and always in the out of equilibrium, we can estimate its abundance as
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and the relic density is given by
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where we used the present entropy density s0 = 2⇡2

45 ⇥ 3.91 ⇥ T
3
0 and the critical density

⇢crit = 3M2
PH

2
0 . Thus (⇢crit/s0)�1 = 2.8 ⇥ 108/GeV.

At high temperature before the electroweak symmetry breaking, the most dominant pro-

duction modes for the lightest sterile neutrino are the scattering f⌫sj ! f⌫si via t-channel

1 There are other production modes �W± or ZW±
! ⌫s2(t � channel) ! ⌫sf± (and interchange of W± and

f±), however they are subdominant due to the suppression by the mixing and ⇤5.
2 The massive particle with very weak interaction has been called as super-WIMP [47], E-WIMP [46], or

FIMP [14]
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FIG. 1: The plot of ⌦TPh2 vs TR with m⌫s = 1MeV for ⇤5 = 1015GeV and 1016GeV (Dashed).

and ff̄ ! ⌫s⌫sj via s-channel mediated by B boson through the dipole interaction. The

scattering cross section for each mode is
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where we used the thermal mass for the B-boson mB ⇠ gY T to regulate the divergence in

the t-channel. The corresponding abundance is [38]
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We consider reheating temperature lower than ⇤5, otherwise we may need to consider the

UV complete theory for the temperature higher than the cuto↵ scale ⇤5.

D. Non-thermal production of sterile neutrino DM

Production of heavier sterile neutrinos

The heavier sterile neutrinos ⌫sj(j 6= 1) can be produced via scatterings which include
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the t-channel. The corresponding abundance is [38]

Y
TP
⌫s '

135
p

10�0

2⇡7g
3/2
⇤

MPTreh, (33)

' 7.4 ⇥ 10�7

✓
1016 GeV

⇤5

◆2✓
TR

1011 GeV

◆
, (34)

where we used �0 =
P

f (�s + �t). Therefore

⌦TP
⌫s h

2
' 0.2

⇣
ms

1 MeV

⌘✓1016 GeV

⇤5

◆2✓
TR

1011 GeV

◆
. (35)

We consider reheating temperature lower than ⇤5, otherwise we may need to consider the

UV complete theory for the temperature higher than the cuto↵ scale ⇤5.

D. Non-thermal production of sterile neutrino DM

Production of heavier sterile neutrinos

The heavier sterile neutrinos ⌫sj(j 6= 1) can be produced via scatterings which include

9
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Thermal Production of DM 
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5[
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⌧⌫s
< 1028 s
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TR = 1010 GeV

TR = 1012 GeV

FIG. 2: The contours on the plane of (m⌫s ,⇤5) which give the correct relic density for the lightest

sterile neutrino DM from TP, for the reheating temperature Treh = 108, 1010, 1012GeV with solid,

dotted, dot-dashed lines, respectively. The blue region is disfavored due to the short lifetime of

DM smaller than 1028 sec. From top to bottom, we used ⌦ = I, and pure imaginary ⌦ with ! = 2i

and 3i. The red region, m⌫s . 2 keV, is disfavored from the constraint of the structure formation.

Here we used the heavy sterile neutrino masses 1GeV and 10GeV.

Yukawa interaction. One of the dominant production mode is q⌫ ! q⌫sj via t-channel Higgs

boson exchange. In the massless limit of the external particles, its amplitude is given by
Z

d cos ✓

2
|M|2 'Ncy

2
f y

2
⌫


s + 2m2

h

s + m
2
h

+
2m2

h

s
log

m
2
h

s + m
2
h

�

'Ncy
2
f y

2
⌫ (for s � m

2
h).

(36)

Another is q̄q ! ⌫̄⌫s via s-channel Higgs boson exchange process with the amplitude
Z

d cos ✓

2
|M|2 'Ncy

2
f y

2
⌫

s
2

(s � m
2
h)

2 + m
2
h�

2
h

,

'Ncy
2
f y

2
⌫ (for s � m

2
h).

(37)

Therefore the total scattering cross section is around

h�vi '
Ncy

2
f y

2
⌫

128⇡T 2
, (38)

for large T � mt, mh, M⌫R .

For the scattering with a top quark the equilibrium condition, is given by

nh�(q⌫ $ q⌫sj)vi > H, (39)
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Non-Thermal Production of DM 

The lightest RH neutrino DM is produced from the decay of 
the heavier RH neutrinos

FIG. 5: The contour plot of ⌦NTPh2 in the plane ofm⌫s vsm⌫sj . Here we used ⇤5 = 1015GeV (left)

and ⇤5 = 1015GeV (right). remove?

The final relic density from the non-thermal production (NTP) can be written as

⌦NTP
⌫s h

2 =
mss0

⇢crit

X

i=2,3

Br(⌫sj ! �⌫s) ⇥ Y
dec
⌫sj

, (49)

' 2 ⇥ 10�9
⇣

ms

1 MeV

⌘✓1 GeV

msj

◆✓
1016 GeV

⇤5

◆2✓ 6 ⇥ 10�9

P
↵ |⇥↵j|

2

◆
. (50)

The non-thermal production of the lightest sterile neutrino DM is too small to explain the

relic density for dark matter.

IV. CONCLUSION

We studied the possibility of the lightest sterile neutrino as dark matter through the

dipole interaction term between the sterile neutrinos. The amount for DM can be produced

thermally for the reheating temperature around Treh =, for ⇤5 = 1015 GeV and ms = 1 MeV,

msj = 1, 10 GeV.

Safe from the Structure formation, Lyman ↵.

Maybe no problem from stellar cooling. Since the ⌫s coupling to SM particles are too

weak, which is suppressed by both the dipole term and mixing term. Comparing Fig.11

14

It is much suppressed compared to that from thermal production.
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Constraints from BBN

10�2 10�1 100 101

msj[GeV]

10�16

10�14

10�12

10�10

10�8

10�6

�
2 ↵
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FIG. 3: change the label to msj Contour of the lifetime of the heavy sterile neutrino on the plane

of msj vs |⇥|
2 (left). Lifetime of heavy sterile neutrino for di↵erent orthogonal matrix with ⌦ = I,

and ! = 2i, 3i in Eq. (14). Here we used ⇤5 = 1016GeV (right).

FIG. 4: Left: Branching ratio of the decay of heavy sterile neutrino. Here we used the mixing

from the relation Eq. (8). Right: Branching ratio for the decay mode to ⌫s�. Here we used

⌦ = I (dashed), ! = 2i (dot-dashed), ! = 3i (solid), we used ⇤5 = 1016GeV.

which is about 5 ⇥ 10�10 for ⇤5 = 1016 GeV, m⌫sj = 1 GeV, with ⌦ = I. In Fig. 4, we show

the branching ratio of the heavy sterile neutrino decay for di↵erent ⌦.
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the branching ratio of the heavy sterile neutrino decay for di↵erent ⌦.
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The decay of the heavier RH neutrinos produce EM, hadronic 
and then affect the Big Bang Nucleosynthesis.

[Atre etal, 0901.3589]

disfavored
by BBN

favored

as well as the dipole term. The decay modes due to Yukawa interaction include ⌫si ! 3⌫,

with other leptonic decay modes such as `
�
`
+
⌫ [17], ⌫si ! ⌫� [18, 19], and the modes with

mesons. The partial decay rate is given [20, 21] for the sterile neutrino lighter than the mass

of W -boson, each. Among them the decay rate of the dominant decay mode is

�(⌫sj ! 3⌫) =
X

↵,i

�(⌫sj ! ⌫↵⌫i⌫̄i) =
G

2
Fm

5
sj

96⇡3

X

↵

|⇥↵j|
2
, (44)

which estimates the lifetime of the heavier sterile neutrinos. In the left window of Fig. 3, we

show the contour of the lifetime of the heavy sterile neutrinos in the place of (msj, |⇥↵j|
2).

The solid line corresponds to the lifetime (10, 1, 0.1, 0.01) second, respectively from left to

right. In the right window, we show the lifetime of heavy sterile neutrino vs msj for di↵erent

⌦, with ⌦ = I, and pure imaginary ⌦ with ! = 2i and 3i in Eq. (14). For each ⌦,
P

↵ |⇥↵j|
2 = 6 ⇥ 10�9

, 8 ⇥ 10�10
, 8 ⇥ 10�12 with msj = 1 GeV. More explanations on the

computation. varied msj with fixed heaviest one as 10GeV.

The dipole interaction allows new decay mode ⌫si ! �⌫s and contributes to the nonther-

mal prodution of ⌫s [22]. The decay width is given as

�(⌫sj ! ⌫s�) =

Z
|p|

8⇡m
2
sj

|M|2
d⌦

4⇡

=
1

2⇡
c
2
W [(C⌫s⌫s

V j1 )2 + (C⌫s⌫s
Aj1 )2]m3

sj, (45)

where C
⌫s⌫s
V j1 and C

⌫s⌫s
Aj1 are defined in Eq. (18). At high temperature before the SU(2)L

symmetry breaking, the decay ⌫sj ! B⌫s has the decay rate

�(⌫sj ! ⌫sB) =
1

2⇡
(Cj1)

2
m

3
sj. (46)

The late decay of heavier sterile neutrinos are generally well constrained by the physics

around the epoch of the big bang nucleosynthesis (BBN) and recombination [23, 24, 48].

Hence it is generally required that they decay before BBN, i.e. before 1 second, so that the

mass of heavy sterile neutrinos are larger than several hundred MeV for ⌦ = 1.

Therefore the abundance of the lightest sterile neutrino DM from the decay of the heavier

sterile neutrinos is the fraction of the abundance of them as

Y
NTP
⌫s = Br(⌫sj ! ⌫s�) ⇥ Y

dec
⌫sj

. (47)

The branching ratio is given approximately as

Br(⌫sj ! ⌫s�) '
�(⌫sj ! ⌫s�)

�(⌫sj ! 3⌫)
'

48⇡2

⇤2
5G

2
Fm

2
sj

P
↵ |⇥↵j|

2
, (48)
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Summary

• Production of RH neutrino dark matter

• Neutrino mass and dark matter

: thermal (scattering) + non-thermal

- 10 keV - 100 MeV mass cold dark matter, with GUT scale new physics
- Reheating temperature around 10^10 GeV
- No constraint from the structure formation
- Constraint and possible signal from X-ray or Gamma-ray

SM + RH neutrinos + dipole interaction

Dark Matter

nuMSM dim-5 from new physics
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Thank You!


