Novel hermetic detector for KAPAE

Darkness on the table

<u>HyeoungWoo Park</u>, D. W. Jung, J. Jegal, H.J. Kim Kyungpook National University

2021.08.09

I	Introduction of KAPAE
I	Design of KAPAE Detector
	KAPAE Phase I
IV	KAPAE Phase II
\mathbb{V}	Summary

KAPAE

<u>K</u>NU <u>A</u>dvanced <u>P</u>ositronium <u>A</u>nnihilation <u>E</u>xperiment (KAPAE)

Introduction

Positronium

- Unstable hydrogen-like atoms $(M_p \rightarrow m_{e^+})$
- The spin state of Ps can be calculated using the hydrogen atom model
- Positronium (Ps)
 - Singlet spin state (para-Positronium, p-Ps)
 - Triplet spin state (ortho-Positronium, o-Ps)

Introduction

Positronium

• Parity: Flip in sign of spatial coordinates

 $\rightarrow \hat{P}\psi(x) = \psi(-x), \hat{P}^2\psi(x) = \psi(x) \rightarrow P = \pm 1$

- Antiparticle & particle pair intrinsic parity : $P_p \cdot P_p = -1$
- $P = (-1)^{l+1}$
- $C = (-1)^{l+s}$
- The ground state l = 0, s = 0
- *C* = +1
- Photon $C = (-1)^n$
 - Singlet decay = even photon (2, 4, 6 ...)
- Lifetime = 125 ps

para-Positronium

- The ground state l = 0, s = 1
- *C* = −1
- Photon $C = (-1)^n$
 - Triplet decay = odd photon $(3, 5, 7 \dots)$
- Lifetime = $142 \pm 0.02 ns$

ortho-Positronium

Introduction

New Physics

- Invisible Exotic Decay (Mirror world, Extra dimensions ...)
- Visible Exotic Decay (Standard model verification, axion)

Milli-charged particles

- The grand unified theory (GUT) model
- Electric charge particles ("shadow" photon <<<< e⁻)

$$\Gamma(o-Ps \to X\bar{X}) = \frac{\alpha^5 Q_X^2 m_e}{6} \cdot k \cdot F(\frac{m_X^2}{m_e^2})$$

Extra dimensions

- k > 2.7 TeV o-Ps $\rightarrow \gamma^* \rightarrow \text{ additional dimension(s)}$ Br = $\frac{9\pi}{4(\pi^2 - 9)} \cdot \frac{1}{\alpha^2} \cdot \frac{\pi}{16} \left(\frac{m_0 - Ps}{k}\right)^2 \approx 3 \times 10^4 \left(\frac{m_0 - Ps}{k}\right)^2$

Mirror world

- The mirror universe model
- Vibration of o-Ps and mirror o-Ps

Br(o-Ps \rightarrow invisible) = $\frac{2(2\pi\varepsilon f)^2}{\Gamma^2 + 4(2\pi\varepsilon f)^2}$

<u>Axion</u>

- Light pseudoscalar

 $o-Ps \rightarrow \gamma X$

Introduction

Recently Other Research

Introduction

CPT-Violation

- Discrete symmetries of positronium
- CPT violation in lepton sector
- CPT violation forbidden

*Vetter P and J Freedman S 2003 91 263401

Introduction

Design of KAPAE Detector

Design of hermetic novel detector

- Compact size & multichannel (fine segmentation)
- 192 BGO crystals + 8 endcap BGO crystals = 200 BGO crystals

Design of KAPAE Detector

Design of hermetic novel detector

- 196 SiPM Channels → Dual readout (392 chaanels)
- New concept of positron trigger (expected to improve trigger efficiency)

Design of KAPAE Detector

Design of KAPAE Detector

Geant4 Simulation

Event distributions of BGO location

KAPAE Phase I

Channel Mapping

- SiPM locations
 - \neq Board number
 - \neq Cable number
 - \neq Channel number

KAPAE Phase I

Single photoelectron calibration

- Pedestal & background estimation
- Single photoelectron ~ 40 channels

KAPAE Phase I

KAPAE Phase I

Monitoring

Pedestal & Temperature monitoring

KAPAE Phase I

Energy & Time correction

- BGO Left (ER 33%) + Right (ER 38%) → BGO Total (ER 26%) → Correction (ER 25%)
- Adding adjacent BGO energy (ER 63% → 33%)
 - Compton effect, Crosstalk (electronics, optical), Misalignment
- Time correction → leading edge time discrimination

KAPAE Phase I

KAPAE Phase I

3 Gamma selection

- Total Energy Sum = 1.022 MeV
- Time Cut > 10 ns (exclude 1.274 MeV & p-Ps annihilation)

KAPAE Server

- Raw data = 200 TB \rightarrow After 1st sorting = 41 TB (3 month)
- Storage server and multiple cores for data processing
- 41 TB / 768(Byte/event) = 5.332131 x 10¹⁰ events \rightarrow 4% 3gamma select \rightarrow 2.14 x 10⁹

KAPAE Phase I

Kinematic Fit

- 4 constraint kinematic fitting (BGO attenuation: 0.96 cm⁻¹ $\rightarrow \theta$ value is loss)
- The kinematic fitting ROOT code has been converted to Python code

Focus on CPT violation

- Rotate the positron trigger direction 90 degrees $\rightarrow \theta$ value is not required
- Enhancing the nitrogen environment \rightarrow 3 γ efficiency improvement

KAPAE Phase I System intensification

Focus on CPT violation

• Only XY projection data is sufficient to search CPT Violations

KAPAE Phase I System intensification

Deep learning

- CNN Deep learning (KAPAE Phase I Geant4 simulation data)
- Positronium annihilation reconstruction (x2 improvement in accuracy)

KAPAE Phase I System intensification

Jin Jegal

Design & Simulation

- Invisible upper limit sensitivity
- KAPAE phase II (Minimize dead area, Thicker BGO system)

KAPAE phase I \rightarrow 1.778 × 10⁻⁸ at 90% CL, KAPAE phase II \rightarrow 1.728 × 10⁻⁹ at 90% CL

KAPAE Phase II

DW Jung

Summary

Thank You !

BACK UP

The concept of detector for KAPAE

- Positronium = Electron + Positron
 - Positron $\rightarrow \beta^+$ decay (²²Na)
 - Electron \rightarrow aerogel
- Trigger signal
 - → Plastic scintillator

Generation of trigger signal

Design of KAPAE Detector

Light loss in KAPAE

- Near coincidence events check
- 44.9% light loss at other side direction light (BGO optimization ER = $12\% \rightarrow$ KAPAE 20~35%)

KAPAE Phase I

- Accidental γ -ray \rightarrow exponential fitting include constant term
 - Lifetime: 62.4 \pm 0.25 ns in air & 111.7 \pm 8.44 ns in N₂

KAPAE Phase I

- Optimization of peak sum width
 - BGO decay time 300 ns
 - Peak sum width (PSW) = 1000 ns

KAPAE Phase I

- Accidental γ -ray \rightarrow exponential fitting include constant term
 - Lifetime: 62.4 \pm 0.25 ns in air & 111.7 \pm 8.44 ns in N₂

KAPAE Phase I

- 3γ events selection
 - Detector efficiency \rightarrow 0.86 % 511 keV gamma loss
- BGO Compton
 - 3 γ deposit at 3BGO crystal = 34.8%

00.00% 0.86% 62.78%	100.00% 0.86%	1	62.78%	51.89%	84.76%	70.34%	
0.86% \$2.78%	0.86%			×10 ³			
62.78%	91770/			600			
	04.// 70	3 Gamma → 3 hit < 34.8%					
30.65%	13.37%						
5.29%	0.36%						
0.57%	_			0000.5	1 1.5 2	2.5 3 3.5	
3 5 0	0.65% 5.29%).57%	0.65% 13.37% 5.29% 0.36% 0.57% -	0.65% 13.37% 5.29% 0.36% 0.57% -	0.65% 13.37% → 3 hit < 34.8%	0.65% 13.37% 5.29% 0.36% 0.57% -	0.65% 13.37% 5.29% 0.36% 0.57% -	

nalysis of preliminar	y data 🔤 🔤			
		The number of hit	Simulation Events	Measurement Events
	Geant4 Simulation	1	2.94%	1.00%
	Only 3gamma	2	6.77%	7.94%
	annihilation	3	13.83%	14.87%
	+ 1.274 MeV	4	18.54%	23.99%
		5	19.80%	24.28%
		6	16.87%	14.57%
⁰ 0 2 4 4	6 8 10 12 14 Hit count	7	11.24%	6.47%
	KAPAF data	8	5.96%	2.89%
		9	2.62%	1.70%
	2 + 3gamma	10	0.97%	1.09%
	annihilation	11	0.33%	0.63%
	+ 1.274 MeV	12	0.09%	0.32%
		13	0.02%	0.14%
		14	0.01%	0.07%

Comparison of Geant4 and measurement data (3 gamma)

V Results

Analysis of preliminary data

- 3 gamma events selection
 - BGO Hit Count > 3 (include Compton scattering)
 - Total Energy Sum = 1.022 MeV
 - Time Cut = 160 ns ~ 800 ns (exclude 1.274 MeV & p-Ps annihilation)
 - Accidental gamma depress

Summary

- Development of a Hermetic Novel Detector for KAPAE
- The new concept of trigger part offers high performance of positron trigger efficiency
 - KAPAE trigger maximum counting rate 59 kHz
 - 20 times better than ETH Zurich trigger counting rate 3.2 kHz
- CPT asymmetry sensitivity is ± 0.000058 at 90% C.L. (confidence level)
 - 5.5 times improvement over reported papers.
- Invisible upper limit sensitivity is 1.79 × 10⁻⁸ at 90% C.L. for new physics
 2.1 × 10⁻⁸ at 90% C.L. (ETH Zurich)
- Positronium decay time increase under N₂ condition
- Geant4 simulation include 3 gamma annihilation
- Python based → machine learning

- CPT violation study
- Invisible decay
- PET medical application

Pick-off Process

$$\Gamma_{pick-off} = 4\pi r_0^2 c \rho_0 Z_{eff} P_0$$

Table 3.1: The basic properties of SiPM.

Parameter	J-Series	s 60035			
Active area	6.07 x 6.07 mm ²				
No. of microcells	22,292				
Microcell fill factor	75%				
Microcell recharge time	50 ns				
Breakdown Voltage	24.7 V				
Spectral Range	200 – 900 nm				
Capacitance	4140 pF				
Overvoltage properties	+ 2.5V	+ 5V			
➢ PDE	38%	50%			
Dark count rate	50 kHz/mm ²	150 kHz/mm ²			
➤ Gain	2.9 x 10 ⁶	6.3 x 10 ⁶			
Rise time	180 ps	250 ps			
Crosstalk	8%	25%			
Afterpulsing	0.75%	5%			

Time discrimination methods: (a) Leading edge, (b) peak, (c) center of gravity, (d) inflection, (e) constant fraction.

511 keV Hit of BGO

