

Axion Dark Matter Search at IBS/CAPP

Darkness on the table 2021.08.09–11, Busan (online)

SungWoo YOUN Center for Axion and Precision Physics Research (CAPP) Institute for Basic Science (IBS)

Outline

- Introduction
 - Axion dark matter
 - Detection principle
- Axion haloscope
- Axion research at IBS-CAPP
 - R&D efforts
 - Axion search experiments
- Projection & Summary

Introduction

Axion dark matter Detection principle

- PQ mechanism (1977)
 - New global U(1) symmetry w/ scalar field a

 $\mathcal{L}_{QCD} \supset \left(\theta - \frac{a}{f_a}\right) \frac{\alpha_s}{32\pi} G^a_{\mu\nu} \tilde{G}^{a,\mu\nu}$

- Spontaneous breaking: minimum at $a = \theta \cdot f_a$
- Dynamic solution to strong CP problem
- Axion (1978)
 - (pseudoscalar) Nambu-Goldstone boson
 - QCD axion
 - Mass related to QCD scale: $m_a^2 f_a^2 \sim m_\pi^2 f_\pi^2$
 - cf. axion-like particle (ALP)
 - PQWW axions (EW scale) excluded

Invisible axion and dark matter

5

- Invisible axion (1979)
 - Very light axion in early universe at a large energy scale

$$m_a \approx 6 \, \mu eV \frac{10^{12} \, GeV}{f_a}$$

 Spanned axion mass range by many orders of magnitude Cosmic axion (1983)

SungWoo YOUN

- May account for dark matter
- Cosmological constraint: $f_a < 10^{12} \; GeV$
- Astrophysical observation: SN1987A
- Different PQ breaking scenarios predict different mass ranges

Axion couplings

Axion interactions with SM fields

	Photons	Fermions	nEDMs
Coupling	$g_{a\gamma\gamma}a\mathcal{F} ilde{\mathcal{F}}$	$ig_{aff}aar{\psi}\gamma^5\psi$	$ig_d a ar{\psi}_n \sigma \gamma^5 \psi_n \mathcal{F}$
Detection	Resonators in magnetic fields	Magnetometers	NMR
Example	ADMX, CAPP, MADMAX,	GNOME, QUAX, ARIADNE,	CASPEr, srEDM,

- Most commonly rely on EM interaction
 - Axion dynamics $\mathcal{L} \supset -\frac{1}{4}g_{a\gamma\gamma}a\mathcal{F}\tilde{\mathcal{F}} = -g_{a\gamma\gamma}a\boldsymbol{E} \cdot \boldsymbol{B}$ $g_{a\gamma\gamma}^{QCD} \simeq \frac{\alpha}{2\pi}\frac{1}{f_a}\left(\frac{E}{N} - 1.92\right) \quad cf. \ g_{a\gamma\gamma}^{ALP} \simeq \frac{\alpha}{2\pi}\frac{1}{f_a}$

Benchmark models

• KSVZ:
$$\frac{E}{N} = 0, 2$$
 (Heavy quarks) vs. DFSZ: $\frac{E}{N} = \frac{8}{3}$ (Higgs doublet)

- EM interaction (axion coupling with photons)
- Presence of axion field modifies Maxwell's equations
 - $\nabla \cdot E = \rho g_{a\gamma\gamma} \nabla a \cdot B$
 - $\nabla \times B \dot{E} = j + g_{a\gamma\gamma}(\dot{a}B + \nabla a \times E)$
 - For invisible axions, $\nabla a \approx 0$, $\dot{a}B$ is in more effect
- (Inverse) Primakoff effect (1983)

Axions "borrow" virtual photons from a magnetic field to turn into real photons

Search strategies

- Haloscope
 - DM axions in our galactic halo
 - Microwave resonators
 - ADMX, HAYSTAC, CAPP,...

Helioscope

- Solar axions
- Emitted from the solar core
- CAST, IAXO, ...
- L = 9.26 m Solar Sunset Sunrise axion system X-ray telescope system Magnet Magnet bore *в* ~ 9 т Shielding X-ray detector

SungWoo YOUN

- Photon regeneration
 - Light Shining through Wall
 - Axion production/detection in the laboratory
 - OSCAR, ALPS (II), ...

TUTE OF SCIE

1971

Axion searches – present

9

Axion haloscope

- Microwave photons resonantly converted from axions
- Conversion signal power $(a \rightarrow \gamma \gamma)$
 - $P_{a \rightarrow \gamma \gamma} = g_{a\gamma \gamma}^{2} \frac{\rho_{a}}{m_{a}} B^{2} V C_{mnp} \min(Q_{L}, Q_{a}) \sim 10^{-21} W$ Coupling constant Magnetic field

SungWoo YOUN

Signal-to-noise ratio (SNR)

$$SNR \equiv \frac{P_{signal}}{P_{noise}} = \frac{P_{a \to \gamma\gamma}}{k_B T_{syst}} \sqrt{\frac{t_{int}}{\Delta f_a}} - \frac{Integration time}{(\sim 10^{-6} f)}$$

System noise temperature

• Scanning rate (F.O.M.): $\frac{df}{dt} = \left(\frac{1}{SNR}\right)^2 \left(\frac{P(f)}{k_B T_{syst}}\right)^2 \cdot \frac{Q_a}{Q_L} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

11

- theoretical parameters

Magnetic field (B₀)

 $(g_{avv}, \rho_a, m_a, Q_a)$

Haloscope in a nutshell

Enhancing the scan rate

Axion research at IBS-CAPP

R&D efforts

Axion search experiments

IBS-CAPP

CAPP-9T MC

CAPP-12TB

CAPP-PACE

CAPP-8TB

store for Basic

ibs.

Refrigerators		Magnets			Experiments		
Manufacture	Model	Τ _в [mK]	Manufacture	B _{max} [T]	Bore [mm]		Name
BlueFors (BF3)	LD400	10	Condu	ctin	g par	allel	experiments
BlueFors (BF4)	LD400	10	targetin	ig at	diffe	rent	mass ranges!
Janis	HE-3- SSV	300	Cryo Magnetics	9	125		CAPP-9T MC
BlueFors (BF5)	LD400	10	АМІ	8	125		CAPP-8T (PACE)
BlueFors (BF6)	LD400	10	АМІ	8	165	-	CAPP-8TB
Oxford	Kelvinox	30	SuNAM	18	70		CAPP-18T
Leiden	DRS1000	5	Oxford	12	320		CAPP-12TB
			IBS/BNL	25	100		CAPP-25T

2.15

-0.5

0.0 ϕ/ϕ_0 0.1

-115

3.0

2.5

- 2.0

- 1.5

- 1.0

0.5

- 0.0

-120

10

Measurement cavity photon occupation

0.5

JPAs

SG

20 dB -+++

10 dB

20 dB -+++

18

Collaboration with U of Tokyo (RIKEN)

- A series of chips covering a wide range (1~6 GHz)
- Characterization at CAPP
- Reasonable gains and nearly QLN

Issues

1. strong field vs. Meissner effect

3. biaxially-textured tape

Solutions

Superconducting Cavities $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

1&2. Type II HTS w/ high H_c and high f_{dep}

No. of the second se				
Material	Crystal structure	Anisotropy	<i>Т</i> _с (К)	H _{c2}
Nb47wt%Ti	Body-centred cubic	Negligible	9	12 T (4 K)
Nb₃Sn	A15 cubic	Negligible	18	27 T (4 K)
MgB ₂	P6/mmm hexagonal	2–2.7	39	15 T (4 K)
YBCO	Orthorhombic layered perovskite	7	92	>100 T (4 K)
Bi-2223	Tetragonal layered perovskite	~50–100	108	>100 T (4 K)

20

Superconducting cavities

Melon cavity – 12 pieces

• Barbeque cavity – 32 pieces

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

- Plasma haloscope
 - Array of thin metal wires

• Resonance w/ electron plasma ($\omega_a = \omega_p$

High freq. approach

- ω_p depends on d & s
 - d: wire diameter / s: inter space
- Independent of cavity size
 => Large detection volume

Development at CAPP

Metal wires	Metal posts	Dielectric posts
C ~ 0.9	C ~ 0.8	C ~ 0.2
$Q < 10^{3}$	$10^3 < Q < 10^4$	Q > 10 ⁵
Dens. > 3 /cm ²	Dens. ~ 1 /cm ²	Dens. ~ 1 /cm ²
TM ₀₁₀ -like	TM ₀₁₀ -like	TM ₀₂₀ -like
Freq. tuning is challenging		Freq. tuning is less challeng.

- Dielectric post array design is suitable for f > 10 GHz
- Further development is ongoing

Axion research at IBS-CAPP

R&D efforts

Axion search experiments

TUTE OF SCI

CAPP-8TB

- 8T/165mm SC magnet
- BlueFors Dilution (T_{phy} ~ 50 mK)
- HEMT amplifiers

- First result from IBS-CAPP
- m_a ~ 6.6 μeV (Δm_a ~ 0.2 μeV)
- Sensitivity: $g_{arr} \sim 4 \text{ KSVZ} @ 90\% \text{ C.L.}$
- Upgrade for 6 GHz search

Darkness on the table

CAPP-9T (MC)

- 9T/127mm SC magnet
- JANIS cryogenic syst. (T_{phy} ~ 2 K)
- HEMT amplifiers

PRL 125, 221302 (2021)

Frequency [GHz] 10⁹ 1010 10^{-9} CAST 10^{-11} RBF ORGAN $g_{a\gamma\gamma}$ [GeV⁻¹] QUAX-ay QCD axion band ADMX 10-13 KSVZ HAYSTAC UF CAPP DFSZ 10-15 10-17 10^{-6} 10-5 10^{-4} m_a [eV]

- Demonstration of *multiple-cell* cavity design
- *m_a* ~ 13 μeV (Δ*m_a* ~ 1 μeV)
- Sensitivity: g_{arr} ~ 10 KSVZ @ 90% C.L.

CAPP-PACE

- 8T/127mm SC magnet •
- **BlueFors** Dilution . $(T_{phy} \sim 40 \text{ mK})$
- HEMT amplifiers •

- First results around 10.7 ueV
- $\Delta m_a \sim 1.2 \,\mu eV$
- Sensitivity: $g_{arr} \sim 9 \text{ KSVZ} @ 90\% \text{ C.L.}$
- Upgrade for SC cavity experiment

CAPP-12TB

- 12T/320mm SC magnet
 Leiden Dilution
- (T_{phy} ~ 50 mK) • JPA (T_{add} ~ 100 mL)
- Cavity > 30 L

• Flagship experiment at CAPP

SungWoo YOUN

- **DFSZ** sensitivity for $f_a > 1$ GHz ($m_a > 5 \mu eV$)
- $\Delta f_a \sim 0.1 \text{ GHz} \Rightarrow 3 \text{ GHz} \Rightarrow 8 \text{ GHz}$
- First data expected in late 2021

27

四 王 과 학 기 4

SungWoo YOUN

Projection & summary

TUTE OF SCI

ΚΔΙΣΤ

1971 · *한국과학기* (*

Oxford SC magnet => 12 T Leiden dilution => T = 5.6 mK Cavity => V > 30 L

 $\frac{df}{dt} \sim B^4 V^2 C^2 Q_L T_{syst}^{-2}$

JPA (f = 1~6 GHz, $T_n = 2~4$ SQL)

SC cavity (Q > 1 M)

High frequency

Summary

- Axion is very charming
 - Strong CP problem & dark matter mystery
- Haloscope is the most sensitive approach
 - University lab-scale experiments
- IBS-CAPP is a serious axion hunter
 - Magnet / JPA / SC cavity / high frequency
 - Parallel experiments are on going
- IBS-CAPP will play a leadership role in axion business within a few years
 - Probing a large mass range (up to 100 µeV) with sensitivity of the QCD axion in next 10 to 20 years
 - Addressing the fundamental questions

Backup Slides

Conductor rod (TM₀₁₀)

SungWoo YOUN

Dielectric rod (TM₀₁₀)

Tuning rod(s)

- Geometry and mode dependent
 - Cavity mode and external field

 $C_{mnp} = \frac{\left|\int \vec{E}_{c} \cdot \vec{B}_{0} dV\right|^{2}}{\int \varepsilon \left|\vec{E}_{c}\right|^{2} dV \int \left|\vec{B}_{0}\right|^{2} dV}$

For cylindrical cavities

- z-direction for TM modes
- φ-direction for TE modes

TM₀₁₀ mode

SungWoo YOUN

- Maximum form factor
- Typical cavity mode for axion haloscopes

34

